
Computing Locally Coherent Discourses

Ernst Althaus
LORIA

Universit́e Henri Poincaŕe
Vandœuvre-l̀es-Nancy, France

althaus@loria.fr

Nikiforos Karamanis
School of Informatics

University of Edinburgh
Edinburgh, UK

N.Karamanis@sms.ed.ac.uk

Alexander Koller
Dept. of Computational Linguistics

Saarland University
Saarbr̈ucken, Germany

koller@coli.uni-sb.de

Abstract

We present the first algorithm that computes opti-
mal orderings of sentences into a locally coherent
discourse. The algorithm runs very efficiently on a
variety of coherence measures from the literature.
We also show that the discourse ordering problem
is NP-complete and cannot be approximated.

1 Introduction

One central problem in discourse generation and
summarisation is to structure the discourse in a
way that maximisescoherence. Coherence is the
property of a good human-authored text that makes
it easier to read and understand than a randomly-
ordered collection of sentences.

Several papers in the recent literature (Mellish et
al., 1998; Barzilay et al., 2002; Karamanis and Ma-
nurung, 2002; Lapata, 2003; Karamanis et al., 2004)
have focused on defininglocal coherence, which
evaluates the quality of sentence-to-sentence transi-
tions. This is in contrast to theories ofglobalcoher-
ence, which can consider relations between larger
chunks of the discourse and e.g. structures them into
a tree (Mann and Thompson, 1988; Marcu, 1997;
Webber et al., 1999). Measures of local coherence
specify whichordering of the sentences makes for
the most coherent discourse, and can be based e.g.
on Centering Theory (Walker et al., 1998; Brennan
et al., 1987; Kibble and Power, 2000; Karamanis
and Manurung, 2002) or on statistical models (Lap-
ata, 2003).

But while formal models of local coherence have
made substantial progress over the past few years,
the question of how to efficientlycomputean order-
ing of the sentences in a discourse that maximises
local coherence is still largely unsolved. The fun-
damental problem is that any of the factorial num-
ber of permutations of the sentences could be the
optimal discourse, which makes for a formidable
search space for nontrivial discourses. Mellish et
al. (1998) and Karamanis and Manurung (2002)
present algorithms based on genetic programming,

and Lapata (2003) uses a graph-based heuristic al-
gorithm, but none of them can give any guarantees
about the quality of the computed ordering.

This paper presents the first algorithm that com-
putes optimal locally coherent discourses, and es-
tablishes the complexity of the discourse ordering
problem. We first prove that the discourse order-
ing problem for local coherence measures is equiva-
lent to the Travelling Salesman Problem (TSP). This
means that discourse ordering is NP-complete, i.e.
there are probably no polynomial algorithms for it.
Worse, our result implies that the problem is not
even approximable; any polynomial algorithm will
compute arbitrarily bad solutions on unfortunate in-
puts. Note that all approximation algorithms for the
TSP assume that the underlying cost function is a
metric, which is not the case for the coherence mea-
sures we consider.

Despite this negative result, we show that by ap-
plying modern algorithms for TSP, the discourse or-
dering problem can be solved efficiently enough for
practical applications. We define a branch-and-cut
algorithm based on linear programming, and evalu-
ate it on discourse ordering problems based on the
GNOME corpus (Karamanis, 2003) and the BLLIP
corpus (Lapata, 2003). If the local coherence mea-
sure depends only on the adjacent pairs of sentences
in the discourse, we can order discourses of up to 50
sentences in under a second. If it is allowed to de-
pend on the left-hand context of the sentence pair,
computation is often still efficient, but can become
expensive.

The structure of the paper is as follows. We will
first formally define the discourse ordering problem
and relate our definition to the literature on local co-
herence measures in Section 2. Then we will prove
the equivalence of discourse ordering and TSP (Sec-
tion 3), and present algorithms for solving it in Sec-
tion 4. Section 5 evaluates our algorithms on exam-
ples from the literature. We compare our approach
to various others in Section 6, and then conclude in
Section 7.



2 The Discourse Ordering Problem
We will first give a formal definition of the prob-
lem of computing locally coherent discourses, and
demonstrate how some local coherence measures
from the literature fit into this framework.

