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Abstract has used context-free structural descriptions and re-

We present a linguistically-motivated algorithm for reeon lated methodologies in one form or another as an

structing nonlocal dependency in broad-coverage coritegt- important component of syntactic analysis. CFGs
parse trees derived from treebanks. We use an algorithnd baseseem adequate to weakly generate almost all com-

on loglinear C'ass,”ierz to aUQCaneI”t, and relshalp% Contf.;t'fr,emon natural language structures, and also facilitate
trees so as to reintroduce under Ying noniocal depencaencie . _ .
lost in the context-free approximation. We find that our algo a transparentpredicate-argument and/or semantic

fithm compares favorably with prior work on English using an Inteérpretation for the more b?‘SiC ones (Gazdar_ etal.,
existing evaluation metric, and also introduce and argu@fo 1985). Nevertheless, despite their success in pro-
new dependency-based evaluation metric. By this new evalyiding surface phrase structure analyses, if statisti-

uation metric our algorithm achieves 60% error reduction on ;
gold-standard input trees and 5% error reduction on state-o cal parsers and the representations they produce do

the-art machine-parsed input trees, when compared with ’[hQ_Ot provide a usef_UI stepping _Ston(f:' to recovering the
best previous work. We also present the first results on nonhidden relationships, they will ultimately come to
local dependency reconstruction for a language other timan E pe seen as a dead end, and work will necessarily re-
glish, comparing performance on English and German. Oukyrn to using richer formalisms.

new evaluation metric quantitatively corroborates theitian
that in a language with freer word order, the surface depende
cies in context-free parse trees are a poorer approximétion
underlying dependency structure.

In this paper we attempt to establish to what de-
gree current statistical parsers are a useful step in
analysis by examining the performance of further
1 Introduction statistical classifiers on non-local depende_ncy re-

covery from CF parse trees. The natural isomor-
While parsers are been used for other purposes, thghism from CF trees to dependency trees induces
primary motivation for syntactic parsing is as anonly local dependencies, derived from the head-
aid to semantic interpretation, in pursuit of broadersjster relation in a CF local tree. However, if the
goals of natural language understanding. Propogytput of a context-free parser can be algorithmi-
nents of traditional ‘deep’ or ‘precise’ approachesca|ly augmented to accurately identify and incor-
to syntax, such as GB, CCG, HPSG, LFG, or TAG,porate nonlocal dependencies, then we can say that
have argued that sophisticated grammatical forihe context-free parsing model issafe approxima-
malismS are essential to rESOIVing Val’iOUS h|dden reﬁon to the true task Of dependency reconstruction.
lationships such as the source phrase of mavied e investigate the safeness of this approximation,
phrases in questions and relativizations, or the congevising an algorithm to reconstruct non-local de-
trO”er Of Clauses IW|th0ut an .Overt. Sub.Je(?t. KnOWI' pendencies from Context_free parse trees using |Og_
edge of these hidden relationships is in turn estinear classifiers, tested on treebanks of not only En-
sential to semantic interpretation of the kind prac-glish but also German, a language with much freer
ticed in the semantic parsing (Gildea and Jurafskyyord order and correspondingly more discontinuity
2002) and QA (Pasca and Harabagiu, 2001) literathan English. This algorithm can be used as an in-
tures. However, work in statistical parsing has fortermediate step between the surface output trees of

the most part put these needs aside, being content faodern statistical parsers and semantic interpreta-
recover surface context-free (CF) phrase structurgon systems for a variety of tasks.

trees. This perhaps reflects the fact that context-free

phrase structure grammar (CFG) is in some sense

at the the heart of the majority of both formal and

computational syntactic research. Although, upon—; —— o , ,
Many linguistic and technical intricacies are involved in

introducing it, Chomsky (1956) rejected CFG as a.mthe interpretation and use of non-local annotation strectu

?-dequate fre_lm_ework for n_atural language descriptound in treebanks. A more complete exposition of the work
tion, the majority of work in the last half century presented here can be found in Levy (2004).




