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Abstract
We present a linguistically-motivated algorithm for recon-
structing nonlocal dependency in broad-coverage context-free
parse trees derived from treebanks. We use an algorithm based
on loglinear classifiers to augment and reshape context-free
trees so as to reintroduce underlying nonlocal dependencies
lost in the context-free approximation. We find that our algo-
rithm compares favorably with prior work on English using an
existing evaluation metric, and also introduce and argue for a
new dependency-based evaluation metric. By this new eval-
uation metric our algorithm achieves 60% error reduction on
gold-standard input trees and 5% error reduction on state-of-
the-art machine-parsed input trees, when compared with the
best previous work. We also present the first results on non-
local dependency reconstruction for a language other than En-
glish, comparing performance on English and German. Our
new evaluation metric quantitatively corroborates the intuition
that in a language with freer word order, the surface dependen-
cies in context-free parse trees are a poorer approximationto
underlying dependency structure.

1 Introduction

While parsers are been used for other purposes, the
primary motivation for syntactic parsing is as an
aid to semantic interpretation, in pursuit of broader
goals of natural language understanding. Propo-
nents of traditional ‘deep’ or ‘precise’ approaches
to syntax, such as GB, CCG, HPSG, LFG, or TAG,
have argued that sophisticated grammatical for-
malisms are essential to resolving various hidden re-
lationships such as the source phrase of movedwh-
phrases in questions and relativizations, or the con-
troller of clauses without an overt subject. Knowl-
edge of these hidden relationships is in turn es-
sential to semantic interpretation of the kind prac-
ticed in the semantic parsing (Gildea and Jurafsky,
2002) and QA (Pasca and Harabagiu, 2001) litera-
tures. However, work in statistical parsing has for
the most part put these needs aside, being content to
recover surface context-free (CF) phrase structure
trees. This perhaps reflects the fact that context-free
phrase structure grammar (CFG) is in some sense
at the the heart of the majority of both formal and
computational syntactic research. Although, upon
introducing it, Chomsky (1956) rejected CFG as an
adequate framework for natural language descrip-
tion, the majority of work in the last half century

has used context-free structural descriptions and re-
lated methodologies in one form or another as an
important component of syntactic analysis. CFGs
seem adequate to weakly generate almost all com-
mon natural language structures, and also facilitate
a transparentpredicate-argument and/or semantic
interpretation for the more basic ones (Gazdar et al.,
1985). Nevertheless, despite their success in pro-
viding surface phrase structure analyses, if statisti-
cal parsers and the representations they produce do
not provide a useful stepping stone to recovering the
hidden relationships, they will ultimately come to
be seen as a dead end, and work will necessarily re-
turn to using richer formalisms.

In this paper we attempt to establish to what de-
gree current statistical parsers are a useful step in
analysis by examining the performance of further
statistical classifiers on non-local dependency re-
covery from CF parse trees. The natural isomor-
phism from CF trees to dependency trees induces
only local dependencies, derived from the head-
sister relation in a CF local tree. However, if the
output of a context-free parser can be algorithmi-
cally augmented to accurately identify and incor-
porate nonlocal dependencies, then we can say that
the context-free parsing model is asafe approxima-
tion to the true task of dependency reconstruction.
We investigate the safeness of this approximation,
devising an algorithm to reconstruct non-local de-
pendencies from context-free parse trees using log-
linear classifiers, tested on treebanks of not only En-
glish but also German, a language with much freer
word order and correspondingly more discontinuity
than English. This algorithm can be used as an in-
termediate step between the surface output trees of
modern statistical parsers and semantic interpreta-
tion systems for a variety of tasks.1

1Many linguistic and technical intricacies are involved in
the interpretation and use of non-local annotation structure
found in treebanks. A more complete exposition of the work
presented here can be found in Levy (2004).
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Figure 1: Example of empty and nonlocal annota-
tions from the Penn Treebank of English, including
null complementizers (0), relativization (*T*-1 ), right-
extraposition (*ICH*-2 ), and syntactic control (*-3).

