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Abstract surface yields alone does speak to the strength of

We present a generative model for thesupervised ~ SUPPOrt for these patterns in the data, and hence un-
learning of dependency structures. We also describéi?rm'nef arguments based on “the poverty of the
the multiplicative combination of this dependency modelStimulus” (Chomsky, 1965).

with a model of linear constituency. The product model . :
\ . 2 Unsupervised Dependency Parsing
outperforms both components on their respective evalu-

ation metrics, giving the best published figures for un-MOst recent progress in unsupervised parsing has
supervised dependency parsiagd unsupervised con- come from tree or phrase-structure grammar based
stituency parsing. We also demonstrate that the commodels (Clark, 2001; Klein and Manning, 2002),
bined model works and is robust cross-linguistically, be-but there are compelling reasons to reconsider un-
ing able to exploit either attachment or distributionatreg SUpervisediependency parsing. First, most state-of-

ularities that are salient in the data. the-artsupervised parsers make use of specific lexi-
_ cal information in addition to word-class level infor-
1 Introduction mation — perhaps lexical information could be a use-

The task of statistically inducing hierarchical syn- ful source of information for unsupervised methods.
tactic structure over unannotated sentences of nafecond, a central motivation for using tree struc-
ural language has received a great deal of atterfures in computational linguistics is to enable the
tion (Carroll and Charniak, 1992; Pereira and Sch-€xtraction of dependencies — function-argument and
abes, 1992; Brill, 1993; Stolcke and Omohundro,modification structures — and it might be more ad-
1994). Researchers have explored this problem fovantageous to induce such structures directly. Third,
a variety of reasons: to argue empirically againsts We show below, for languages such as Chinese,
the poverty of the stimulus (Clark, 2001), to useWhich have few function words, and for which the
induction systems as a first stage in constructingl€finition of lexical categories is much less clear,
large treebanks (van Zaanen, 2000), to build betteflependency structures may be easier to detect.
language models (Baker, 1979; Chen, 1995), an%1

; S . > 2.1 Representation and Evaluation
to examine cognitive issues in language learning, o denend ation of a short
(Solan et al., 2003). Animportant distinction should”\"" €Xample dependency repreésentation ot a shor

be drawn between work primarily interested in theSentence s shown in figure 1(a), where, follow-

weak generative capacity of models, where model"Y the traditional dependency grammar ”Ota“OT‘-
ing hierarchical structure is only useful insofar as itthe regent or head of a dependency is marked with

leads to improved models over observed structureg1e tail of the dependency arrow, and the dependent

(Baker, 1979; Chen, 1995), and work interested iHs_I:ngrk_ed with th? arrhowr;eﬁld (Meuk, 19?18)' It h
the strong generative capacity of models, where th&/!'' P& Important in what follows to see that suc

unobserved structure itself is evaluated (van Zaa2 representation is isomorphic (in terms of strong

nen, 2000; Clark, 2001; Klein and Manning, 2002)_generative capacity) to a restricted form of phrase

This paper falls into the latter category; we will be strutcture_ grlamm_rér, vt\{helre thg set of telrm_lnaI? t:;nd
inducing models of linguistic constituency and de- nonterminals 15 identical, and every ruie Is ot the

pendency with the goal of recovering linguistically f0rm X — X Y or X — ¥ X (Miller, 1999), giving
plausible structures. We make no claims as to théhe isomorphic representation of figure 1(a) shown

, 1 : ey
cognitive plausibility of the induction mechanisms In figure 1(b). Depending on the model, part-of
we present here; howeve_r- the a_b”_'ty of these sys- 1gyrictly, such phrase structure trees are isomorphic not to
tems to recover substantial linguistic patterns fromflat dependency structures, but to specific derivations ageh
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Figure 1: Three kinds of parse structures.

