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Abstract N-grams are not the only way to induce regular

We compare two approaches for describing and ge anguages, aqd not the most powerful way to do SO.
here is a variety of general methods capable of in-

erating bodies of rules used for natural language

parsing. In today’s parsers rule bodies do not ex_ducingall regular languages (Denis, 2001; Carrasco

ist a priori but are generated on the fly, usually withd1d Oncina, 1994; Thollard et al., 2000). What is

methods based om-grams, which are one particu- their relevance for natural language parsing? . Re-
lar way of inducing probabilistic regular Ianguages.ca” that regular languages are used for describing

We compare two approaches for inducing such Ian'ghe bodies of rules in a grammar. Consequently, the

guages. One is based argrams, the other on min- quali_ty gnd expressiv.e power of the _resulting gram-
imization of the Kullback-Leibler divergence. The Maris tied to the quality and expressive power of the

inferred regular languages are used for generatingegular languages used to describe them. And the

bodies of rules inside a parsing procedure. We com—ua!'ty and EXpressiveé power of the latter, In turn,
pare the two approaches along two dimensions: th re influenced directly by the method used to induce

quality of the probabilistic regular language theyt em. These observations give rise to a natural ques-

produce, and the performance of the parser thelgon: can we gain anything in parsing from using

were used to build. The second approach outpe eneral methods for inducing regular Iang_ugges in-
forms the first one along both dimensions. stead of meth_ods based qngrams? Spec!flcally,
can we describe the bodies of grammatical rules

1 Introduction more accurately and more concisely by using gen-

o eral methods for inducing regular languages?
N-grams have had a big impact on the state of the

art in natural language parsing. They are central N the context of natural language parsing we
to many parsing models (Charniak, 1997; Collins,Présent an empirical comparison between algo-
1997, 2000; Eisner, 1996), and despite their sim!ithms for inducing regular languages using

plicity n-gram models have been very successfy|9rams on the one hand, and more general algorithms

Modeling withn-grams is an induction task (Gold, for learning the general class of regular language on

1967). Given a sample set of strings, the task is tg"€ other hand. We proceed as follows. We gen-

guess the grammar that produced that sample. us§rate our training data from the Wall Street Journal
ection of the Penn Tree Bank (PTB), by transform-

ally, the grammar is not be chosen from an arbitrary_S

set of possible grammars, but from a given classi"9 it to projective dependency structures, following

Hence, grammar induction consists of two parts:(Collins, 1996), and extracti_ng rules fro_m the result.
choosing the class of languages amongst which ta‘hese_ rules are used as training material for the rule
search and designing the procedure for performingduction algorithms we consider. The automata
the search. By using-grams for grammar induc- prqducgd this way are then use_d to build grammars
tion one addresses the two parts in one go. In par/hich, in turn, are used for parsing.

ticular, the use ofn-grams implies that the solu-  We are interested in two different aspects of the
tion will be searched for in the class of probabilis- use of probabilistic regular languages for natural
tic regular languages, sineegrams induce prob- language parsing: the quality of the induced au-
abilistic automata and, consequently, probabilisticcomata and the performance of the resulting parsers.
regular languages. However, the class of probabilisFor evaluation purposes, we use two different met-
tic regular languages induced usinggrams is a rics: perplexity for the first aspect and percentage
proper subclass of the class of all probabilistic reg-of correct attachments for the second. The main re-
ular languagesi-grams are incapable of capturing sults of the paper are that, measured in terms of per-
long-distance relations between words. At the techplexity, the automata induced by algorithms other
nical level the restricted nature afgrams is wit- thann-grams describe the rule bodies better than
nessed by the special structure of the automata irautomata induced using-gram-based algorithms,
duced from them, as we will see in Section 4.2.  and that, moreover, the gain in automata quality



is reflected by an improvement in parsing perfor-ing samples into multiple samples, two samples per
mance. We also find that the parsing performancd>OS, to be precise, each containing only those sam-
of both methodsi{-grams vs. general automata) canples where the POS appeared as the head.

be substantially improved by splitting the training The grammars built from the induced automata
material into POS categories. As a side productare so-called PCW-grammars (see Section 3), a for-
we find empirical evidence to suggest that the effecmalism based on probabilistic context free gram-
tiveness of rule lexicalization techniques (Collins, mars (PCFGs); as we will see in Section 3, inferring
1997; Sima’an, 2000) and parent annotation techthem from automata is almost immediate.