1.1 Previous Work
Previous work on nonlocal dependency has focused
entirely on English, despite the disparity in type and
frequency of various non-local dependency con-
structions for varying languages (Kruijff, 2002).
Collins (1999)’s Model 3 investigated GPSG-style
trace threading for resolving nonlocal relative pro-
noun dependencies. Johnson (2002) was the first
post-processing approach to non-local dependency
recovery, using a simple pattern-matching algorithm
on context-free trees. Dienes and Dubey (2003a,b)
and Dienes (2003) approached the problem by pre-
identifying empty categories using an HMM on un-
parsed strings and threaded the identified empties
into the category structure of a context-free parser,
finding that this method compared favorably with
both Collins’ and Johnson’s. Traditional LFG pars-
ing, in both non-stochastic (Kaplan and Maxwell,
1993) and stochastic (Riezler et al., 2002; Kaplan
et al., 2004) incarnations, also divides the labor of
local and nonlocal dependency identification into
two phases, starting with context-free parses and
continuing by augmentation with functional infor-
mation.

2 Datasets
The datasets used for this study consist of the Wall
Street Journal section of the Penn Treebank of En-
glish (WSJ) and the context-free version of the
NEGRA (version 2) corpus of German (Skut et al.,
1997b). Full-size experiments on WSJ described in
Section 4 used the standard sections 2-21 for train-
ing, 24 for development, and trees whose yield is
under 100 words from section 23 for testing. Ex-
periments described in Section 4.3 used the same
development and test sets but files 200-959 of WSJ
as a smaller training set; for NEGRA we followed
Dubey and Keller (2003) in using the first 18,602
sentences for training, the last 1,000 for develop-

ment, and the previous 1,000 for testing. Consistent
with prior work and with common practice in statis-
tical parsing, we stripped categories of all functional
tags prior to training and testing (though in several
cases this seems to have been a limiting move; see
Section 5).

Nonlocal dependency annotation in Penn Tree-
banks can be divided into three major types:unin-
dexed emptyelements,dislocations, and control.
The first type consists primarily of null complemen-
tizers, as exemplified in Figure 1 by the null rela-
tive pronoun0 (c.f. aspectsthat it sees), and do not
participate in (though they may mediate) nonlocal
dependency. The second type consists of adislo-
cated elementcoindexed with anorigin site of se-
mantic interpretation, as in the association in Fig-
ure 1 of WHNP-1 with the direct object position
of sees(a relativization), and the association of S-
2 with the ADJPquick (a right dislocation). This
type encompasses the classic cases of nonlocal de-
pendency: topicalization, relativization,wh- move-
ment, and right dislocation, as well as expletives and
other instances of non-canonical argument position-
ing. The third type involvescontrol loci in syntac-
tic argument positions, sometimes coindexed with
overt controllers, as in the association of the NP
Farmerswith the empty subject position of the S-
2 node. (An example of a control locus with no
controller would be [S NP-* [ VP Eating ice cream]]
is fun.) Controllers are to be interpreted as syntac-
tic (and possibly semantic) arguments both in their
overt position and in the position of loci they con-
trol. This type encompasses raising, control, pas-
sivization, and unexpressed subjects ofto- infinitive
and gerund verbs, among other constructions.2

NEGRA’s original annotation is as dependency
trees with phrasal nodes, crossing branches, and
no empty elements. However, the distribution in-
cludes a context-free version produced algorithmi-
cally by recursively remapping discontinuous parts
of nodes upward into higher phrases and marking
their sites of origin.3 The resulting “traces” cor-
respond roughly to a subclass of the second class
of Penn Treebank empties discussed above, and in-
cludewh- movement, topicalization, right extrapo-
sitions from NP, expletives, and scrambling of sub-

2Four of the annotation errors in WSJ lead to uninter-
pretable dislocation and sharing patterns, including failure to
annotate dislocations corresponding to marked origin sites, and
mislabelings of control loci as origin sites of dislocationthat
lead to cyclic dislocations (which are explicitlyprohibited in
WSJ annotation guidelines). We corrected these errors manu-
ally before model testing and training.

3For a detailed description of the algorithm for creating the
context-free version of NEGRA, see Skut et al. (1997a).
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“The RMV will not begin to be formed for a long time.”