speech categories may be included in the depen-

dency representation, as shown here, or dependen- o /\&/\\

cies may be directly between words. Below, we will e ¢ ¢« . ROOT

assume an additonal reserved nontermRabT,  Figyre 2: Dependency graph with skeleton chosen, but

whose sole dependent is the head of the sentencgords not populated.
This simplifies the notation, math, and the evalua-

tion metric. . .
Where possible, we report an accuracy figure for

A dependency analysis will always consist of ex- . . ’
actly as many dependencies as there are words in t eoth directed and undirected dependencies. Report-

sentence. For example, in the dependency structurB9 undirected numbers has two advantages: first, it
of figure i(b) the depéndencies a(@oor, fell) acilitates comparison with earlier work, and, more
(fell, payrolls),’ (fell, in), (in, September), (pa;/rolls: importantly, it allows one to partially obscure the
Factory)}. The quality of a hypothesized depen- ef_fects c_>f alternate analyses, such as t_he system-
dency structure can hence be evaluated by accura ic choice between a ”.‘Odf"" and a main verb for
as compared to a gold-standard dependency stru he head qf a sentence ("? elther case, the two verbs
ture, by reporting the percentage of dependencie‘é"OUId be linked, but the direction would vary).
shared between the two analyses. 2.2 Dependency Models

In the next section, we discuss several models ojI'he dependency induction task has received rela-

dependency structure, and throughout this paper Wf?vely little attention; the best known work is Car-

report the accuracy of various methods at recovery =4 charniak (1992), Yuret (1998), and Paskin
ing gold-standard dependency parses from Var'OU&OOZ). All systems that we are aware of operate un-

corpora, detailed here. WSJ is the entire Penn Eny : o
! . . er the assumption that the probability of a depen-
glish Treebank WSJ portion. W3J10 is the SlJbsegency structure is the product of the scores of the

of sentences which contained 10 words or less aﬁe&ependencies (attachments) in that structure. De-

g}etggmol\pr/]al cl)fﬁutr;cgtgatliﬂé%TEiOéﬁ_th: Zinézrl;ce endencies are seen as ordered (head, dependent)
same length from € INese reebankairs of words, but the score of a dependency can

gg)A cNoIErGuZA%)(leIZ(;hgnS%zes,JorIggg (c;:r:\r/g?giol\rI\Ec-) ptionally condition on other characteristics of the
the NEGpRA ’cor us into Penn Fr?aebank format. In tructure, most often the direction of the depen-
P " dency (whether the arrow points left or right).

most of the present experiments, the provided parts- . Iy
: Some notation before we present specific mod-
of-speech were used as the input alphabet, though

o= . . . els: a dependency is a pair(h, a) of a head and
we also present limited experimentation with syn- . . .
) argument, which are words in a sentesc@ a cor-
thetic parts-of-speech.

ok us S. For uniformity of notation with section 4,
It is important to note that the Penn treebanks do\?vords ins are specified as size-one spanssofor

not include dependency annotations; however, the .
. . example the first word would hgs,. A dependency
:Eéo;ﬁtil;eﬁpeggsggeﬂloei,:zm égg”l')lsﬁcﬁ%g;)structureD over a sentence is a set of dependencies
ay 9 . arcs) which form a planar, acyclic graph rooted at
for unsupervised systems for the time being (thoug he special symbakooT, and in which each word

fjlgsb\?vlg\r/g fggsg%:f&'ﬂs:gss)éxs'g:;:ﬁ;;‘; adT'mdmgi_n s appears as an argument exactly once. For a de-
P ' endency structur®, there is an associated graph

g;é:géﬁgs’s?ﬁjvgte&/gé does supply hand-annotate which represents the number of words and arrows
P y ' between them, without specifying the words them-

structures which specify orders of attachment among meliip Selves (see figure 2) A grafih and sentence to-
dependents which share a common head. gether thus determine a dependency structure. The




'I\E"r?;f’s'h S [ Dir._Undir. dependency structure). This below-random perfor-
Paskin 01 39.7 mance seems to be because the model links word
RANDOM o 417 pairs which have high mutual information (such
Charriak and Carroll 92-inspiret gy as occurrences afongress and bill) regardless of
DMV 54.4 whether they are plausibly syntactically related. In
Eg%igg(,\‘ﬂ’VSJlo) T practice, high mutual information between words is
ADJACENT 336 567 often stronger between two topically similar nouns
DMV 432 637 than between, say, a preposition and its object.
Cerman (NECRALD) I One might hope that the problem with this model
ADJACENT 326 512 is that the actual lexical items are too semanti-
gm;’ese T 36.3 55.8 cally charged to represent workable units of syn-
RANDOM 359 473 tactic structure. If one were to apply the Paskin
ADJACENT 302 473 (2002) model to dependency structures parameter-
DMV 425 542 ized simply on the word-classes, the result would