niques (Klein and Manning, 2003) is due to the fact

that both lead to a reduction in perplexity in the au-3 Grammatical Framework

tomata induced from training corpora. We briefly detail the grammars we work with

tions provide details of the various aspects. SeCyrammars, and how we parse using them.
tion 3 offers details on our grammatical frame-

work, PCW-grammars, on transforming automata3.1 PCW-Grammars

to PCW-grammars, and on parsing with PCW-we need a grammatical framework that models

grammars. Section 4 explains the starting point ofule bodies as instances of a regular language and
this process: learning automata, and Section 5 rethat allows us to transform automata to gram-

ports on parsing experiments. We discuss relateghars as directly as possible. We decided to em-

work in Section 6 and conclude in Section 7. bed them in the general grammatical framework of
. CW-grammars (Infante-Lopez and de Rijke, 2003):
2 Overview based on PCFGs, they have a clear and well-

We want to build grammars using different algo- understood mathematical background and we do not

rithms for inducing their rules. Our main question N€€d to implement ad-hoc parsing algorithms.
is aimed at understanding how different algorithms A probabilistic constrained W-grammaPCW-
for inducing regular languages impact the parsinggrammar) consists of two different sets of PCF-like
performance with those grammars. A second issué-les calledpseudo-rulesand meta-rulesrespec-
that we want to explore is how the grammars per-t'Ve_ly and three pairwise d|310|nt_ sets of symbols:
form when the quality of the training material is im- vVariables non-terminalsand terminals = Pseudo-
proved, that is, when the training material is Sep_rules and meta-rules provide mechanisms for build-
arated into part of speech (POS) categories befortg ‘real’ rewrite rules. We use = {3 to indicate
the regular language learning algorithms are run. thata should be rewritten as. In the case of PCW-
We first transform the PTB into projective depen- grammars, rewrite rules are built by first selecting a
dencies structures following (Collins, 1996). From Pseudo-rule, and then using meta-rules for instanti-
the resulting tree bank we delete all lexical informa-2ating all the variables in the body of the pseudo-rule.
tion except POS tags. Every POS in atree belonging To illustrate these concepts, we provide an exam-
to the tree-bank has associated to it two differentple. LetW = (V,NT,T,S, "~ *-) be a CW-
possibly empty, sequences of right and left depengrammar such that the set of variable, non-terminals
dents, respectively. We extract all these sequences

for all trees, producing two different sets containing ____meta-rules pseudo-rules

right and left sequences of dependents respectively.  Adj 205 AdjAdj | S 21 AdjNoun
These two sets form the training material used for ~ Adj ——( 5 Adj Adj Z-0.1 big

building four different grammars. The four gram- Noun ——1 ball

mars differ along two dimensions: the number of

automata used for building them and the algorithm

used for inducing the automata. As to the latter di- ) ) _ -
mension, in Section 4 we use two algorithms: the?Nd terminals are defined as followt: = {Adj},
Minimum Discriminative Information (MDI) algo- V7 = {5, Adj, Noun}, T = {ball, big, fat,

rithm, and a bigram-based algorithm. As to the for-"¢d; green, ...}. As usual, the numbers attached

mer dimension, two of the grammars are built us-to the arrows indicate the probabilities of the rules.

ing only two different automata, each of which is The rules defined byV have the following shape:

built using the two sample set generated from the> % Adj* ]Xouwn- Suppose now that we want to
PTB. The other two grammars were built using twobuild the ruleS = Adj Adj Noun. We take the

automata per POS, exploiting a split of the train-pseudo-ruleS =, Adj Noun and instantiate the



variable Adj with Adj Adj to get the desired rule. tree in part (a) is the CW-tree corresponding to the
The probability for it is1 x 0.5 x 0.5, that is, the word red big green ball and the tree in part (b) is
probability of the derivation fordd; Adj times the the same tree but now the instantiations of the meta-
probability of the pseudo-rule used. Trees for thisrules that were used have been made visible.
particular grammar are flat, with a main noslend

all the adjectives in it as daughters. An example

derivation is given in Figure 1(a). vt Noun

S

3.2 From Automatato Grammars T 1 bz|ill

o Ad

Now that we have introduced PCW-grammars, we A|dJ A|dJ A|d’ Noun 1 L o

describe how we build them from the automata red big green ball ~ Adj ~ Adl 9€€N

that we are going to induce in Section 4. Since Adj  big

we will induce two families of automata (“Many- |

Automata” where we use two automata per POS, red

and “One-Automaton” where we use only two au- () (b)

tomata to fit every POS), we need to describe two_.

