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Abstract and Lapata (2003) uses a graph-based heuristic al-

We present the first algorithm that computes opti-gomhm’ but none of them can give any guarantees

mal orderings of sentences into a locally coherenf"bOUt the quality of the computed ordering.

discourse. The algorithm runs very efficiently on a This paper presents the first algorithm that com-
variety of coherence measures from the literatureputes optimal locally coherent discourses, and es-
We also show that the discourse ordering problentablishes the complexity of the discourse ordering

is NP-complete and cannot be approximated. problem. We first prove that the discourse order-
ing problem for local coherence measures is equiva-
1 Introduction lent to the Travelling Salesman Problem (TSP). This

means that discourse ordering is NP-complete, i.e.

One central problem in discourse generation anghere are probably no polynomial algorithms for it.
summarisation is to structure the discourse in &yqrse our result implies that the problem is not
way that maximisesoherence Coherence is the even approximable: any polynomial algorithm will
property of a good human-authored text that makeg ., te arbitrarily bad solutions on unfortunate in-
it easier to read and understand than a randomlysts Note that all approximation algorithms for the
ordered collection of sentences. TSP assume that the underlying cost function is a

Several papers in the recent literature (Mellish etyatric. which is not the case for the coherence mea-
al., 1998; Barzilay et al., 2002; Karamanis and Ma-g ;res we consider.

nurung, 2002; Lapata, 2003; Karamanis et al., 2004) ) ] )
have focused on definintpcal coherence, which ~ Despite this negative result, we show that by ap-

evaluates the quality of sentence-to-sentence trang®/¥ing modern algorithms for TSP, the discourse or-
tions. This is in contrast to theories gibbal coher- ~ d€ring problem can be solved efficiently enough for
ence, which can consider relations between largePractical applications. We define a branch-and-cut
chunks of the discourse and e.g. structures them int8!g0rithm based on linear programming, and evalu-
a tree (Mann and Thompson, 1988; Marcu, 1997ate it on discourse orderlng problems based on the
Webber et al., 1999). Measures of local coherenc&NOME corpus (Karamanis, 2003) and the BLLIP
specify whichordering of the sentences makes for COTPUS (Lapata, 2003). If the local coherence mea-
the most coherent discourse, and can be based e §!"® depends only on the adjacent pairs of sentences
on Centering Theory (Walker et al., 1998; Brennann the discourse, we can order discourses of up to 50
et al., 1987: Kibble and Power, 2000; KaramanisSentences in under a second. If it is allowed to de-

and Manurung, 2002) or on statistical models (Lap-°€nd on the left-hand context of the sentence pair,
ata, 2003). computation is often still efficient, but can become

But while formal models of local coherence have ®XPENSIVe.

made substantial progress over the past few years, The structure of the paper is as follows. We will
the question of how to efficientlygomputean order-  first formally define the discourse ordering problem
ing of the sentences in a discourse that maximiseand relate our definition to the literature on local co-
local coherence is still largely unsolved. The fun-herence measures in Section 2. Then we will prove
damental problem is that any of the factorial num-the equivalence of discourse ordering and TSP (Sec-
ber of permutations of the sentences could be th&on 3), and present algorithms for solving it in Sec-
optimal discourse, which makes for a formidabletion 4. Section 5 evaluates our algorithms on exam-
search space for nontrivial discourses. Mellish eples from the literature. We compare our approach
al. (1998) and Karamanis and Manurung (2002)to various others in Section 6, and then conclude in
present algorithms based on genetic programmingsection 7.