Figure 2: Nonlocal dependencies via right-extraposition
(*T1* ) and topicalization (*T2* ) in the NEGRA cor-
pus of German, before (top) and after (bottom) transfor-
mation to context-free form. Dashed lines show where
nodes go as a result of remapping into context-free form.

jects after other complements. The positioning of
NEGRA’s “traces” inside the mother node is com-
pletely algorithmic; a dislocated constituent C has
its trace at the edge of the original mother closest
to C’s overt position. Given a context-free NEGRA
tree shorn of its trace/antecedent notation, however,
it is far from trivial to determine which nodes are
dislocated, and where they come from. Figure 2
shows an annotated sentence from the NEGRA cor-
pus with discontinuities due to right extraposition
(*T1* ) and topicalization (*T2* ), before and after
transformation into context-free form with traces.

3 Algorithm
Corresponding to the three types of empty-element
annotation found in the Penn Treebank, our algo-
rithm divides the process of CF tree enhancement
into three phases. Each phase involves the identifi-
cation of a certain subset of tree nodes to be oper-
ated on, followed by the application of the appro-
priate operation to the node. Operations may in-
volve the insertion of a category at some position
among a node’s daughters; the marking of certain
nodes as dislocated; or the relocation of dislocated
nodes to other positions within the tree. The content
and ordering of phases is consistent with the syntac-
tic theory upon which treebank annotation is based.
For example, WSJ annotates relative clauses lacking
overt relative pronouns, such as the SBAR in Fig-
ure 1, with a trace in the relativization site whose
antecedent is an empty relative pronoun. This re-
quires that empty relative pronoun insertion precede
dislocated element identification. Likewise, dislo-
cated elements can serve as controllers of control
loci, based on theiroriginating site, so it is sensible

to return dislocated nodes to their originating sites
before identifying control loci and their controllers.
For WSJ, the three phases are:

1. (a) Determine nodes at which to insert null
COMPlementizers4 (IDENTNULL )

(b) For eachCOMP insertion node, determine
position of each insertion and insertCOMP

(INSERTNULL )

2. (a) Classify each tree node as +/-DISLOCATED

(IDENTMOVED)

(b) For eachDISLOCATED node, choose anORI-
GIN node (RELOCMOVED)

(c) For each pair〈DISLOCATED,origin〉, choose
a position of insertion and insertdislocated
(INSERTRELOC)

3. (a) Classify each node as +/- controlLOCUS

(IDENTLOCUS)

(b) For eachLOCUS, determine position of inser-
tion and insertLOCUS (INSERTLOCUS)

(c) For eachLOCUS, determineCONTROLLER(if
any) (FINDCONTROLLER)

Note in particular that phase 2 involves the classifi-
cation of overt tree nodes as dislocated, followed
by the identification of an origin site (annotated
in the treebank as an empty node) for each dislo-
cated element; whereas phase 3 involves the iden-
tification of (empty) control locifirst, and of con-
trollers later. This approach contrasts with John-
son (2002), who treats empty/antecedent identifi-
cation as a joint task, and with Dienes and Dubey
(2003a,b), who always identify empties first and de-
termine antecedents later. Our motivation is that it
should generally be easier to determine whether an
overt element is dislocated than whether a given po-
sition is the origin of some yet unknown dislocated
element (particularly in the absence of a sophisti-
cated model of argument expression); but control
loci are highly predictable from local context, such
as the subjectless non-finite S in Figure 1’s S-2.5 In-
deed this difference seems to be implicit in the non-
local feature templates used by Dienes and Dubey
(2003a,b) in their empty element tagger, in partic-
ular lookback forwh- words preceding a candidate
verb.

As described in Section 2, NEGRA’s nonlocal
annotation schema is much simpler, involving no

4The WSJ contains a number of SBARs headed by empty
complementizers with trace S’s. These SBARs are introduced
in our algorithm as projections of identified empty complemen-
tizers as daughters of non-SBAR categories.