automata-to-grammar transformations. Figure 1: (a) A tree generated by . (b) The same
Let's start with the case where we build two au- '€€ With meta-rule derivations made visible.

tomata per POS. Let be a POS in the PTB; led}

andA%; be the two automata associated to it. G&t

andG?%, be the PCFGs equivalent #5’ and A%, re-

spectively, following (Abney et al., 1999), and let

SY and S% be the starting symbols @fy andG¥,

respectively. We build our final grammaf with

To adapt a PCFG to parse CW-grammars, we
need to define a PCF grammar for a given PCW-
grammar by adding the two sets of rules while mak-
ing sure that all meta-rules have been marked some-
how. In Figure 1(b) the head symbols of meta-rules

) o have been marked with the supersctipAfter pars-
starting symbol5, by defining its meta-rules as the ing the sentence with the PCF:)F parger, allpmarked

disj(_)int union of all rules IG; andG; (for all POS rules should be collapsed as shown in part (a).
w), its set of pseudo-rules as the union of the sets

{W “—1 SfwSyandS “—; SywSy}, where 4 Building Automata
W is a unique new variable symbol associated:to
When we use two automata for all parts of
speech, the grammar is defined as follows. Agt
and Agr be the two automata learned. L@t and
Gr be the PCFGs equivalent #;, and A, and let
S1, and Sy be the starting symbols @f;, andGp,
respectively. Fix a PO% inthe PTB. Since the au- 4.1 Building the Sample Sets
tomata are deterministic, there exist staggsand

The four grammars we intend to induce are com-
pletely defined once the underlying automata have
been built. We now explain how we build those au-
tomata from the training material. We start by de-
tailing how the material is generated.

We transform the PTB, sections 2-22, to depen-

‘g%fthlft are rehachab:egr(?tﬁé anngR’ rlsspectively, dency structures, as suggested by (Collins, 1999).
y following the arc labeled withv. Define agram- A sentences containingC tags are filtered out,

mar as in the previous case. Its starting symbgl,is following (Eisner, 1996). We also eliminate all

Its git of glgtj\—rgles Ills;fé)eSdISJo!nt unlonf of all erUIes word information, leaving only POS tags. For each
in G} and G, (for a w), its set of pseudo-  oqiting dependency tree we extract a sample set of

rules is{W ——; SPwSE,S ——1 SPwSE @ right and left sequences of dependents as shown in
wis aPOSinthe PTB andis a unique new vari-  Figure 2. From the tree we generate a sample set
able symbol associated to}. with all right sequences of dependefitse, ¢}, and

another with all left sequencds, ¢, red big greeh.

The sample set used for automata induction is the
Parsing PCW-grammars requires two steps: anion of all individual tree sample sets.
generation-rule step followed by a tree-building _ o

step. We now explain how these two steps can bé-2 Learning Probabilistic Automata

carried out in one go. Parsing with PCW-grammarsProbabilistic deterministic finite state automata
can be viewed as parsing with PCF grammars. ThéPDFA) inference is the problem of inducing a
main difference is that in PCW-parsing derivationsstochastic regular grammar from a sample set of
for variables remain hidden in the final tree. To clar-strings belonging to an unknown regular language.
ify this, consider the trees depicted in Figure 1; theThe most direct approach for solving the task is by

3.3 Parsing PCW-Grammars



S tomata (Cover and Thomas, 1991). The new solu-
P //N tion A, is compatible with the training data if the
JJJd I NN er big green  ball divergence increment relative to the size reduction,
| | | | that is, the reduction of the number of states, is small

b bl enough. Formally, lealpha denote a compatibil-
Tid bz|'g grien ity threshold; then the compatibility is satisfied if
(@) (b) % < alpha. For this learning algorithm,
] i nn alpha is the unique parameter; we tuned it to get
left right | left right left right better quality automata.
€ € € € red big green ¢
(c) 4.3 Optimizing Automata

Figure 2: (a), (b) Dependency representations o¥Ve use three measures to evaluate the quality of

Figure 1. (c) Sample instances extracted from thi¢ Probabilistic automaton (and set the value of
tree. alpha optimally). The first, calledest sample

perplexity (PP), is based on thper symbol log-
likelihood of strings « belonging to a test sam-

using n-grams. Then-gram induction algorithm  ple according to the distribution defined by the au-
adds a state to the resulting automaton for each sgomaton. FormallyLL = _ﬁ > seglog (P(x))
x Ll