2 The Discourse Ordering Problem will briefly sketch its basic notions and then show
We will first give a formal definition of the prob- how some CT-based coherence measures can be cast

lem of computing locally coherent discourses, andnto our framework. _ _
demonstrate how some local coherence measures The standard formulation of CT e.g. in (Walker et

from the literature fit into this framework. al., 1998), calls the discourse unitterancesand
o assigns to each utteranag in the discourse a list
2.1 Definitions Cf(u;) of forward-looking centres The members

We assume that a discourse is made ugisdourse  of Cf(u;) correspond to the referents of the NPs
units (depending on the underlying theory, thesein u; and are ranked in order of prominence, the
could be utterances, sentences, clauses, etc.), whidinst element being thereferred centr&Cp(u;). The
must beorderedto achieve maximum local coher- backward-looking centr€b(u;) of u; is defined as
ence. We call the problem of computing the optimalthe highest ranked element©f(«;) which also ap-
ordering thediscourse ordering problem pears inCf(u;—1), and serves as the link between
We formalise the problem by assigning a cost tothe two subsequent utterances ; andu;. Each
each unit-to-unit transition, and a cost for the dis-utterance has at most o#. If v; andu;_; have
course to start with a certain unit. Transition costsno forward-looking centres in common, oruif is
may depend on the local context, i.e. a fixed num+the first utterance in the discourse, thgrdoes not
ber of discourse units to the left may influence thehave aCb at all.
cost of a transition. The optimal ordering is the one  Based on these concepts, CT classifiestthe-
which minimises the sum of the costs. sitions between subsequent utterances into differ-
ent types. Table 1 shows the most common clas-
sification into the four type€ONTINUE, RETAIN,
SMOOTH-SHIFT, andROUGH-SHIFT, which are pre-

Definition 1. A d-place transition cost functiofor
a setU of discourse units is a functiosy : U4 —

& Intwt.l\(ely, CT(u”’ul’.”"udfl) 'S .the cost of " dicted to be less and less coherent in this order
the transition(ug_1, u¢) given that the immediately grennan et al., 1987). Kibble and Power (2000)
priczdgTagcg?gﬁigirgé{ funl:q'zlcé)_ri%r U is a function define three further classes of transitio@OHER-
¢r 2 UL — R. Intuitively, c(ur, ..., uq) is the ENCEandsALIENCE, which are both defined in Ta-

for the f hat the di e th th ble 1 as well, andNocs, the class of transitions
cost for the fact that the discourse starts with the .\ 1ih Ch(1s;) is undefined. Finally, a transition
sequencer, . . ., uq.

The d-place discourse ordering probleis de is considered to satisfy theHEAPNESSconstraint
. ) ; " (Strube and Hahn, 1999)@b(u;) = Cp(u;—1).
fined as follows: Given a st = {u1,...,un}, (Stru )@b(u;) = Cp(u;-1)

ad-place transition cost functiorr and a(d — 1)-
place initial cost functiol;, compute a permutation
mof {1,...,n} such that

Table 2 summarises some cost functions from the
literature, in the reconstruction of Karamanis et al.
(2004). Each line shows the name of the coherence
measure, the arity from Definition 1, and the ini-
tial and transition cost functions. To fit the defini-

er(tn();- - Ur(a-1)) tions in one line, we use terms of the forfp which
n—d+1 abbreviate applications g¢fto the lastt arguments
+ Z e (Un(igd—1)[Ur(i)s - - + > Un(i+d—2)) of the cost functions, i.ef (ug—g+1, - - -, Ud)-
i=1 The most basic coherence measure, M.NOCB
L (Karamanis and Manurung, 2002), simply assigns
is minimal.

to eachnocB transition the cost 1 and to every other

The notation for the cost functions is suggestive:ransition the cost 0. The definition of (uz|u1),

The transition cost function has the character of avhich decodes taocb(uy,uz), only looks at the
conditional probability, which specifies that the costtWO Units in the transition, and no further context.
of continuing the discourse with the unit depends The initial costs for this coherence measure are al-

on the local context, ..., us_1. This local con- Ways Z€ro. _
text is not available for the firsf — 1 units of the The measure M.KP (Kibble and Power, 2000)

discourse, which is why their costs are summarilysums the value afocb and the values of three func-

covered by the initial function. tions which evaluate to O if the transition is cheap,
_ _ salient, or coherent, and 1 otherwise. This is an in-
2.2 Centering-Based Cost Functions stance of the 3-place discourse ordering problem be-