2.1 Definitions
We assume that a discourse is made up ofdiscourse
units (depending on the underlying theory, these
could be utterances, sentences, clauses, etc.), which
must beorderedto achieve maximum local coher-
ence. We call the problem of computing the optimal
ordering thediscourse ordering problem.

We formalise the problem by assigning a cost to
each unit-to-unit transition, and a cost for the dis-
course to start with a certain unit. Transition costs
may depend on the local context, i.e. a fixed num-
ber of discourse units to the left may influence the
cost of a transition. The optimal ordering is the one
which minimises the sum of the costs.

Definition 1. A d-place transition cost functionfor
a setU of discourse units is a functioncT : Ud →
R. Intuitively, cT (un|u1, . . . , ud−1) is the cost of
the transition(ud−1, ud) given that the immediately
preceding units wereu1, . . . , ud−2.

A d-place initial cost functionfor U is a function
cI : Ud → R. Intuitively, cI(u1, . . . , ud) is the
cost for the fact that the discourse starts with the
sequenceu1, . . . , ud.

The d-place discourse ordering problemis de-
fined as follows: Given a setU = {u1, . . . , un},
a d-place transition cost functioncT and a(d − 1)-
place initial cost functioncI , compute a permutation
π of {1, . . . , n} such that

cI(uπ(1), . . . , uπ(d−1))

+
n−d+1∑

i=1

cT (uπ(i+d−1)|uπ(i), . . . , uπ(i+d−2))

is minimal.

The notation for the cost functions is suggestive:
The transition cost function has the character of a
conditional probability, which specifies that the cost
of continuing the discourse with the unitud depends
on the local contextu1, . . . , ud−1. This local con-
text is not available for the firstd − 1 units of the
discourse, which is why their costs are summarily
covered by the initial function.

2.2 Centering-Based Cost Functions
One popular class of coherence measures is based
on Centering Theory (CT, (Walker et al., 1998)). We

will briefly sketch its basic notions and then show
how some CT-based coherence measures can be cast
into our framework.

The standard formulation of CT e.g. in (Walker et
al., 1998), calls the discourse unitsutterances, and
assigns to each utteranceui in the discourse a list
Cf(ui) of forward-looking centres. The members
of Cf(ui) correspond to the referents of the NPs
in ui and are ranked in order of prominence, the
first element being thepreferred centreCp(ui). The
backward-looking centreCb(ui) of ui is defined as
the highest ranked element ofCf(ui) which also ap-
pears inCf(ui−1), and serves as the link between
the two subsequent utterancesui−1 and ui. Each
utterance has at most oneCb. If ui andui−1 have
no forward-looking centres in common, or ifui is
the first utterance in the discourse, thenui does not
have aCb at all.

Based on these concepts, CT classifies thetran-
sitions between subsequent utterances into differ-
ent types. Table 1 shows the most common clas-
sification into the four typesCONTINUE, RETAIN,
SMOOTH-SHIFT, andROUGH-SHIFT, which are pre-
dicted to be less and less coherent in this order
(Brennan et al., 1987). Kibble and Power (2000)
define three further classes of transitions:COHER-
ENCE andSALIENCE, which are both defined in Ta-
ble 1 as well, andNOCB, the class of transitions
for which Cb(ui) is undefined. Finally, a transition
is considered to satisfy theCHEAPNESSconstraint
(Strube and Hahn, 1999) ifCb(ui) = Cp(ui−1).

Table 2 summarises some cost functions from the
literature, in the reconstruction of Karamanis et al.
(2004). Each line shows the name of the coherence
measure, the arityd from Definition 1, and the ini-
tial and transition cost functions. To fit the defini-
tions in one line, we use terms of the formfk, which
abbreviate applications off to the lastk arguments
of the cost functions, i.e.f(ud−k+1, . . . , ud).

The most basic coherence measure, M.NOCB
(Karamanis and Manurung, 2002), simply assigns
to eachNOCB transition the cost 1 and to every other
transition the cost 0. The definition ofcT (u2|u1),
which decodes tonocb(u1, u2), only looks at the
two units in the transition, and no further context.
The initial costs for this coherence measure are al-
ways zero.