5Additionally, whereas dislocated nodes are always overt,
control loci may be controlled by other (null) control loci,
meaning that identifying controllers before control loci would
still entail looking for nulls.
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uncoindexed empties or control loci. Correspond-
ingly, our NEGRA algorithm includes only phase
2 of the WSJ algorithm, step (c) of which is trivial
for NEGRA due to the deterministic positioning of
trace insertion in the treebank.

In each case we use a loglinear model for node
classification, with a combination of quadratic reg-
ularization and thresholding by individual feature
count to prevent overfitting. In the second and third
parts of phases 2 and 3, when determining an orig-
inating site or controller for a given node N, or
an insertion position for a node N′ in N, we use a
competition-based setting, using a binary classifica-
tion (yes/no for association with N) on each node in
the tree, and during testing choosing the node with
the highest score for positive association with N.6

All other phases of classification involve indepen-
dent decisions at each node. In phase 3, we include
a special zero node to indicate a control locus with
no antecedent.

3.1 Feature templates

Each subphase of our dependency reconstruction al-
gorithm involves the training of a separate model
and the development of a separate feature set. We
found that it was important to include both a variety
of general feature templates and a number of manu-
ally designed, specialized features to resolve spe-
cific problems observed for individual classifiers.
We developed all feature templates exclusively on
the training and development sets specified in Sec-
tion 2.

Table 1 shows which general feature templates
we used in each classifier. The features are

6The choice of a unique origin site makes our algorithm un-
able to deal with right-node raising or parasitic gaps. Cases
of right-node raising could be automatically transformed into
single-origin dislocations by making use of a theory of coordi-
nation such as Maxwell and Manning (1996), while parasitic
gaps could be handled with the introduction of a secondary
classifier. Both phenomena are low-frequency, however, and
we ignore them here.
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TAG X X

HD X

CAT×MCAT ⊗ X

CAT×MCAT×GCAT X X X

CAT×HD×MCAT×MHD ⊗
CAT×TAG×MCAT×MTAG ⊗
CAT×TAG X X

CAT×HD ⊗
(FIRST/LAST)CAT X X

(L/RSIS)CAT X X

DPOS×CAT X

PATH X X

CAT×RCAT X

TAG×RCAT X

CAT×TAG×RCAT X

CAT×RCAT×DPOS X

HD×RHD ⊗
CAT×HD×RHD X

CAT×DCAT X X X X

MHD×HD ⊗
# Special 9 0 11 0 0 12 0 3

Table 1: Shared feature templates. See text for template
descriptions. # Special is the number of special templates
used for the classifier.⊗ denotes that all subsets of the
template conjunction were included.

coded as follows. The prefixes{∅,M ,G,D,R} in-
dicate that the feature value is calculated with re-
spect to the node in question, its mother, grand-
mother, daughter, orrelative node respectively.7

{CAT,POS,TAG,WORD} stand for syntactic cate-
gory, position (of daughter) in mother, head tag, and
head word respectively. For example, when deter-
mining whether an infinitival VP is extraposed, such
as S-2 in Figure 1, the plausibility of the VP head
being a deep dependent of the head verb is captured
with the MHD×HD template. (FIRST/LAST)CAT

and (L/RSIS)CAT are templates used for choosing
the position to insert insert relocated nodes, respec-
tively recording whether a node of a given category
is the first/last daughter, and the syntactic category
of a node’s left/right sisters. PATH is the syntac-
tic path between relative and base node, defined as
the list of the syntactic categories on the (inclusive)
node path linking the relative node to the node in
question, paired with whether the step on the path
was upward or downward. For example, in Figure
2 the syntactic path from VP-1 to PP is [↑-VP,↑-
S,↓-VP,↓-PP]. This is a crucial feature for the rel-
ativized classifiers RELOCATEMOVED and FIND-
CONTROLLER; in an abstract sense it mediates the
gap-threading information incorporated into GPSG-

7The relative node is DISLOCATED in RELOCMOVED and
LOCUS in FINDCONTROLLER.