Taining matoral: i also acds an arc between stael1ereF(2) s the probabily assigned to the string
a3 and b labeledb, if the sequencedb appears Z by the automata. The perplexity PP is defined as

" the traini T babil imad 1o th PP = 2LE. The minimal perplexityPP = 1 is
In the training set. The probability assigned to theyg, hay when the next symbol is always predicted
arc (a3, 8b) is proportional to the number of times

. L with probability 1 from the current state, while
the sgquenceﬁb appears in the tral_nlng set. For the PP = |%| corresponds to uniformly guessing from
remainder, we take-grams to be bigrams.

_ : an alphabet of sizg:|.

There are other approaches to inducing regular The second measure we used to evaluate the qual-
grammars besides ones basechegrams. The first j of an automaton is the numberwiissed samples
algorlthm_ to learn PD_FAs was ALE_RGIA (Carrasqo (MS). A missed sample is a string in the test sam-
and Oncina, 1994); it learns cyclic automata withpje that the automaton failed to accept. One such
the so-called state-merging method. The Minimumingiance suffices to have PP undefined (LL infinite).
Discrimination Information (MDI) algorithm (Thol- - gjnce an undefined value of PP only witnesses the
lard et al., 2000) improves over ALERGIA and uses prasence of at least one MS we decided to count the
Kullback-Leibler divergence for deciding When 10 number of MS separately, and compute PP without
merge states. We opted for the MDI algorithm asaying Ms into account. This choice leads to a more
an alternative ta-gram based induction algorithms, 5cc\rate value of PP, while, moreover, the value of
mainly because their working principles are rad-\1s provides us with information about the general-
ically different from then-gram-based algorithm. i, 4iion capacity of automata: the lower the value of
The MDI algorithm first builds an automaton that \s the Jarger the generalization capacities of the
only accepts the strings in the sample set by merga ;;omaton. The usual way to circumvent undefined
ing common prefixes, thus producing a tree-shapedqpiexity is to smooth the resulting automaton with
automa_ton in which each tranS|_t|on h_as a prObab'!'tyunigrams, thus increasing the generalization capac-
proportl_onal to the .n_umber of times it is used while ity of the automaton, which is usually paid for with
generating the positive sample. . an increase in perplexity. We decided not to use

The MDI 8..|.gOI’Ithm trgverses the lattice of all any smoothing techniques as we want to compare
possible partitions for this general automaton, athigram-based automata with MDI-based automata
tempting to merge states that satisfy a trade-off thajn the cleanest possible way. The PP and MS mea-
can be specified by the user. Specifically, assumeures are relative to a test sample; we transformed
that A; is a temporary solution of the algorithm section00 of the PTB to obtain oné.
and that4, is a tentative new solution derived from
Ay, A(A1, Ay) = D(Ap||A2) — D(Apl|A41) de- LIf smoothing techniques are used for optimizing automata
notes the divergence increment while going frombased onmn-grams, they should also be used for optimizing

N oA MDI-based automata. A fair experiment for comparing the
Ay to Ay, whereD(Ao||4;) is theKullback-Leibler two automata-learning algorithms using smoothing tealsq

d?Vefgenceor relative entropy between the. tWO  would consist of first building two pairs of automata. Thetfirs
distributions generated by the corresponding aupair would consist of the unigram-based automaton together




The third measure we used to evaluate the gualitguggest that MDI finds more regularities in the sam-
of automata concerns the size of the automata. Weple set than the bigram-based algorithm.
compute NumEdges and NumStates (the number of To determine optimal values for the “Many-
edges and the number of states of the automaton). Automata” case (where we learned two automata
We used PP, US, NumEdges, and NumStates tfor each POS) we used the same procedure as
compare automata. We say that one automaton is @ér the “One-Automaton” case, but now for ev-
a better qualitythan another if the values of the 4 ery individual POS. Because of space constraints
indicators are lower for the first than for the sec-we are not able to reproduce analogues of Fig-
ond. Our aim is to find a value dlpha that ure 3 and Table 1 for all parts of speech. Figure 4
produces an automaton of better quality than theontains representative plots; the remaining plots

bigram-based counterpart. By exhaustive searchare available online dittp://www.science.
using all training data, we determined the optimalyva.ni/ infante/POS

value ofalpha . We selected the value alpha Besides allowing us to find the optimalpha s,
for WhICh the MDI-based automaton outperformsyq plots provide us with a great deal of informa-
the bigram-based orfe. tion. For instance, there are two remarkable things