The measure M.KP (Kibble and Power, 2000)
sums the value ofnocb and the values of three func-
tions which evaluate to 0 if the transition is cheap,
salient, or coherent, and 1 otherwise. This is an in-
stance of the 3-place discourse ordering problem be-
causeCOHERENCEdepends onCb(ui−1), which it-
self depends onCf(ui−2); hencenocoh must take



COHERENCE: COHERENCE∗:
Cb(ui) = Cb(ui−1) Cb(ui) 6= Cb(ui−1)

SALIENCE: Cb(ui) = Cp(ui) CONTINUE SMOOTH-SHIFT

SALIENCE∗: Cb(ui) 6= Cp(ui) RETAIN ROUGH-SHIFT

Table 1:COHERENCE, SALIENCE and the table of standard transitions

d initial costcI(u1, . . . , ud−1) transition costcT (ud|u1, . . . , ud−1)
M.NOCB 2 0 nocb2

M.KP 3 nocb2 + nocheap2 + nosal2 nocb2 + nocheap2 + nosal2 + nocoh3

M.BFP 3 (1− nosal2, nosal2, 0, 0) (cont3, ret3, ss3, rs3)
M.LAPATA 2 − log P (u1) − log P (u2|u1)

Table 2: Some cost functions from the literature.

three arguments.

Finally, the measure M.BFP (Brennan et al.,
1987) uses a lexicographic ordering on 4-tuples
which indicate whether the transition is aCON-
TINUE, RETAIN, SMOOTH-SHIFT, or ROUGH-
SHIFT. cT and all four functions it is computed from
take three arguments because the classification de-
pends onCOHERENCE. As the first transition in the
discourse is coherent by default (it has no Cb), we
can computecI by distinguishingRETAIN andCON-
TINUE via SALIENCE. The tuple-valued cost func-
tions can be converted to real-valued functions by
choosing a sufficiently large numberM and using
the valueM3 · cont + M2 · ret + M · ss + rs.

2.3 Probability-Based Cost Functions

A fundamentally different approach to measure dis-
course coherence was proposed by Lapata (2003).
It uses a statistical bigram model that assigns each
pair ui, uk of utterances a probabilityP (uk|ui) of
appearing in subsequent positions, and each utter-
ance a probabilityP (ui) of appearing in the initial
position of the discourse. The probabilities are es-
timated on the grounds of syntactic features of the
discourse units. The probability of the entire dis-
courseu1 . . . un is the productP (u1) · P (u2|u1) ·
. . . · P (un|un−1).

We can transform Lapata’s model straightfor-
wardly into our cost function framework, as shown
under M.LAPATA in Table 2. The discourse that
minimizes the sum of the negative logarithms will
also maximise the product of the probabilities. We
haved = 2 because it is a bigram model in which
the transition probability does not depend on the
previous discourse units.

3 Equivalence of Discourse Ordering and
TSP

Now we show that discourse ordering and the travel-
ling salesman problem are equivalent. In order to do
this, we first redefine discourse ordering as a graph
problem.

d-place discourse ordering problem (dPDOP):
Given a directed graphG = (V,E), a node
s ∈ V and a functionc : V d → R, compute a
simple directed pathP = (s = v0, v1, . . . , vn)
from s through all vertices inV which min-
imises

∑n−d+1
i=0 c(vi, vi+1, . . . , vi+d−1). We

write instances ofdPDOP as(V,E, s, c).

The nodesv1, . . . , vn correspond to the discourse
units. The cost functionc encodes both the initial
and the transition cost functions from Section 2 by
returning the initial cost if its first argument is the
(new) start nodes.

Now let’s define the version of the travelling
salesman problem we will use below.

Generalised asymmetric TSP (GATSP):Given a
directed graphG = (V,E), edge weightsc :
E → R, and a partition(V1, . . . , Vk) of the
nodesV , compute the shortest directed cycle
that visits exactly one node of eachVi. We
call such a cycle atour and write instances of
GATSP as((V1, . . . , Vk), E, c).

The usual definition of the TSP, in which every
node must be visited exactly once, is the special
case of GATSP where eachVi contains exactly one
node. We call this caseasymmetric travelling sales-
man problem, ATSP.