One popular class of coherence measures is baseduseCcOHERENCEdepends ofb(u;—1), which it-
on Centering Theory (CT, (Walker et al., 1998)). Weself depends off(u;—_2); hencenocoh must take



COHERENCE COHERENCEk:
SALIENCE:  Cb(u;) = Cp(u;) CONTINUE SMOOTH-SHIFT
SALIENCEx:  Cb(u;) # Cp(u;) RETAIN ROUGH-SHIFT

Table 1:COHERENCE SALIENCE and the table of standard transitions

d | initial costey(uy, ..., uq—1) | transition costr(uglui, ..., uq—1)
M.NOCB 210 nocbs
M.KP 3 | nochy + nocheaps + nosals | nocby + nocheaps + nosals + nocohs
M.BFP 3 | (1 — nosaly, nosals, 0,0) (conts, rets, ss3,753)
M.LAPATA | 2 | —log P(uq) —log P(ua|uy)
Table 2: Some cost functions from the literature.
three arguments. 3 Equivalence of Discourse Ordering and

Finally, the measure M.BFP (Brennan et al., TSP

1987) uses a lexicographic ordering on 4-tuplesNow we show that discourse ordering and the travel-
which indicate whether the transition is @N-  |ing salesman problem are equivalent. In order to do

TINUE, RETAIN, SMOOTH-SHIFT, Or ROUGH-  this, we first redefine discourse ordering as a graph
SHIFT. ¢y and all four functions it is computed from problem.

take three arguments because the classification de-

pends OrcOHERENCE As the first transition in the d-place discourse ordering problem {PDOP):
discourse is coherent by default (it has no Cb), we * Giyen a directed grapls = (V, E), a node

can compute; by distinguishingRETAIN andCON- s € V and a function: : V¢ — R, compute a
TINUE Vvia SALIENCE. The tuple-valued cost func- ’

i i simple directed pat?® = (s = vg, v1,...,v
tions can be converted to real-valued functions by frorrF]) s through g” vertic(es irivo w;\ich mi%)-
choosing a sufficiently large numbé# and using o n—dt1l . ‘

the valueM3 - cont + M? - ret + M - ss + rs. imises 3 ;5" c(vi, Vi1, -, Vigg—1).  We

write instances ofPDOP aqV, E, s, ¢).

2.3 Probability-Based Cost Functions The nodes, .. ., v, correspond to the discourse
units. The cost functiom encodes both the initial

A fundamentally different approach to measure dis-and the transition cost functions from Section 2 by

course coherence was proposed by Lapata (2003)eturning the initial cost if its first argument is the

It uses a statistical bigram model that assigns eactnew) start node.

pair u;, uy, of utterances a probability? (ug|u;) of Now let's define the version of the travelling

appearing in subsequent positions, and each uttesalesman problem we will use below.

ance a probability”(u;) of appearing in the initial

position of the discourse. The probabilities are esGeneralised asymmetric TSP (GATSP):Given a

timated on the grounds of syntactic features of the  directed graptG = (V, E), edge weights: :

discourse units. The probability of the entire dis- E — R, and a partition(V1, ..., V}) of the

courseus . .. up is the productP(uy) - P(uzlus) - nodesV, compute the shortest directed cycle
e Plup|up—1). that visits exactly one node of eadh). We

We can transform Lapata’s model straightfor-  call such a cycle &our and write instances of
wardly into our cost function framework, as shown GATSP aq((V1,..., Vi), E,c).

under M.LAPATA in Table 2. The discourse that

minimizes the sum of the negative logarithms will The usual definition of the TSP, in which every
also maximise the product of the probabilities. Wenode must be visited exactly once, is the special
haved = 2 because it is a bigram model in which case of GATSP where eadf contains exactly one
the transition probability does not depend on thenode. We call this casesymmetric travelling sales-
previous discourse units. man problemATSP.