Gold trees Parser output
Jn Pres Jn DD Pres

NP-* 62.4 75.3 55.6 (69.5) 61.1
WH-t 85.1 67.6 80.0 (82.0) 63.3
0 89.3 99.6 77.1 (48.8) 87.0
SBAR 74.8 74.7 71.0 73.8 71.0
S-t 90 93.3 87 84.5 83.6

Table 2: Comparison with previous work using John-
son’s PARSEVAL metric. Jn is Johnson (2002); DD is
Dienes and Dubey (2003b); Pres is the present work.

style (Gazdar et al., 1985) parsers, and in concrete
terms it closely matches the information derived
from Johnson (2002)’s connected local tree set pat-
terns. Gildea and Jurafsky (2002) is to our knowl-
edge the first use of such a feature for classification
tasks on syntactic trees; they found it important for
the related task of semantic role identification.

We expressed specialized hand-coded feature
templates as tree-matching patterns that capture a
fragment of the content of the pattern in the fea-
ture value. Representative examples appear in Fig-
ure 3. The italicized node is the node for which
a given feature is recorded; underscoresindi-
cate variables that can match any category; and the
angle-bracketed parts of the tree fragment, together
with an index for the pattern, determine the feature
value.8

4 Evaluation
4.1 Comparison with previous work
Our algorithm’s performance can be compared with
the work of Johnson (2002) and Dienes and Dubey
(2003a) on WSJ. Valid comparisons exist for the
insertion of uncoindexed empty nodes (COMP and
ARB-SUBJ), identification of control and raising
loci (CONTROLLOCUS), and pairings of dislo-
cated and controller/raised nodes with their origins
(DISLOC,CONTROLLER). In Table 2 we present
comparative results, using the PARSEVAL-based
evaluation metric introduced by Johnson (2002) – a
correct empty category inference requires thestring
positionof the empty category, combined with the
left and right boundaries plus syntactic category of
the antecedent, if any, for purposes of compari-
son.9,10 Note that this evaluation metric does not re-
quire correct attachment of the empty category into

8A complete description of feature templates can be found
at http://nlp.stanford.edu/˜rog/acl2004/templates/index.html

9For purposes of comparability with Johnson (2002) we
used Charniak’s 2000 parser asP .

10Our algorithm was evaluated on a more stringent standard
for NP-* than in previous work: control loci-related mappings
were done after dislocated nodes were actually relocated bythe
algorithm, so an incorrect dislocation remapping can render in-
correct the indices of a correctNP-* labeled bracketing. Addi-
tionally, our algorithm does not distinguish the syntacticcate-

P CF P A ◦ P J ◦ P D G A ◦ G J ◦ G

Overall 91.2 87.6 90.5 90.0 88.3 95.7 99.4 98.5
NP 91.6 89.9 91.4 91.2 89.4 97.9 99.8 99.6
S 93.3 83.4 91.2 89.9 89.2 89.0 98.0 96.0
VP 91.2 87.3 90.2 89.6 88.0 95.2 99.0 97.7
ADJP 73.1 72.8 72.9 72.8 72.5 99.7 99.6 98.8
SBAR 94.4 66.7 89.3 84.9 85.0 72.6 99.4 94.1
ADVP 70.1 69.7 69.5 69.7 67.7 99.4 99.4 99.7

Table 3: Typed dependency F1 performance when com-
posed with statistical parser.PCF is parser output eval-
uated by context-free (shallow) dependencies; all oth-
ers are evaluated on deep dependencies.P is parser,G
is string-to-context-free-gold-tree mapping,A is present
remapping algorithm,J is Johnson 2002,D is the COM-
BINED model of Dienes 2003.

the parse tree. In Figure 1, for example, WHNP-
1 could be erroneously remapped to the right edge
of any S or VP node in the sentence without result-
ing in error according to this metric. We therefore
abandon this metric in further evaluations as it is
not clear whether it adequately approximates perfor-
mance in predicate-argument structure recovery.11

4.2 Composition with a context-free parser
If we think of a statistical parser as a function from
strings to CF trees, and the nonlocal dependency
recovery algorithmA presented in this paper as a
function from trees to trees, we can naturallycom-
poseour algorithm with a parserP to form a func-
tion A ◦ P from strings to trees whose dependency
interpretation is, hopefully, an improvement over
the trees fromP .