ATSP 2PDOP

�

�

�

���

���

�

�

Figure 1: Reduction of ATSP to 2PDOP

We will show that ATSP can be reduced to
2PDOP, and that anydPDOP can be reduced to
GATSP.

3.1 Reduction of ATSP to 2PDOP

First, we introduce the reduction of ATSP to
2PDOP, which establishes NP-completeness of
dPDOP for alld > 1. The reduction is approxi-
mation preserving, i.e. if we can find a solution of
2PDOP that is worse than the optimum only by a
factor of ε (an ε-approximation), it translates to a
solution of ATSP that is also anε-approximation.
Since it is known that there can be no polynomial al-
gorithms that computeε-approximations for general
ATSP, for anyε (Cormen et al., 1990), this means
thatdPDOP cannot be approximated either (unless
P=NP): Any polynomial algorithm fordPDOP will
compute arbitrarily bad solutions on certain inputs.

The reduction works as follows. LetG =
((V1, . . . , Vk), E, c) be an instance of ATSP, and
V = V1 ∪ . . . ∪ Vk. We choose an arbitrary node
v ∈ V and split it into two nodesvs andvt. We as-
sign all edges with source nodev to vs and all edges
with target nodev to vt (compare Figure 1). Finally
we makevs the source node of our 2PDOP instance
G′.

For every tour inG, we have a path inG′ starting
atvs visiting all other nodes (and ending invt) with
the same cost by replacing the edge(v, u) out of
v by (vs, u) and the edge(w, v) into v by (w, vt).
Conversely, for every path starting atvs visiting all
nodes, we have an ATSP tour of the same cost, since
all such paths will end invt (asvt has no outgoing
edges).

An example is shown in Fig. 1. The ATSP in-
stance on the left has the tour(1, 3, 2, 1), indicated
by the solid edges. The node 1 is split into the two
nodes1s and1t, and the tour translates to the path
(1s, 3, 2, 1t) in the 2PDOP instance.

3.2 Reduction ofdPDOP to GATSP

Conversely, we can encode an instanceG =
(V,E, s, c) of dPDOP as an instanceG′ =

3PDOP GATSP

�

� �

� �����

�����

���	� ���
�

� ���� �	� � ���

���	� ���
�

� � �

��
��� ��� ���

Figure 2: Reduction ofdPDOP to GATSP. Edges to
the source node[s, s] are not drawn.

((V ′
u)u∈V , E′, c′) of GATSP, in such a way that the

optimal solutions correspond. The cost of traversing
an edge indPDOP depends on the previousd − 1
nodes; we compress these costs into ordinary costs
of single edges in the reduction to GATSP.

The GATSP instance has a node[u1, . . . , ud−1]
for everyd − 1-tuple of nodes ofV . It has an edge
from [u1, . . . , ud−1] to [u2, . . . , ud−1, ud] iff there
is an edge fromud−1 to ud in G, and it has an edge
from each node into[s, . . . , s]. The idea is to en-
code a pathP = (s = u0, u1, . . . , un) in G as
a tour TP in G′ that successively visits the nodes
[ui−d+1, . . . ui], i = 0, . . . n, where we assume that
uj = s for all j ≤ 0 (compare Figure 2).

The cost ofTP can be made equal to the cost ofP
by making the cost of the edge from[u1, . . . , ud−1]
to [u2, . . . , ud] equal toc(u1, . . . ud). (We setc′(e)
to 0 for all edgese between nodes with first compo-
nents and for the edgese with target node[sd−1].)
Finally, we defineV ′

u to be the set of all nodes inG′

with last componentu. It is not hard to see that for
any simple path of lengthn in G, we find a tourTP

in G′ with the same cost. Conversely, we can find
for every tour inG′ a simple path of lengthn in G
with the same cost.

Note that the encodingG′ will contain many un-
necessary nodes and edges. For instance, all nodes
that have no incoming edges can never be used in a
tour, and can be deleted. We can safely delete such
unnecessary nodes in a post-processing step.

An example is shown in Fig. 2. The 3PDOP
instance on the left has a path(s, 3, 1, 2), which
translates to the path([s, s], [s, 3], [3, 1], [1, 2]) in
the GATSP instance shown on the right. This path
can be completed by a tour by adding the edge



([1, 2], [s, s]), of cost 0. The tour indeed visits each
V ′

u (i.e., each column) exactly once. Nodes with last
components which are not[s, s] are unreachable
and are not shown.