- N ment, and the previous 1,000 for testing. Consistent
! ~ | with prior work and with common practice in statis-

NNP VBD  ADJP NP S-2 . . . . -

Faersuns 7% M N Ve tical parsing, we s_trlpped categories of aIIf_unctlonal

QUickICH2 yesterday 3T6 VP tags prior to training and testing (though in several
o VEPRT WP cases this seems to have been a limiting move; see

po‘imR‘P NET | EEAR Section 5).
[N T~ . .
outbT NN WHNPL S Nonlocal dependency annotation in Penn Tree-
theproplems 0 NP YR banks can be divided into three major typestin-
PRPVBZ NP

R dexed emptyelements,dislocations and control.
it sees*T*-1 . . . .
The first type consists primarily of null complemen-
Figure 1: Example of empty and nonlocal annota-tizers, as exemplified in Figure 1 by the null rela-
tions from the Penn Treebank of English, includingtive pronounO (c.f. aspectghat it see$, and do not
null complementizersQ), relativization {T*-1), right-  participate in (though they may mediate) nonlocal

extraposition{ICH*-2), and syntactic controt¢3). dependency. The second type consists dlsio-
cated elementoindexed with arorigin site of se-
1.1 PreviousWork mantic interpretation, as in the association in Fig-

Previous work on nonlocal dependency has focused® 1 0f WHNP-1 with the direct object position

entirely on English, despite the disparity in type and®f S€es(@ relativization), and the association of S-
frequency of various non-local dependency con2 With the ADJPquick (a right dislocation). This

structions for varying languages (Kruijff, 2002). type encompasses th_e classic_ cases of nonlocal de-
Collins (1999)'s Model 3 investigated GPSG-style Pendency: topicalization, relativizationjh- move-
trace threading for resolving nonlocal relative pro-Ment, andright dislocation, as well as expletives and
noun dependencies. Johnson (2002) was the firgther instances of n_on-canonlcal argument position-
post-processing approach to non-local dependenc{?d- The third type involvesontrol lociin syntac-
recovery, using a simple pattern-matching algorithm{iC argument positions, sometimes coindexed with
on context-free trees. Dienes and Dubey (2003a,22vert controllers as in the association of the NP

and Dienes (2003) approached the problem by pr -armerswith the empty subject position of the S-

identifying empty categories using an HMM on un- 2 Node. (An example of a control locus with no
ontroller would be § NP-* [ yp Eating ice creani]

parsed strings and threaded the identified emptieS )
into the category structure of a context-free parserS fun) Controllers are to be interpreted as syntac-

finding that this method compared favorably with tic (and possibly semantic) arguments both in their
both Collins’ and Johnson’s. Traditional LFG pars- OV€rt position and in the position of loci they con-
ing, in both non-stochastic (Kaplan and Maxwell, Irol- This type encompasses raising, control, pas-
1993) and stochastic (Riezler et al., 2002; Kaplar?'v'zat'on’ and unexpressed subjectaaoeflnf!nmve

et al., 2004) incarnations, also divides the labor of2Nd gérund verbs, among other (_:onstructl%)ns.

local and nonlocal dependency identification into NEGRAS original annotation is as dependency
two phases, starting with context-free parses an§f€es with phrasal nodes, crossing branches, and
continuing by augmentation with functional infor- NO €mpty elements. However, the distribution in-

mation. cludes a context-free version produced algorithmi-
cally by recursively remapping discontinuous parts
2 Datasets of nodes upward into higher phrases and marking

The datasets used for this study consist of the Waﬁhe'r sites of origir? The resulting “traces” cor-
respond roughly to a subclass of the second class

Street Journal section of the Penn Treebank of En- . ) )

. : of Penn Treebank empties discussed above, and in-
glish (WSJ) and the context-free version of the ST .