be isomorphic to the “dependency PCFG” models

Figure 3: Parsing performance (directed and undirected€scribed in Carroll and Charniak (1992). In these
dependency accuracy) of various dependency models oftodels, Carroll and Charniak considered PCFGs
various treebanks, along with baselines. with precisely the productions (discussed above)

that make them isomorphic to dependency gram-

dependency structure is the object generated by all@rs, with the terminal alphabet being simply parts-
of the models that follow; the steps in the deriva-Of-SPeech. Here, the rule probabilities are equiva-
tions vary from model to model. lent to RY[X, right) and RY |X, left) respectively? _
Existing generative dependency models intended he actual experiments m_CarroII and Charniak
for unsupervised learning have chosen to first gen{1992) do notreport accuracies that we can compare
erate a word-free grapB, then populate the sen- to, but they suggest thgt the_lear_ned grammars were
tences conditioned orG. For instance, the model of Of extremely poor quality. With hindsight, however,
Paskin (2002), which is broadly similar to the Semi_the_maln issue in their experiments appears to be not
probabilistic model in Yuret (1998), first chooses atheir model, but that they randomly initialized the
graph G uniformly at random (such as figure 2), pro_ductlon (attachment) probabilities. As a resqlt,
then fills in the words, starting with a fixed root their leamed grammars were of very poor quality
symbol (assumed to be at the rightmost end), an@nd had high variance. However, one nice property
working downG until an entire dependency struc- of their structural constraint, whlc_h all dependency
ture D is filled in (figure 1a). The corresponding models share, is that the symbols in the grammar are

probabilistic model is not symmetric. Even with a grammar in which the
productions are initially uniform, a symbol X can
P(D) = P(s, G) only possibly have non-zero posterior likelihood
— P(G)P(s|G) over spans which contain a matching terminal X.
_ Therefore, one can start with uniform rewrites and
= PG) [] PG-1slj-1s.dir). let the interaction between the data and the model
@i,j.dir)eG structure break the initial symmetry. If one recasts

their experiments in this way, they achieve an accu-

In Easkln (2002), the distribution(B) is fixed to be racy of 44.7% on the Penn treebank, which is higher
uniform, so the only model parameters are the con:

ditional multinomial distributions ®|h, dir) that than choosmg a ra_nd_om dependency struct_ure, but
lower than simply linking all adjacent words into a

encode which head words take which other word§ ¢ o e (and right-branching) structure (53.2%).
as arguments. The parameters for left and right ar- S .
A huge limitation of both of the above models is

guments of a single head are completely indepen-

dent, while the parameters for first and subsequermat they are incapable of encoding even first-order
arguments in the same direction are identified. valence facts. For example, the latter model learns

In those experiments, the model above Wasthat nouns to the left of the verb (usually subjects)
trained on over 30M words of raw newswire, using 5 - S _
EM in an entrely unsupervised fashion, and atgreat _ "0 = B0Ct Br Bl e oot et et fced, il
CompUtat'_onal cost. HOWever' as shown |n_f|gure 31n the Carroll and Cr?arniak wgrk all attachment orders a;'e co
the resulting parser predicted dependencies at b&tgered, giving a numerical bias towards structures whesel
low chance level (measured by choosing a randontake more than one argument.
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Figure 4: Dependency configurations in a lexicalized tragright attachment, (b) left attachment, (c) right stop), (d
left stop.h anda are head and argument words, respectively, whije andk are positions between words.

attach to the verb. But then, givenNadbUN NOUN  moves on to the left arguments fefl.

VERB sequence, both nouns will attach to the verb In this process, there are two kinds of deriva-

—there is no way that the model can learn that verbsion events, whose local probability factors consti-

have exactly one subject. We now turn to an im-tute the model’'s parameters. First, there is the de-
proved dependency model that addresses this proleision at any point whether to terminate (generate

lem. STOP or not: Ryro(STORN, dir, adj). This is a bi-
nary decision conditioned on three things: the head
3 An Improved Dependency Model h, the direction (generating to the left or right of