For the special case ofd = 2, the GATSP is sim-
ply an ordinary ATSP. The graphs of both problems
look identical in this case, except that the GATSP
instance has edges of cost 0 from any node to the
source[s].

4 Computing Optimal Orderings
The equivalence ofdPDOP and GATSP implies that
we can now bring algorithms from the vast litera-
ture on TSP to bear on the discourse ordering prob-
lem. One straightforward method is to reduce the
GATSP further to ATSP (Noon and Bean, 1993);
for the cased = 2, nothing has to be done. Then
one can solve the reduced ATSP instance; see (Fis-
chetti et al., 2001; Fischetti et al., 2002) for a recent
survey of exact methods.

We choose the alternative of developing a new
algorithm for solving GATSP directly, which uses
standard techniques from combinatorial optimisa-
tion, gives us a better handle on optimising the al-
gorithm for our problem instances, and runs more
efficiently in practice. Our algorithm translates
the GATSP instance into aninteger linear pro-
gram (ILP) and uses thebranch-and-cut method
(Nemhauser and Wolsey, 1988) to solve it. Integer
linear programs consist of a set of linear equations
and inequalities, and are solved by integer variable
assignments which maximise or minimise a goal
function while satisfying the other conditions.

Let G = (V,E) be a directed graph andS ⊆ V .
We defineδ+(S) = {(u, v) ∈ E | u ∈ S andv 6∈
S} andδ−(S) = {(u, v) ∈ E | u /∈ S andv ∈ S},
i.e. δ+(S) and δ−(S) are the sets of all incoming
and outgoing edges ofS, respectively. We assume
that the graphG has no edges within one partition
Vu, since such edges cannot be used by any solution.
With this assumption, GATSP can be phrased as an
ILP as follows (this formulation is similar to the one
proposed by Laporte et al. (1987)):

min
∑
e∈E

cexe

s.t.
∑

e∈δ+(v)

xe =
∑

e∈δ−(v)

xe ∀ v ∈ V (1)∑
e∈δ−(Vi)

xe = 1 1 ≤ i ≤ n (2)∑
e∈δ+(∪i∈IVi)

xe ≥ 1 I ⊂ {1, . . . , n} (3)

xe ∈ {0, 1}

We have a binary variablexe for each edgee of
the graph. The intention is thatxe has value 1 if
e is used in the tour, and 0 otherwise. Thus the
cost of the tour can be written as

∑
e∈E cexe. The

three conditions enforce the variable assignment to
encode a valid GATSP tour. (1) ensures that all inte-
ger solutions encode a set of cycles. (2) guarantees
that every partitionVi is visited by exactly one cy-
cle. The inequalities (3) say that every subset of the
partitions has an outgoing edge; this makes sure a
solution encodesonecycle, rather than a set of mul-
tiple cycles.

To solve such an ILP using the branch-and-cut
method, we drop the integrality constraints (i.e. we
replacexe ∈ {0, 1} by 0 ≤ xe ≤ 1) and solve
the corresponding linear programming (LP) relax-
ation. If the solution of the LP is integral, we found
the optimal solution. Otherwise we pick a variable
with a fractional value and split the problem into
two subproblems by setting the variable to0 and1,
respectively. We solve the subproblems recursively
and disregard a subproblem if its LP bound is worse
than the best known solution.

Since our ILP contains an exponential number of
inequalities of type (3), solving the complete LPs
directly would be too expensive. Instead, we start
with a small subset of these inequalities, and test
(efficiently) whether a solution of the smaller LP
violates an inequality which is not in the current
LP. If so, we add the inequality to the LP, resolve
it, and iterate. Otherwise we found the solution of
the LP with the exponential number of inequalities.
The inequalities we add by need are calledcutting
planes; algorithms that find violated cutting planes
are calledseparation algorithms.