ATSP 2PDOP

Figure 1: Reduction of ATSP to 2PDOP
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We will show that ATSP can be reduced to
2PDOP, and that anyPDOP can be reduced to

GATSP.
31 Reduction of ATSP to 2PDOP Figure 2: Reduction odPDOP to GATSP. Edges to
the source nodgs, s] are not drawn.

First, we introduce the reduction of ATSP to

2PDOP, which establishes NP-completeness of

dPDOP for alld > 1. The reduction is approxi- .

mation preserving, i.e. if we can find a solution of (Vi)uev, E', ¢’) of GATSP, in such a way that the

2PDOP that is worse than the optimum only by goptimal sglutlons correspond. The cost o_f traversing

factor of e (an e-approximation), it translates to a @n edge in/lPDOP depends on the previois- 1

solution of ATSP that is also asapproximation. nod_es; we compress these (_:osts into ordinary costs

Since it is known that there can be no polynomial al-°f Single edges in the reduction to GATSP.

gorithms that computeapproximations for general ~ The GATSP instance has a nofls, .. ., ug—1]

ATSP, for anye (Cormen et al., 1990), this means for everyd — 1-tuple of nodes o¥’. It has an edge

that JPDOP cannot be approximated either (unlesdfom [u1, ..., ua—1] 10 [ug, ..., uq—1, ug] iff there

P=NP): Any polynomial algorithm fofPDOP will IS an edge fromu;_; to ug in &, and it has an edge

compute arbitrarily bad solutions on certain inputs. from each node intds, ..., s]. The idea is to en-
The reduction works as follows. Leff = code a path? = (s = wug,u1,...,us) In G @s

((Vi,...,Vi),E,c) be an instance of ATSP, and & tour7p in G' that successively visits the nodes

V = Vi U... UV, We choose an arbitrary node [ti-d+1;---ui, i =0,...n, where we assume that

v € V and split it into two nodes, andv;. We as- %j = s forall j < 0 (compare Figure 2).

sign all edges with source nodéo v, and alledges ~ The cost off’» can be made equal to the costrof

with target node to v; (compare Figure 1). Finally by making the cost of the edge frojm, . . ., u41]

we makev, the source node of our 2PDOP instancetO [u2, . . ., uq] equal toc(uz, . .. ug). (We setc’(e)

el to 0 for all edges: between nodes with first compo-
For every tour in7, we have a path iG” starting nents and for the edges with target nodes*~'].)

atw, visiting all other nodes (and endingig) with ~ Finally, we define/; to be the set of all nodes @@’

the same cost by replacing the edgeu) out of ~ With last component. It is not hard to see that for

v by (vs,u) and the edgéw, v) into v by (w,v;).  any swnple path of length in GG, we find a tourlp _

Conversely, for every path startingatvisiting all i G’ with the same cost. Conversely, we can find

nodes, we have an ATSP tour of the same cost, sind®r every tour inG’ a simple path of length in ¢

all such paths will end im; (asv; has no outgoing With the same cost.
edges). Note that the encoding’ will contain many un-

An example is shown in Fig. 1. The ATSP in- necessary nodes and edges. For instance, all nodes
stance on the left has the to(ir, 3, 2, 1), indicated that have no incoming edges can never be used in a
by the solid edges. The node 1 is split into the twotour, and can be deleted. We can safely delete such
nodesl, and1;, and the tour translates to the pathunnecessary nodes in a post-processing step.