The dependency models discussed above are dithe head), and the adjacency (whether or not an ar-
tinct from dependency models used inside high-gument has been generated yet in the current di-
performance supervised probabilistic parsers in sewection, a binary variable). The stopping decision
eral ways. First, in supervised models, a head outis estimated directly, with no smoothing. If a stop
ward process is modeled (Eisner, 1996; Collinsjs generated, no more arguments are generated for
1999). In such processes, heads generate a sequertibe current head to the current side. If the current
of arguments outward to the left or right, condition- head’s argument generation does not stop, another
ing on not only the identity of the head and direc-argument is chosen using:Ros«alh, dir). Here,
tion of the attachment, but also on some notion ofthe argument is picked conditionally on the iden-
distance or valence. Moreover, in a head-outwardity of the head (which, recall, is a word class) and
model, it is natural to model stop steps, where thehe direction. This term, also, is not smoothed in
final argument on each side of a head is always thany way. Adjacency has no effect on the identity
special symbolsTor. Models like Paskin (2002) of the argument, only on the likelihood of termina-
avoid modelingsToPby generating the graph skele- tion. After an argument is generated, its subtree in
ton G first, uniformly at random, then populating the dependency structure is recursively generated.
the words ofs conditioned onG. Previous work Formally, for a dependency structur®, let
(Collins, 1999) has stressed the importance of ineach wordh have left dependentslepsy(h,l)
cluding termination probabilities, which allows the and right dependentdslepsp(h,r). The follow-
graph structure to be generated jointly with the ter-ing recursion defines the probability of the frag-
minal words, precisely because it does allow thement D(h) of the dependency tree rooted lat
modeling of required dependents.

We propose a simple head-outward dependencf(®@t) =[] [T  Pswor—sTorh, dir, adj)

model over word classes which includes a model dire(l.ry acdepsp(h.din)

of valence, which we calDMV (for dependency Pcroosd@lh, dir)P(D(a))
maodel with valence). We begin at th&kooT. In the

standard way, each head generates a series of non- Psrop(STORN, dir, adj)

sTopParguments to one side, thersaopargument
to that side, then nosToP arguments to the other
side, then a secorgiror.

For example, in the dependency structure in fig

One can view a structure generated by this deriva-
tional process as a “lexicalized” tree composed of
the local binary and unary context-free configura-

ure 1, we first generate a single childroT, here tions shown in figure 4.Each configuration equiv-
fell. Then we recurse to the subtree unfir This alently represents either a head-outward derivation

subtree begins with generating the right argumen?tep ora pontext—free rt_awrlte rule. There are four
in. We then recurse to the subtree unire(gener-  SUCh configurations. - Figure 4(a) shows a héad

ating September to the ”ght' a ”ghBTOP' and a left 3|t is lexicalized in the sense that the labels in the tree are

STQF)- _Sin_ce there are no more right arguments aferived from terminal symbols, but in our experiments the te
terin, its right sTopPis generated, and the processminals were word classes, not individual lexical items.




taking a right argumen&. The tree headed by  argument and took each word with equal probabil-
containsh itself, possibly some right arguments of ity. This structure had two advantages: first, when
h, but no left arguments df (they attach after all testing multiple models, it is easier to start them all
the right arguments). The tree headedallyontains  off in a common way by beginning with an M-step,
a itself, along with all of its left and right children. and, second, it allowed us to point the model in the
Figure 4(b) shows a heddtaking a left argumerd  vague general direction of what linguistic depen-
— the tree headed bBymust have already generated dency structures should look like.
its right stop to do so. Figure 4(c) and figure 4(d) On the WSJ10 corpus, the DMV model recov-
show thesealing operations, whereTopderivation  ers a substantial fraction of the broad dependency
steps are generated. The left and right marks otrends: 43.2% of guessed directed dependencies
node labels represent left and riggitors that have were correct (63.7% ignoring direction). To our
been generated. knowledge, this is the first published result to break
The basic inside-outside algorithm (Baker, 1979)the adjacent-word heuristic (at 33.6% for this cor-
can be used for re-estimation. For each sentencgus). Verbs are the sentence heads, prepositions
s € S, it gives uscs(X : i, ]), the expected frac- take following noun phrases as arguments, adverbs
tion of parses ok with a node labele extend- attach to verbs, and so on. The most common source
ing from positioni to position j. The model can of discrepancy between the test dependencies and
be re-estimated from these counts. For example, tthe model’s guesses is a result of the model system-
re-estimate an entry ofsRs(STOR, l€eft, non-adj)  atically choosing determiners as the heads of noun
according to a current modé, we calculate two phrases, while the test trees have the rightmost noun
quantitiess The first is the (expected) number of as the head. The model’s choice is supported by
trees headed Ry] whose rightmost edgeis strictly ~ a good deal of linguistic research (Abney, 1987),
left of h. The second is the number of trees headednd is sufficiently systematic that we also report the
by rh1 with rightmost edge strictly left of h. The  scores where thepr headship rule is changed to per-