To test this idea quantitatively we evaluate perfor-
mance with respect to recovery oftyped dependency
relations between words. A dependency relation,
commonly employed for evaluation in the statistical
parsing literature, is defined at a node N of a lexi-
calized parse tree as a pair〈wi, wj〉 wherewi is the
lexical head of N andwj is the lexical head of some
non-head daughter of N. Dependency relations may
further be typed according to information at or near
the relevant tree node; Collins (1999), for exam-
ple, reports dependency scores typed on the syn-
tactic categories of the mother, head daughter, and
dependent daughter, plus on whether the dependent
precedes or follows the head. We present here de-
pendency evaluations where the gold-standard de-
pendency set is defined by theremapped tree, typed

gory of null insertions, whereas previous work has; as a result,
the null complementizer class 0 and WH-t dislocation class are
aggregates of classes used in previous work.

11Collins (1999) reports 93.8%/90.1% precision/recall in his
Model 3 for accurate identification of relativization site in non-
infinitival relative clauses. This figure is difficult to compare
directly with other figures in this section; a tree search indi-
cates that non-infinitival subjects make up at most 85.4% of the
WHNP dislocations in WSJ.



Performance on gold trees Performance on parsed trees
ID Rel Combo ID Combo

P R F1 Acc P R F1 P R F1 P R F1
WSJ(full) 92.0 82.9 87.2 95.0 89.6 80.1 84.6 34.5 47.6 40.0 17.8 24.3 20.5
WSJ(sm) 92.3 79.5 85.5 93.3 90.4 77.2 83.2 38.0 47.3 42.1 19.7 24.3 21.7
NEGRA 73.9 64.6 69.0 85.1 63.3 55.4 59.1 48.3 39.7 43.6 20.9 17.2 18.9

Table 4: Cross-linguistic comparison of dislocated node identification and remapping. ID is correct identification
of nodes as +/– dislocated; Rel is relocation of node to correct mother given gold-standard data on which nodes are
dislocated (only applicable for gold trees); Combo is both correct identification and remapping.

by syntactic category of the mother node.12 In Fig-
ure 1, for example,to would be an ADJP dependent
of quick rather than a VP dependent ofwas; and
Farmerswould be an S dependent both ofto in to
point out . . . and ofwas. We use the head-finding
rules of Collins (1999) to lexicalize trees, and as-
sume that null complementizers do not participate
in dependency relations. To further compare the re-
sults of our algorithm with previous work, we ob-
tained the output trees produced by Johnson (2002)
and Dienes (2003) and evaluated them on typed de-
pendency performance. Table 3 shows the results of
this evaluation. For comparison, we include shal-
low dependency accuracy for Charniak’s parser un-
derPCF.

4.3 Cross-linguistic comparison

In order to compare the results of nonlocal depen-
dency reconstruction between languages, we must
identify equivalence classes of nonlocal dependency
annotation between treebanks. NEGRA’s nonlocal
dependency annotation is quite different from WSJ,
as described in Section 2, ignoring controlled and
arbitrary unexpressed subjects. The natural basis
of comparison is therefore the set of all nonlocal
NEGRA annotations against all WSJ dislocations,
excluding relativizations (defined simply as dislo-
catedwh-constituents under SBAR).13

Table 4 shows the performance comparison be-
tween WSJ and NEGRA of IDENTDISLOC and RE-
LOCMOVED, on sentences of 40 tokens or less.
For this evaluation metric we use syntactic cate-
gory and left & right edges of (1) dislocated nodes
(ID); and (2) originating mother node to which dis-
located node is mapped (Rel). Combo requires both
(1) and (2) to be correct. NEGRA is smaller than
WSJ (∼350,000 words vs. 1 million), so for fair

12Unfortunately, 46 WSJ dislocation annotations in this test-
set involve dislocated nodes dominating their origin sites. It
is not entirely clear how to interpret the intended semantics of
these examples, so we ignore them in evaluation.