3PDOP GATSP

(1s,3,2,1;) in the 2PDOP instance. An example is shown in Fig. 2. The 3PDOP
, instance on the left has a path, 3,1, 2), which

3.2 Reduction ofdPDOP to GATSP translates to the patfis, s], [s,3],[3,1],[1,2]) in

Conversely, we can encode an instanGe = the GATSP instance shown on the right. This path

(V,E,s,c) of dPDOP as an instancé&’ = can be completed by a tour by adding the edge



([1,2], s, s]), of cost 0. The tour indeed visits each We have a binary variable. for each edge of
V. (i.e., each column) exactly once. Nodes with lastthe graph. The intention is that. has value 1 if
components which are not[s, s|] are unreachable e is used in the tour, and O otherwise. Thus the
and are not shown. cost of the tour can be written 3S__ ccx.. The

For the special case df= 2, the GATSP is sim- three conditions enforce the variable assignment to
ply an ordinary ATSP. The graphs of both problemsencode a valid GATSP tour. (1) ensures that all inte-
look identical in this case, except that the GATSPger solutions encode a set of cycles. (2) guarantees
instance has edges of cost 0 from any node to théhat every partitiorV; is visited by exactly one cy-

source]s]. cle. The inequalities (3) say that every subset of the
) ) _ partitions has an outgoing edge; this makes sure a
4 Computing Optimal Orderings solution encodesnecycle, rather than a set of mul-

The equivalence afPDOP and GATSP implies that tiple cycles.

we can now bring algorithms from the vast litera- To solve such an ILP using the branch-and-cut
ture on TSP to bear on the discourse ordering probmethod, we drop the integrality constraints (i.e. we
lem. One straightforward method is to reduce thereplacez. € {0,1} by 0 < z. < 1) and solve
GATSP further to ATSP (Noon and Bean, 1993);the corresponding linear programming (LP) relax-
for the casel = 2, nothing has to be done. Then ation. If the solution of the LP is integral, we found
one can solve the reduced ATSP instance; see (Fighe optimal solution. Otherwise we pick a variable
chetti et al., 2001; Fischetti et al., 2002) for a recenwith a fractional value and split the problem into
survey of exact methods. two subproblems by setting the variableftand1,

We choose the alternative of developing a newespectively. We solve the subproblems recursively
algorithm for solving GATSP directly, which uses and disregard a subproblem if its LP bound is worse
standard techniques from combinatorial optimisathan the best known solution.
tion, gives us a better handle on optimising the al- Since our ILP contains an exponential number of
gorithm for our problem instances, and runs morenequalities of type (3), solving the complete LPs
efficiently in practice. Our algorithm translates directly would be too expensive. Instead, we start
the GATSP instance into amteger linear pro- with a small subset of these inequalities, and test
gram (ILP) and uses théranch-and-cut method (efficiently) whether a solution of the smaller LP
(Nemhauser and Wolsey, 1988) to solve it. Integewiolates an inequality which is not in the current
linear programs consist of a set of linear equations.P. If so, we add the inequality to the LP, resolve
and inequalities, and are solved by integer variablét, and iterate. Otherwise we found the solution of
assignments which maximise or minimise a goalthe LP with the exponential number of inequalities.
function while satisfying the other conditions. The inequalities we add by need are caltedting

LetG = (V, E) be a directed graph ar§i C V. planes algorithms that find violated cutting planes
We defined™ (S) = {(u,v) € E | u € Sandv ¢ are calledseparation algorithms
Standd~(5) = {(u,v) € E|u¢ Sandv € S}, To keep the size of the branch-and-cut tree small,
i.e. 87 (S) andd—(S) are the sets of all incoming our algorithm employs some heuristics to find fur-
and outgoing edges &f, respectively. We assume ther upper bounds. In addition, we improve lower
that the graphG has no edges within one partition bound from the LP relaxations by adding further in-
V.., since such edges cannot be used by any solutiorqualities to the LP that are valid for all integral so-
With this assumption, GATSP can be phrased as alutions, but can be violated for optimal solutions of
ILP as follows (this formulation is similar to the one the LP. One major challenge here was to find separa-
proposed by Laporte et al. (1987)): tion algorithms for these inequalities. We cannot go

into these details for lack of space, but will discuss
them in a separate paper.
min Zcezxe

ecE 5 Evaluation

8.t Z Te = Z Te VU EV 1) We implemented the algorithm and ran it on some
e€d ™ (v) €™ (v) examples to evaluate its practical efficiency. The
Y ome=1 1<i<n (2)  runtimes are shown in Tables 3 and 4 for an imple-
e€d—(V;) mentation using a branch-and-cut ILP solver which
Z ze > 1 Ic{l,...,n} (3 is free for all academic purposes (ILP-FS) and a