ratio is the MLE of that local probability factor: colate determiners when present. On this adjusted
metric, the score jumps hugely to 55.7% directed
Psros(STORN, left, non-adj) = (and 67.9% undirected).
_ This model also works on German and Chinese at
2ses 2i<loothy 2ok S(NT 21, K) above-baseline levels (55.8% and 54.2% undirected,
2 ses 2i<lochy 2k ST 11, K) respectively), with no modifications whatsoever. In

German, the largest source of errors is also the
number of times a tree headed hyhad already systematic postulation of determiner-headed noun-

taken at least one argument to the left, had an Opphg'?lsets. In Chlnc_ao'lse, :'jh? %rm:ﬁryhmlzma;ch ISt that
portunity to take another, but didrft. subjects are considered to be the heads of sentences

Initialization is important to the success of any rathﬁ_r tr(;an ve(;bs. inducti del i bl
local search procedure. We chose to initialize EM_ 1 1S dependency induction model is reasonably

not with an initial model, but with an initial guess successful. However, our intuition is still that the

at posterior distributions over dependency structuregnooIeI can be |m|_oroved by paying more attention
(completions). For the first-round, we constructedt© syntactic constituency. To this end, after briefly

a somewhat ad-hoc *harmonic” completion where'€c@PPing the model of Klein and Manning (2002),
all nonROOT words took the same number of ar- W€ Present a combined model that exploits depen-

guments, and each took other words as argumengendes and constituencies. As we will see, this
in inverse proportion to (a constant plus) the dis-combined model finds correct dependencies more

tance between them. TH®OoT always had a single successfully than the model above, and finds con-
' stituents more successfully than the model of Klein

4Note that the asymmetry of the attachment rules enforce&nd Manning (2002).
the right-before-left attachment convention. This is Hagn

and arbitrary as far as dependency evaluations go, but@spos 4 Distributional Constituency Induction
an x-bar-like structure on the constituency assertionsentoyd

this model. This bias/constraint is dealt with in section 5. In linear distributional clustering, items (e.g., words
>To simplify notation, we assume each wdrdoceurs at  or word sequences) are represented by characteristic

I”(‘)gfkt])oielt)'me in a given sentence, between inde@$) and  gjstributions over their linear contexts (e.g., multi-
6As a final note, in addition to enforcing the right-argument- nomial mOde.ls over the precedlng and. fO.IIOW_Ing

first convention, we constrainetboTto have at most a single words, see figure 5). These context distributions

dependent, by a similar device. are then clustered in some way, often using standard

This can be intuitively thought of as the relative




Span Label Constituent Context]

05 5 NNWNSVED NNN oo i—1S ~ jSj+1 (see figure 5). The model generates

28 Ve veomm  we_e all constituent-context pairs, span by span.

(3,5 -0 . . .

oy W ot The first stage is to choose hmacketing B for

(1,2 NNS NNS NN—VBD . . . .

23 veo veo NNS — N the sentence, which is a maximal non-crossing sub-

R IN IN VBD — NN . .

45 set of the spans (equivalent to a binary tree). In

(a) (b) the basic model, @) is uniform over binary trees.
Then, for eachi, j), the subspan and context pair

Figure 5: The CCM model’s generative process for theisj, i-1S ~ jSj+1) is generated via a class-

sentence in figure 1. (a) A binary tree-equivalent brack+qnditional independence model:
eting is chosen at random. (Bgach span generates its

yield and context (empty spans not shown here). Deriva-
tions which are not coherent are given mass zero. P(s, B) = P(B) H PGisjbij)PG-1S ~ jSj+1/bij)
(i,5)

data clustering methods. In the most common caseghat is, all spans guess their sequences and contexts
the items are words, and one uses distributions ovejiven only a constituency decisidn’

adjacent words to induce word classes. Previous Tis is a model Bs, B) over hidden bracketings

work has shown that even this quite simple repre 4 gpserved sentences, and it is estimated via EM

sentation allows the induction of q_uite high qyality to maximize the sentence likelihoodgsPover the
word classes, Iargely correspondiling to trad't'onal'[raining corpus. Figure 6 shows the accuracy of the
parts of speech (Finch, 1993; Schutze, 1995; Clarke o\ model not only on English but for the Chinese