To keep the size of the branch-and-cut tree small,
our algorithm employs some heuristics to find fur-
ther upper bounds. In addition, we improve lower
bound from the LP relaxations by adding further in-
equalities to the LP that are valid for all integral so-
lutions, but can be violated for optimal solutions of
the LP. One major challenge here was to find separa-
tion algorithms for these inequalities. We cannot go
into these details for lack of space, but will discuss
them in a separate paper.

5 Evaluation

We implemented the algorithm and ran it on some
examples to evaluate its practical efficiency. The
runtimes are shown in Tables 3 and 4 for an imple-
mentation using a branch-and-cut ILP solver which
is free for all academic purposes (ILP-FS) and a
commercial branch-and-cut ILP solver (ILP-CS).

Our implementations are based on LEDA 4.4.1



Instance Size ILP-FS ILP-CS
lapata-10 13 0.05 0.05
coffers1 M.NOCB 10 0.04 0.02
cabinet1 M.NOCB 15 0.07 0.01
random (avg) 20 0.09 0.07
random (avg) 40 0.28 0.17
random (avg) 60 1.39 0.40
random (avg) 100 6.17 1.97

Table 3: Some runtimes ford = 2 (in seconds).

(www.algorithmic-solutions.com ) for
the data structures and the graph algorithms and
on SCIL 0.8 (www.mpi-sb.mpg.de/SCIL )
for implementing the ILP-based branch-and-cut
algorithm. SCIL can be used with different
branch-and-cut core codes. We used CPLEX
9.0 (www.ilog.com ) as commercial core and
SCIP 0.68 (www.zib.de/Optimization/
Software/SCIP/ ) based on SOPLEX 1.2.2a
(www.zib.de/Optimization/Software/
Soplex/ ) as the free implementation. Note that
all our implementations are still preliminary. The
software is publicly available (www.mpi-sb.
mpg.de/˜althaus/PDOP.html ).

We evaluate the implementations on three classes
of inputs. First, we use two discourses from the
GNOME corpus, taken from (Karamanis, 2003), to-
gether with the centering-based cost functions from
Section 2: coffers1, containing 10 discourse units,
and cabinet1, containing 15 discourse units. Sec-
ond, we use twelve discourses from the BLLIP
corpus taken from (Lapata, 2003), together with
M.LAPATA. These discourses are 4 to 13 discourse
units long; the table only shows the instance with
the highest running time. Finally, we generate ran-
dom instances of 2PDOP of size 20–100, and of
3PDOP of size 10, 15, and 20. A random instance is
the complete graph, wherec(u1, . . . , ud) is chosen
uniformly at random from{0, . . . , 999}.

The results for the 2-place instances are shown
in Table 3, and the results for the 3-place instances
are shown in Table 4. The numbers are runtimes in
seconds on a Pentium 4 (Xeon) processor with 3.06
GHz. Note that a hypothetical baseline implementa-
tion which naively generates and evaluates all per-
mutations would run over 77 years for a discourse
of length 20, even on a highly optimistic platform
that evaluates one billion permutations per second.

For d = 2, all real-life instances and all random
instances of size up to 50 can be solved in less than
one second, with either implementation. The prob-
lem becomes more challenging ford = 3. Here the
algorithm quickly establishes good LP bounds for

Instance Size ILP-FS ILP-CS
coffers1 M.KP 10 0.05 0.05
coffers1 M.BFP 10 0.08 0.06
cabinet1 M.KP 15 0.40 1.12
cabinet1 M.BFP 15 0.39 0.28
random (avg) 10 1.00 0.42
random (avg) 15 35.1 5.79
random (avg) 20 - 115.8

Table 4: Some runtimes ford = 3 (in seconds).

the real-life instances, and thus the branch-and-cut
trees remain small. The LP bounds for the random
instances are worse, in particular when the number
of units gets larger. In this case, the further opti-
misations in the commercial software make a big
difference in the size of the branch-and-cut tree and
thus in the solution time.

An example output for cabinet1 with M.NOCB
is shown in Fig. 3; we have modified referring ex-
pressions to make the text more readable, and have
marked discourse unit boundaries with “/” and ex-
pressions that establish local coherence with square
brackets. This is one of many possible optimal so-
lutions, which have cost 2 because of the twoNOCB

transitions at the very start of the discourse. Details
on the comparison of different centering-based co-
herence measures are discussed by Karamanis et al.
(2004).