We exemplify our procedure ”by considering au-in, the plots forVBP (Figure 4, second row). First,
tomata for the “One-Automaton” setting (where We i is one of the few examples where the bigram-

used the same automata for all parts of speech). Igaseq algorithm performs better than the MDI al-
Figure 3 we plot all values of PP and MS computedyqrithm. Second, the values of PP in this plot are
for different values ofilpha , for each training set g|atively high and unstable compared to other POS
(i-e., left and right). From the plots we can identify pots. | ower perplexity usually implies better qual-
values ofalpha that produce automata having bet-jry aytomata, and as we will see in the next section,
ter values of PP and MS than the bigram-based onegyetier automata produce better parsers. How can we
All such alpha s are the ones inside the marked ypain lower PP values for théBPautomata? The
areas; automata induced using thadgha s pos-  ¢jass of words tagged witlBP harbors many dif-

sess a lower value of PP as well as a smaller nuMgrent hehaviors, which is not surprising, given that
ber of MS, as required. Based on these explorationgerps can differ widely in terms of, e.g., their sub-

MDI Bigrams categorization frames. One way to decrease the PP
Right Left| Right Left values is to split the class of words tagged WP
NumEdges|| 268 328| 20519 16473 into multiple, more homogeneous classes. Note
NumStates|| 12 15 | 844 755 from Figures 3 and 4 that splitting the original sam-

, . _ple sets into POS-dependent sets produces a huge
Table 1: Automata sizes for the “One-Automaton” gecrease on PP. One attempt to implement this idea
case, withalpha = 0.0001. is lexicalization increasing the information in the

we selectechlpha — 0.0001 for building the au- POS tag by adding the lemma to it (Collins, 1997;
tomata used for gramhar induction in the “One_Sima’an, 2000). Lexicalization splits the class of
Automaton” case. Besides having lower values Ofverbs into a family of singletons producing more ho-

PP and MS, the resulting automata are smaller tha ogeneous classes, as desired. A different approach

the bigram based automata (Table 1). MDI com-.( lein and Manning, 2003) consists in adding head

presses information better; the values in the tablegnformatlon_tq dependents; woro!s tagged WiBP
are then splitinto classes according to the words that

with an MDI-based automaton outperforming the unigram-dominate them in the training corpus.

based one. The second one, a bigram-based automata togetherSOme POS present very high perplexities, but

with an MDI-based automata outperforming the bigram-base
one. Second, the twe-gram based automata smoothed into a ags such aBT present a PP close fo(and0 MS)

single automaton have to be compared against the two MDIfor all values ofalpha . Hence, there is no need
based automata smoothed into a single automaton. It wouldo introduce further distinctions iD T, doing so will
be hard to determine whether the differences between the fing ot increase the quality of the automata but will in-

automata are due to smoothing procedure or to the algorithm . . f .
used for creating the initial automata. By leaving smodaghin Crease their number; splitting techniques are bound

out of the picture, we obtain a clearer understanding of the d 1O ad_d n_Oise to the reS_UIting grammars. The plots
ferences between the two automata induction algorithms.  also indicate that the bigram-based algorithm cap-

2An equivalent value ofilpha can be obtained indepen- tures them as well as the MDI algorithm.

dently of the performance of the bigram-based automata by . . _
defining a measure that combines PP and MS. This measure In Figure 4, third row, we see that the MDI-based

should reach its maximum when PP and MS reach their mini-2Utomata and the bigram-based automata achieve
mums. the same value of PP (close to 5) foiN but
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Figure 4: Values of PP and MS for automata for ad-hoc automata

the MDI misses fewer examples fatpha s big- tomata than bigrams. Table 2 lists the sizes of the
ger thanl.4e — 04. As pointed out, we built the automata. The differences between MDI-based and
One-Automaton-MDI usingalpha = 0.0001 and bigram-based automata are not as dramatic as in
even though the method allows us to fine-tune eaclthe “One-Automaton” case (Table 1), but the former

alpha in the Many-Automata-MDI grammar, we again have consistently lower NumEdges and Num-
used a fixechlpha = 0.0002 for all parts of speech, States values, for all parts of speech, even where
which, for most parts of speech, produces better aubigram-based automata have a lower perplexity.