2000). A typical pattern would be thatocks and 5,4 German corpora discussed abbwesults are
treasuries both frequently occur before the words reported at convergence; for the English case, F

fell andl rose, and might therefore be put into the 5" onotonic during training, while for the others,
Same class. _ _ there is an earlier peak.

Clark (2001) and Klein and Manning (2002)  Ajso shown is an upper bound (the target trees are
show that this approach can be successfully usego; gl binary and so any all-binary system will over-
for discovering syntactic constituents as well. HOW'propose constituents). Klein and Manning (2002)
ever, as one might expect, it is easier to clustelyyes comparative numbers showing that the basic
word sequences (or word class sequences) than ®cm outperforms other recent systems on the ATIS
tell how to put them together into trees. In par-corpys (which many other constituency induction
ticular, if one is given all contiguous subsequences;ysiems have reported on). While absolute numbers
(subspans) from a corpus of sentences, most natu-gye hard to compare across corpora, all the systems
ral clusters will not represent valid constituents (tocompared to in Klein and Manning (2002) parsed

the extent that constituency of a non-situated Sepejqyy 4 right-branching baseline, while the CCM is
quence is even a well-formed notion). For exam-gpstantially above it.

ple, it is easy enough to discover thatT N and
DET ADJ N are similar and that PREP DETand .
V PREP DET ADJare similar, but it is much less 5 A Combined Model

clear how to discover that the former pair are gen-The two models described above have some com-
erally constituents while the latter pair are generallymon ground. Both can be seen as models over lexi-
not. In Klein and Manning (2002), we proposed acalized trees composed of the configurations in fig-
constituent-context model (CCM) which solves this ure 4. For the DMV, it is already a model over these
problem by building constituency decisions directly structures. At the “attachment” rewrite for the CCM
into the distributional model, by earmarking a sin-

gle clusterd for non-constituents. During the cal-  7As is typical of distributional clustering, positions ineth
culation of cluster assignments, only a non-crossingorpus can get generated multiple times. Since derivations
subset of the observed word sequences can be a_@eed not be consistent, the entire model is mass deficient whe

. . . iewed as a model over sentences.
signed to (.)ther' c_o_nstltuent clusters. This mtegrateéf 8n Klein and Manning (2002), we reported results using
approach is empirically successful. unlabeled bracketing statistics which gave no credit facks

The CCM works as follows. Sentences are giverets which spanned the entire sentence (raising the scases) b
as sequences of word classes (parts-of-speech or macro-averaged over sentences (lowering the scores). The

. . . .numbers here hew more closely to the standard methods used
otherwise). One imagines each sentence as a “%Jr evaluating supervised parsers, by being micro-average

of the O(n?) iHQGX pairs(i, j), eaCh_ followed by including full-span brackets. However, the scores aretaive
the corresponding subspas; and linear context approximately the same.




in (a/b), we assign the quantity: Model | UPUR UR [ Dir Undir
English (WSJ10 — 7422 Sentences)

PGs.true)P(_.s ~ true LBRANCH/RHEAD 256 326 287 33.6 56.7
(SCTUE)P( 18 ™ iScraltrue) RANDOM 310 394 347 301 456
P(iscIfalse)P(_15 ~ kSt lfalse) RBRANCH/LHEAD |55.1 700 617 240 559

L , , DMV 46.6 59.2 521 432 627
which is the odds ratio of generating the subse- .., 642 816 719 238 433

guence and context for spdn k) as a constituent | pmv+ccm (Po9 69.3 880 77.6| 475 645
as opposed to a non-constituent. If we multiply all | pmv+ccwm (DiIsTR.) | 65.2 828 72.9 423 604

trees’ attachment scores b UBOUND 78.8 100.0 88.1 100.0 100.0
y German (NEGRA10 — 2175 Sentences)