6 Comparison to Other Approaches

There are two approaches in the literature that are
similar enough to ours that a closer comparison is
in order.

The first is a family of algorithms for discourse
ordering based on genetic programming (Mellish et
al., 1998; Karamanis and Manurung, 2002). This is
a very flexible and powerful approach, which can be
applied to measures of local coherence that do not
seem to fit in our framework trivially. For exam-
ple, the measure from (Mellish et al., 1998) looks at
the entire discourse up to the current transition for
some of their cost factors. However, our algorithm
is several orders of magnitude faster where a direct
comparison is possible (Manurung, p.c.), and it is
guaranteed to find an optimal ordering. The non-
approximability result for TSP means that a genetic
(or any other) algorithm which is restricted to poly-
nomial runtime could theoretically deliver arbitrar-
ily bad solutions.

Second, the discourse ordering problem we have
discussed in this paper looks very similar to the Ma-
jority Ordering problem that arises in the context
of multi-document summarisation (Barzilay et al.,



Both cabinets probably entered England in the early nineteenth century / after the French Revolution caused
the dispersal of so many French collections. / The pair to [this monumental cabinet] still exists in Scotland.
/ The fleurs-de-lis on the top two drawers indicate that [the cabinet] was made for the French King Louis
XIV. / [It] may have served as a royal gift, / as [it] does not appear in inventories of [his] possessions. /
Another medallion inside shows [him] a few years later. / The bronze medallion above [the central door]
was cast from a medal struck in 1661 which shows [the king] at the age of twenty-one. / A panel of marquetry
showing the cockerel of [France] standing triumphant over both the eagle of the Holy Roman Empire and the
lion of Spain and the Spanish Netherlands decorates [the central door]. / In [the Dutch Wars] of 1672 - 1678,
[France] fought simultaneously against the Dutch, Spanish, and Imperial armies, defeating them all. / [The
cabinet] celebrates the Treaty of Nijmegen, which concluded [the war]. / The Sun King’s portrait appears
twice on [this work]. / Two large figures from Greek mythology, Hercules and Hippolyta, Queen of the
Amazons, representatives of strength and bravery in war appear to support [the cabinet]. / The decoration on
[the cabinet] refers to [Louis XIV’s] military victories. / On the drawer above the door, gilt-bronze military
trophies flank a medallion portrait of [the king].

Figure 3: An example output based on M.NOCB.

2002). The difference between the two problems is
that Barzilay et al. minimise the sum of all costs
Cij for any pairi, j of discourse units withi < j,
whereas we only sum over theCij for i = j − 1.
This makes their problem amenable to the approxi-
mation algorithm by Cohen et al. (1999), which al-
lows them to compute a solution that is at least half
as good as the optimum, in polynomial time; i.e.
this problem is strictly easier than TSP or discourse
ordering. However, a Majority Ordering algorithm
is not guaranteed to compute good solutions to the
discourse ordering problem, as Lapata (2003) as-
sumes.

7 Conclusion
We have shown that the problem of ordering clauses
into a discourse that maximises local coherence is
equivalent to the travelling salesman problem: Even
the two-place discourse ordering problem can en-
code ATSP. This means that the problem is NP-
complete and doesn’t even admit polynomial ap-
proximation algorithms (unless P=NP).

On the other hand, we have shown how to encode
the discourse ordering problems of arbitrary arity
d into GATSP. We have demonstrated that mod-
ern branch-and-cut algorithms for GATSP can eas-
ily solve practical discourse ordering problems if
d = 2, and are still usable for many instances with
d = 3. As far as we are aware, this is the first al-
gorithm for discourse ordering that can make any
guarantees about the solution it computes.

Our efficient implementation can benefit genera-
tion and summarisation research in at least two re-
spects. First, we show that computing locally co-
herent orderings of clauses is feasible in practice,
as such coherence measures will probably be ap-
plied on sentences within the same paragraph, i.e.
on problem instances of limited size. Second, our

system should be a useful experimentation tool in
developing new measures of local coherence.