€t (Une Vi) commercial branch-and-cut ILP solver (ILP-CS).
r. € {0,1} Our implementations are based on LEDA 4.4.1



Instance Size | ILP-FS | ILP-CS Instance Size | ILP-FS | ILP-CS

lapata-10 13 | 0.05 0.05 coffers1 M.KP | 10 | 0.05 0.05

coffers1 M.NOCB | 10 0.04 0.02 coffersl1 M.BFP| 10 | 0.08 0.06

cabinetl M.NOCB| 15 | 0.07 0.01 cabinetl M.KP | 15 | 0.40 1.12

random (avg) 20 | 0.09 0.07 cabinetl M.BFP| 15 | 0.39 0.28

random (avg) 40 | 0.28 0.17 random (avg) 10 | 1.00 0.42

random (avg) 60 | 1.39 0.40 random (avg) | 15 | 35.1 5.79

random (avg) 100 | 6.17 1.97 random (avg) | 20 | - 115.8

Table 3: Some runtimes fal= 2 (in seconds). Table 4: Some runtimes fel = 3 (in seconds).
(www.algorithmic-solutions.com ) for the real-life instances, and thus the branch-and-cut

the data structures and the graph algorithms antrees remain small. The LP bounds for the random
on SCIL 0.8 (www.mpi-sb.mpg.de/SCIL ) instances are worse, in particular when the number

for implementing the ILP-based branch-and-cutof units gets larger. In this case, the further opti-
algorithm.  SCIL can be used with different misations in the commercial software make a big

branch-and-cut core codes. We used CPLEXifference in the size of the branch-and-cut tree and
9.0 www.ilog.com ) as commercial core and thusin the solution time.

SCIP 0.68 Wwww.zib.de/Optimization/ An example output for cabinetl with M.NOCB
Software/SCIP/ ) based on SOPLEX 1.2.2a is shown in Fig. 3; we have modified referring ex-
(www.zib.de/Optimization/Software/ pressions to make the text more readable, and have