LBRANCH/RHEAD 274 488 351 326 51.2

H(i ) PGsifalse)P( 18 ~ jSjfalse) RANDOM 279 496 357 218 415

’ RBRANCH/ILHEAD | 33.8 60.1 433 21.0 49.9

the denominators of the odds ratios cancel, and we bmv 38.4 69.5 49.5 400 5738
are left with each tree being assigned the probability ¥ ig'é 885"75 62196 égg gff
it would have received under the CCM. UBOUND 563 1000 721 1000 100.0

In this way, both models can be seen as generat-Chinese (CTB10 — 2437 Sentences)
ing either constituency or dependency structures. Of LBRANCH/RHEAD | 26.3  48.8 34.2 30.2 43.9

course, the CCM will generate fairly random depen-| RANDOM 27.3 507 355 359 473
dency structures (constrained only by bracketings) RERANCHILHEAD | 29.0 539 37§ 142 415

24 _ y by 95) omv 359 667 467 | 425 542
Getting constituency structures from the DMV is | ccu 346 643 450 23.8 405
also problematic, because the choice of which side pmv+ccm 333 620 433 552 603

53.9 100.0 70.1 100.0 100.0

to first attach arguments on has ramifications on_YBOUND
constituency — it forces x-bar-like structures — evenFigure 6: Parsing performance of the combined model
though it is an arbitrary convention as far as depengn, various treebanks, along with baselines.

dency evaluations are concerned. For example, if

we attach right arguments first, then a verb with a . .
left subject and a right object will attach the ob- " the combined model, we score each tree with
ject first, giving traditional VPs, while the other at- the product of the probabilities from the individ-
tachment order gives subject-verb groups. To avoid/@ models above. We use the inside-outside algo-
this bias, we alter the DMV in the following ways. n_thm _to sum over all lexicalized trees,_S|m|Ia_1r to the
When using the dependency model alone, we allovgituation in section 3. The tree configurations are
each word to have even probability for either gener-ShOWn in figure 4. For each configuration, the rele-
ation order (but in each actual head derivation, only/@nt scores from each model are multiplied together.
one order occurs). When using the models togethef, ©7 €xample, consider figure 4(a). From the CCM
better performance was obtained by releasing thi&/€ Must generates as a constituent and its cor-
one-side-attaching-first requirement entirely. responding context. From the dependency model,

In figure 6, we give the behavior of the CCM con- W€ Pay the cost oh taking a as a right argument

stituency model and the DMV dependency model(Perooss, as well as the cost of choosing not to

on both constituency and dependency inductionStOP (Rror). We then running the inside-outside al-

Unsurprisingly, their strengths are complementary30rithm over this product model. For the results,

The CCM is better at recovering constituency. andVe can extract the sufficient statistics needed to re-
the dependency model is better at recovering deperfStimate both individual modetS. o
dency structures. Itis reasonable to hope that a com- | "€ models in combination were intitialized in
bination model might exhibit the best of both. In the e same way as when they were run individually.

supervised parsing domain, for example, scoring §uﬁipient statistics_ were separately taken off th_ese
lexicalized tree with the product of a simple lexical Individual completions. From then on, the resulting
dependency model and a PCFG model can Outpemodels were used together during re-estimation.

form each factor on its respective metric (Klein and Figure 6 summarizes the results. The combined
Manning, 2003). model beats the CCM on English:F77.6 vs. 71.9.

The figure also shows the combination model’s
9This scoring function as described is not a generativescore when using word classes which were induced
model over lexicalized trees, because it has no generatgn s entirely automatically, using the simplest distribu-

at which nodes’ lexical heads are chosen. This can be cedect . . ..
by multiplying in a *head choice” factor of Ik — | ) at each fi- tional clustering method of Schitze (1995). These

nal “sealing” configuration (d). In practice, this corretifac- ~ classes show some degradation, e.g. 72, Dt it
tor was harmful for the model combination, since it duplkcht
a strength of the dependency model, badly. 10The product, like the CCM itself, is mass-deficient.




is worth noting that these totally unsupervised num-the Advanced Research and Development Activity
bers are better than the performance of the CCMARDA)'s Advanced Question Answering for Intel-
model of Klein and Manning (2002) running off ligence (AQUAINT) Program. This work also ben-
of Penn treebank word classes. Again, if we mod-efited from an enormous amount of useful feedback,
ify the gold standard so as to make determiners thérom many audiences and individuals.
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