We have focused on local coherence in this paper,
but it seems clear that notions of global coherence,
which go beyond the level of sentence-to-sentence
transitions, capture important aspects of coherence
that a purely local model cannot. However, our al-
gorithm can still be useful as a subroutine in a more
complex system that deals with global coherence
(Marcu, 1997; Mellish et al., 1998). Whether our
methods can be directly applied to the tree struc-
tures that come up in theories of global coherence is
an interesting question for future research.

Acknowledgments. We would like to thank
Mirella Lapata for providing the experimental data
and Andrea Lodi for providing an efficiency base-
line by running his ATSP solver on our inputs. We
are grateful to Malte Gabsdil, Ruli Manurung, Chris
Mellish, Kristina Striegnitz, and our reviewers for
helpful comments and discussions.

References

R. Barzilay, N. Elhadad, and K. R. McKeown.
2002. Inferring strategies for sentence ordering
in multidocument news summarization.Journal
of Artificial Intelligence Research, 17:35–55.

S. Brennan, M. Walker Friedman, and C. Pollard.
1987. A centering approach to pronouns. In
Proc. 25th ACL, pages 155–162, Stanford.

W. Cohen, R. Schapire, and Y. Singer. 1999. Learn-
ing to order things.Journal of Artificial Intelli-
gence Research, 10:243–270.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest.
1990. Introduction to Algorithms. MIT Press,
Cambridge.

M. Fischetti, A. Lodi, and P. Toth. 2001. Solv-



ing real-world ATSP instances by branch-and-
cut. Combinatorial Optimization.

M. Fischetti, A. Lodi, and P. Toth. 2002. Exact
methods for the asymmmetric traveling salesman
problem. In G. Gutin and A. Punnen, editors,The
Traveling Salesman Problem and its Variations.
Kluwer.

N. Karamanis and H. M. Manurung. 2002.
Stochastic text structuring using the principle of
continuity. In Proceedings of INLG-02, pages
81–88, New York.

N. Karamanis, M. Poesio, C. Mellish, and J. Ober-
lander. 2004. Evaluating centering-based met-
rics of coherence for text structuring using a re-
liably annotated corpus. InProceedings of the
42nd ACL, Barcelona.

N. Karamanis. 2003.Entity Coherence for De-
scriptive Text Structuring. Ph.D. thesis, Division
of Informatics, University of Edinburgh.

R. Kibble and R. Power. 2000. An integrated
framework for text planning and pronominalisa-
tion. In Proc. INLG 2000, pages 77–84, Mitzpe
Ramon.

M. Lapata. 2003. Probabilistic text structuring: Ex-
periments with sentence ordering. InProc. 41st
ACL, pages 545–552, Sapporo, Japan.

G. Laporte, H. Mercure, and Y. Nobert. 1987. Gen-
eralized travelling salesman problem through n
sets of nodes: the asymmetrical case.Discrete
Applied Mathematics, 18:185–197.

W. Mann and S. Thompson. 1988. Rhetorical struc-
ture theory: A theory of text organization.Text,
8(3):243–281.

D. Marcu. 1997. From local to global coherence:
A bottom-up approach to text planning. InPro-
ceedings of the 14th AAAI, pages 629–635.

C. Mellish, A. Knott, J. Oberlander, and
M. O’Donnell. 1998. Experiments using
stochastic search for text planning. InProc. 9th
INLG, pages 98–107, Niagara-on-the-Lake.

G.L. Nemhauser and L.A. Wolsey. 1988.Integer
and Combinatorial Optimization. John Wiley &
Sons.

C.E. Noon and J.C. Bean. 1993. An efficient trans-
formation of the generalized traveling salesman
problem. Information Systems and Operational
Research, 31(1).

M. Strube and U. Hahn. 1999. Functional center-
ing: Grounding referential coherence in informa-
tion structure.Computational Linguistics, 25(3).

M. Walker, A. Joshi, and E. Prince. 1998. Center-
ing in naturally occuring discourse: An overview.
In M. Walker, A. Joshi, and E. Prince, edi-

tors,Centering Theory in Discourse, pages 1–30.
Clarendon Press, Oxford.

B. Webber, A. Knott, M. Stone, and A. Joshi. 1999.
What are little trees made of: A structural and
presuppositional account using Lexicalized TAG.
In Proc. 36th ACL, pages 151–156, College Park.