13The interpretation of comparative results must be modu-
lated by the fact that more total time was spent on feature en-
gineering for WSJ than for NEGRA, and the first author, who
engineered the NEGRA feature set, is not a native speaker of
German.

comparison we tested WSJ using the smaller train-
ing set described in Section 2, comparable in size
to NEGRA’s. Since the positioning of traces within
NEGRA nodes is trivial, we evaluate remapping and
combination performances requiring only proper se-
lection of the originating mother node; thus we
carry the algorithm out on both treebanks through
step (2b). This is adequate for purposes of our
typed dependency evaluation in Section 4.2, since
typed dependencies do not depend on positional in-
formation. State-of-the-art statistical parsing is far
better on WSJ (Charniak, 2000) than on NEGRA
(Dubey and Keller, 2003), so for comparison of
parser-composed dependency performance we used
vanilla PCFG models for both WSJ and NEGRA
trained on comparably-sized datasets; in addition to
making similar types of independence assumptions,
these models performed relatively comparably on
labeled bracketing measures for our development
sets (73.2% performance for WSJ versus 70.9% for
NEGRA).

Table 5 compares the testset performance of al-
gorithms on the two treebanks on the typed depen-
dency measure introduced in Section 4.2.14

5 Discussion
The WSJ results shown in Tables 2 and 3 suggest
that discriminative models incorporating both non-
local and local lexical and syntactic information can
achieve good results on the task of non-local depen-
dency identification. On the PARSEVAL metric,
our algorithm performed particularly well on null
complementizer and control locus insertion, and on
S node relocation. In particular, Johnson noted that
the proper insertion of control loci was a difficult
issue involving lexical as well as structural sensitiv-
ity. We found the loglinear paradigm a good one
in which to model this feature combination; when
run in isolation on gold-standard development trees,
our model reached 96.4% F1 on control locus inser-
tion, reducing error over the Johnson model’s 89.3%

14Many head-dependent relations in NEGRA are explicitly
marked, but for those that are not we used a Collins (1999)-
style head-finding algorithm independently developed for Ger-
man PCFG parsing.



PCF P A ◦ P G A ◦ G

WSJ(full) 76.3 75.4 75.7 98.7 99.7
WSJ(sm) 76.3 75.4 75.7 98.7 99.6
NEGRA 62.0 59.3 61.0 90.9 93.6

Table 5: Typed dependency F1 performance when com-
posed with statistical parser. Remapped dependencies
involve only non-relativization dislocations and exclude
control loci.

by nearly two-thirds. The performance of our algo-
rithm is also evident in the substantial contribution
to typed dependency accuracy seen in Table 3. For
gold-standard input trees, our algorithm reduces er-
ror by over 80% from the surface-dependency base-
line, and over 60% compared with Johnson’s re-
sults. For parsed input trees, our algorithm reduces
dependency error by 23% over the baseline, and by
5% compared with Johnson’s results. Note that the
dependency figures of Dienes lag behind even the
parsed results for Johnson’s model; this may well
be due to the fact that Dienes built his model as
an extension of Collins (1999), which lags behind
Charniak (2000) by about 1.3-1.5%.

Manual investigation of errors on English gold-
standard data revealed two major issues that suggest
further potential for improvement in performance
without further increase in algorithmic complexity
or training set size. First, we noted that annotation
inconsistency accounted for a large number of er-
rors, particularly false positives. VPs from which an
S has been extracted ([SShut up,] he [VP said t] ) are
inconsistently given an empty SBAR daughter, sug-
gesting the cross-model low-70’s performance on
null SBAR insertion models (see Table 2) may be
a ceiling. Control loci were often under-annotated;
the first five development-set false positive control
loci we checked were all due to annotation error.
And why-WHADVPs under SBAR, which are al-
ways dislocations, were not so annotated 20% of the
time. Second, both control locus insertion and dis-
located NP remapping must be sensitive to the pres-
ence of argument NPs under classified nodes. But
temporal NPs, indistinguishable by gross category,
also appear under such nodes, creating a major con-
found. We used customized features to compensate
to some extent, but temporal annotation already ex-
ists in WSJ and could be used. We note that Klein
and Manning (2003) independently found retention
of temporal NP marking useful for PCFG parsing.