Soplex/ ) as the free implementation. Note that marked discourse unit boundaries with “/” and ex-
all our implementations are still preliminary. The pressions that establish local coherence with square
software is publicly available wiww.mpi-sb. brackets. This is one of many possible optimal so-
mpg.de/ althaus/PDOP.html ). lutions, which have cost 2 because of the twacs
We evaluate the implementations on three classdansitions at the very start of the discourse. Details
of inputs. First, we use two discourses from theon the comparison of different centering-based co-
GNOME corpus, taken from (Karamanis, 2003), to-herence measures are discussed by Karamanis et al.
gether with the centering-based cost functions fron{2004).
Section 2: coffersl, containing 10 discourse units, .
and cabinetl, containing 15 discourse units. Sec® Comparison to Other Approaches
ond, we use twelve discourses from the BLLIPThere are two approaches in the literature that are
corpus taken from (Lapata, 2003), together withsimilar enough to ours that a closer comparison is
M.LAPATA. These discourses are 4 to 13 discoursen order.
units long; the table only shows the instance with  The first is a family of algorithms for discourse
the highest running time. Finally, we generate ranprdering based on genetic programming (Mellish et
dom instances of 2PDOP of size 20-100, and of)., 1998; Karamanis and Manurung, 2002). This is
3PDOP of size 10, 15, and 20. A random instance ig very flexible and powerful approach, which can be
the complete graph, wherguy, ..., u,) is chosen  applied to measures of local coherence that do not
uniformly at random fron{0, . .., 999}. seem to fit in our framework trivially. For exam-
The results for the 2-place instances are showple, the measure from (Mellish et al., 1998) looks at
in Table 3, and the results for the 3-place instanceghe entire discourse up to the current transition for
are shown in Table 4. The numbers are runtimes iome of their cost factors. However, our algorithm
seconds on a Pentium 4 (Xeon) processor with 3.0¢s several orders of magnitude faster where a direct
GHz. Note that a hypothetical baseline implementacomparison is possible (Manurung, p.c.), and it is
tion which naively generates and evaluates all perguaranteed to find an optimal ordering. The non-
mutations would run over 77 years for a discourseapproximability result for TSP means that a genetic
of length 20, even on a highly optimistic platform (or any other) algorithm which is restricted to poly-
that evaluates one billion permutations per second.nomial runtime could theoretically deliver arbitrar-
Ford = 2, all real-life instances and all random ily bad solutions.
instances of size up to 50 can be solved in less than Second, the discourse ordering problem we have
one second, with either implementation. The prob-discussed in this paper looks very similar to the Ma-
lem becomes more challenging i@~ 3. Here the jority Ordering problem that arises in the context
algorithm quickly establishes good LP bounds forof multi-document summarisation (Barzilay et al.,



Both cabinets probably entered England in the early nineteenth century / after the French Revolution caused
the dispersal of so many French collections. / The pair to [this monumental cabinet] still exists in Scotland.

/ The fleurs-de-lis on the top two drawers indicate that [the cabinet] was made for the French King Louis
XIV. / [Itf] may have served as a royal gift, / as [it] does not appear in inventories of [his] possessions. /
Another medallion inside shows [him] a few years later. / The bronze medallion above [the central door]
was cast from a medal struck in 1661 which shows [the king] at the age of twenty-one. / A panel of marquetry
showing the cockerel of [France] standing triumphant over both the eagle of the Holy Roman Empire and the
lion of Spain and the Spanish Netherlands decorates [the central door]. / In [the Dutch Wars] of 1672 - 1678,
[France] fought simultaneously against the Dutch, Spanish, and Imperial armies, defeating them all. / [The
cabinet] celebrates the Treaty of Nijmegen, which concluded [the war]. / The Sun King’s portrait appears
twice on [this work]. / Two large figures from Greek mythology, Hercules and Hippolyta, Queen of the
Amazons, representatives of strength and bravery in war appear to support [the cabinet]. / The decoration on
[the cabinet] refers to [Louis XIV’s] military victories. / On the drawer above the door, gilt-bronze military
trophies flank a medallion portrait of [the king].

Figure 3: An example output based on M.NOCB.

2002). The difference between the two problems isystem should be a useful experimentation tool in
that Barzilay et al. minimise the sum of all costs developing new measures of local coherence.

C;; for any pairi, j of discourse units with < j, We have focused on local coherence in this paper,
whereas we only sum over thg; fori = j — 1.  but it seems clear that notions of global coherence,
This makes their problem amenable to the approxiwhich go beyond the level of sentence-to-sentence
mation algorithm by Cohen et al. (1999), which al- transitions, capture important aspects of coherence
lows them to compute a solution that is at least halfthat a purely local model cannot. However, our al-
as good as the optimum, in polynomial time; i.e.gorithm can still be useful as a subroutine in a more
this problem is strictly easier than TSP or discoursecomplex system that deals with global coherence
ordering. However, a Majority Ordering algorithm (Marcu, 1997; Mellish et al., 1998). Whether our
is not guaranteed to compute good solutions to thenethods can be directly applied to the tree struc-
discourse ordering problem, as Lapata (2003) astures that come up in theories of global coherence is
sumes. an interesting question for future research.
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