_MDI _Bigrams Finally, we report on the parsing accuracy. We
POS Right Left| Right Left use two measures, the first one (%Words) was pro-
DT Hﬂmgggz 241 24 gg fg posed by Lin (1995) and was the one reported in
VBP NumEdges| 300 204 2596 1311 (Eisner, 1996). Lin's measure computes the frac-

NumStates! 50 45 | 250 149 tion of words that have been attached to the right

NN NumEdges| 104 111| 3827 4709 word. The second one (%POS) marks as correct a
NumStates|| 6 4 284 326 word attachment if, and only if, the POS tag of the

head is the same as that of the right head, i.e., the

Table 2: Automata sizes for the three parts of speecfyord was attached to the correct word-class, even

in the “Many-Automata” case, withalpha =  though the word is not the correct one in the sen-

0.0002 for parts of speech. tence. Clearly, the second measure is always higher
than the first one. The two measures try to cap-

5 Parsingthe PTB ture the performance of the PCW-parser in the two

. . .. phases described above: (%POS) tries to capture
We have observed remarkaple differences in qualit he performance in the first phase, and (%Words) in
between MDI-based and_ bigram-based gutomatqhe second phase. The measures reported in Table 4
Next, we present the parsing scores, and discuss tt €e the mean values of (%POS) and (%Words) com-
meaning of the measures observed for automata | uted over all sentences in section 23 having length

;Z?g?ﬁ;?ﬁ;;;:;g%?g;fs ;::)?%’ gﬁg?nc;[;tge ?;?n_élt most20. We parsed only those sentences because
y gramg e resulting grammars for bigrams are too big:

mars is automaton size. Since each automaton 'Sarsing all sentences without any serious pruning

transform_ed into a PC_FG’ the _number of rules Intechniques was simply not feasible. From Table 4
the resulting grammar is proportional to the number

of arcs in the automaton, and the number of non- MDI Bigrams
terminals is proportional to the number of states. %Words 9%POS %Words %POS
From Table 3 we see that MDI compresses informa- One-Aut. 0.69 0.73 0.59 0.63
tion better: the sizes of the grammars produced by Many-Aut. 0.85 0.88 0.73 0.76
the MDI-based automata are an order of magnitude i

smaller that those produced using bigram-based au- Table 4: Parsing results for the PTB
tomata. Moreover, the “One-Automaton” versions
substantially reduce the size of the resulting gram

we see that the grammars induced with MDI out-
perform the grammars created with bigrams. More-

mars; this is obviously due to the fact that all POS h ina diff POS
share the same underlying automaton so that infor?Ve!, the grammar using different automata per
utperforms the ones built using only a single au-

mation does not need to be duplicated across parf% i .
of speech. To understand the meaning of PP an maton per S'de. (left or right). The results sugges.t
that an increase in quality of the automata has a di-

One Automaton| Many Automata rect impact on the parsing performance.
MDI Bigram | MDI  Bigram
702 38670 | 5316 68394 6 Related Work and Discussion

Table 3: Number of rules in the grammars built. Modeling rule bodies is a key component of parsers.
N-grams have been used extensively for this pur-

MS in the context of grammars it helps to think of pose (Collins 1996, 1997; Eisner, 1996). In these
PCW-parsing as a two-phase procedure. The firdbrmalisms the generative process is not considered
phase consists of creating the rules that will be useih terms of probabilistic regular languages. Con-
in the second phase. And the second phase cosidering them as such (like we do) has two ad-
sists in using the rules created in the first phase aswantages. First, a vast area of research for induc-
PCFG and parsing the sentence using a PCF parséng regular languages (Carrasco and Oncina, 1994;
Since regular expressions are used to build rules, th€hollard et al., 2000; Dupont and Chase, 1998)
values of PP and MS quantify the quality of the setcomes in sight. Second, the parsing device itself can
of rules built for the second phase: MS gives us ae viewed under a unifying grammatical paradigm
measure of the number rule bodies that should béke PCW-grammars (Chastellier and Colmerauer,
created but that will not be created, and, hence, i1969; Infante-Lopez and de Rijke, 2003). As PCW-
gives us a measure of the number of “correct” treeggrammars are PCFGs plus post tree transformations,
that will not be produced. PP tells us how uncertainproperties of PCFGs hold for them too (Booth and
the first phase is about producing rules. Thompson, 1973).
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