As can be seen in Table 3, the absolute improve-
ment in dependency recovery is smaller for both
our and Johnson’s postprocessing algorithms when
applied to parsed input trees than when applied to
gold-standard input trees. It seems that this degra-
dation isnotprimarily due to noise in parse tree out-

puts reducing recall of nonlocal dependency iden-
tification: precision/recall splits were largely the
same between gold and parsed data, and manual
inspection revealed that incorrect nonlocal depen-
dency choices often arose from syntactically rea-
sonable yet incorrect input from the parser. For
example, the gold-standard parseright-wing whites
. . .will [VP step up[NP their threats[S [VP * to take
matters into their own hands]]]] has an unindexed
control locus because Treebank annotation specifies
that infinitival VPs inside NPs are not assigned con-
trollers. Charniak’s parser, however, attaches the in-
finitival VP into the higherstep up . . .VP. Infinitival
VPs inside VPs generallydo receive controllers for
their null subjects, and our algorithm accordingly
yet mistakenly assignsright-wing-whitesas the an-
tecedent.

The English/German comparison shown in Ta-
bles 4 and 5 is suggestive, but caution is necessary
in its interpretation due to the fact that differences
in both language structure and treebank annotation
may be involved. Results in theG column of Ta-
ble 5, showing the accuracy of the context-free de-
pendency approximation from gold-standard parse
trees, quantitatively corroborates the intuition that
nonlocal dependency is more prominent in German
than in English.

Manual investigation of errors made on German
gold-standard data revealed two major sources of er-
ror beyond sparsity. The first was a widespread am-
biguity of S and VP nodes within S and VP nodes;
many true dislocations of all sorts are expressed at
the S and VP levels in CFG parse trees, such as VP-
1 of Figure 2, but many adverbial and subordinate
phrases of S or VP category are genuine dependents
of the main clausal verb. We were able to find a
number of features to distinguish some cases, such
as the presence of certain unambiguous relative-
clause introducing complementizers beginning an S
node, but much ambiguity remained. The second
was the ambiguity that some matrix S-initial NPs
are actually dependents of the VP head (in these
cases, NEGRA annotates the finite verb as the head
of S and the non-finite verb as the head of VP). This
is not necessarily a genuine discontinuity per se,
but rather corresponds to identification of the sub-
ject NP in a clause. Obviously, having access to
reliable case marking would improve performance
in this area; such information is in fact included in
NEGRA’s morphological annotation, another argu-
ment for the utility of involving enhanced annota-
tion in CF parsing.

As can be seen in the right half of Table 4, per-
formance falls off considerably on vanilla PCFG-



parsed data. This fall-off seems more dramatic than
that seen in Sections 4.1 and 4.2, no doubt partly
due to the poorer performance of the vanilla PCFG,
but likely also because only non-relativization dis-
locations are considered in Section 4.3. These dis-
locations often require non-local information (such
as identity of surface lexical governor) for identifi-
cation and are thus especially susceptible to degra-
dation in parsed data. Nevertheless, seemingly dis-
mal performance here still provided a strong boost
to typed dependency evaluation of parsed data, as
seen inA ◦ P of Table 5. We suspect this indicates
that dislocated terminals are being usefully iden-
tified and mapped back to their proper governors,
even if the syntactic projections of these terminals
and governors are not being correctly identified by
the parser.

6 Further Work
Against the background of CFG as the standard
approximation of dependency structure for broad-
coverage parsing, there are essentially three op-
tions for the recovery of nonlocal dependency. The
first option is to postprocess CF parse trees, which
we have closely investigated in this paper. The
second is to incorporate nonlocal dependency in-
formation into thecategorystructure of CF trees.
This was the approach taken by Dienes and Dubey
(2003a,b) and Dienes (2003); it is also practiced
in recent work on broad-coverage CCG parsing
(Hockenmaier, 2003). The third would be to in-
corporate nonlocal dependency information into the
edgestructure parse trees, allowing discontinuous
constituency to be explicitly represented in the parse
chart. This approach was tentatively investigated
by Plaehn (2000). As the syntactic diversity of
languages for which treebanks are available grows,
it will become increasingly important to compare
these three approaches.
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