X cludewh- movement, topicalization, right extrapo-
NEGRA (version 2) corpus of German (Skut et al"sitions from NP, expletives, and scrambling of sub-
1997b). Full-size experiments on WSJ described in » €XP ' 9
_Sectlon 4 used the standard sections 2-21 fo.r tra|_n- 2Four of the annotation errors in WSJ lead to uninter-
ing, 24 for development, and trees WhOS_e yield isyretable dislocation and sharing patterns, includingifaitto
under 100 words from section 23 for testing. EX-annotate dislocations corresponding to marked origits sited
periments described in Section 4.3 used the sammislabelings of control loci as origin sites of dislocatithrat
development and test sets but files 200-959 of WSIJEad to cycllc_ dlsloc_:atlc_)ns (which are explicitpyrohibited in
ller training set: for NEGRA we followed WSJ annotation gwdglmes). Wg gorrected these errors manu

as a sma 9 v . . ally before model testing and training.
Dubey and Ke"er_ (_2003) in using the first 18,602 “skqr a detailed description of the algorithm for creating the
sentences for training, the last 1,000 for develop-<context-free version of NEGRA, see Skut et al. (1997a).
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- e to return dislocated nodes to their originating sites

4 VAFIN VP $, $. . i . . .
T A | before identifying control loci and their controllers.
ADV/Nl,'—’\ADJD PROAV begonnen' , VP For WSJ’ the three phases are:
| PR | | —
Frst ADJA NN spater damit A 1. (a) Determine nodes at which to insert null
lange. zeit ART NE PTICU WINF compPlementizer$ (IDENTNULL)
d RMV haff . . .
« s (b) For eachcomp insertion node, determine
° position of each insertion and insezcbmp
/AP-zN VAI‘:IN VP s‘s. VP-1 s‘s. (| NSERTNU |_|_)
ADV NP ADID wird *T2* PP VVPR— NP vz 2. (a) Classify each tree node as BISLOCATED
[ AN | wil S \ PN Y
Erst ADJA NN spater PROAV*T1* begonnen ART NE PTKZU VVINF (| DENTM OVED)
not until | | later | be begun | | ‘ |
lange Zeit damit denRMV  zu schaffen (b) For eaclDISLOCATED nOde, choose aaRi-
long time with it the RMV to form

GIN node (RELOCMOVED)

(c) For each paifDISLOCATED,origin), choose
Figure 2: Nonlocal dependencies via right-extraposition a position of insertion and insedislocated
(*T1*) and topicalization {T2*) in the NEGRA cor- (INSERTRELOC)
pus of German, before (top) and after (bottom) transfor- 3
mation to context-free form. Dashed lines show where
nodes go as a result of remapping into context-free form.

“The RMV will not begin to be formed for a long time.”

(a) Classify each node as +/- contmobcus
(IDENTLOCUY)

(b) For each.ocus, determine position of inser-
tion and insertocus (INSERTLOCUS)

(c) Foreach.ocus, determinecONTROLLER (if
any) (FNDCONTROLLER)

jects after other complements. The positioning of
NEGRA's “traces” inside the mother node is com-
pletely algorithmic; a dislocated constituent C has
its trace at the edge of the original mother closesiNote in particular that phase 2 involves the classifi-
to C's overt position. Given a context-free NEGRA cation of overt tree nodes as dislocated, followed
tree shorn of its trace/antecedent notation, howevehy the identification of an origin site (annotated
it is far from trivial to determine which nodes are in the treebank as an empty node) for each dislo-
dislocated, and where they come from. Figure 2cated element; whereas phase 3 involves the iden-
shows an annotated sentence from the NEGRA cottification of (empty) control locfirst, and of con-
pus with discontinuities due to right extraposition trollers later. This approach contrasts with John-
(*T1*) and topicalization XT2*), before and after son (2002), who treats empty/antecedent identifi-
transformation into context-free form with traces. cation as a joint task, and with Dienes and Dubey
(2003a,b), who always identify empties first and de-
3 Algorithm termine antecedents later. Our motivation is that it

Corresponding to the three types of empty-elemen?homd generally be easier to determine whether an

annotation found in the Penn Treebank. our algo_overt element is dislocated than whether a given po-

rithm divides the process of CF tree enhancemengition is the origin of some yet unknown dislocated

into three phases. Each phase involves the identif€/€ment (particularly in the absence of a sophisti-
cated model of argument expression); but control

cation of a certain subset of tree nodes to be oper®

ated on, followed by the application of the appro- loci are highly predictab_le_ fron_1 qual context, such
priate operation to the node. Operations may inS the subjectless non-finite S in Figure 1's 348

volve the insertion of a category at some positiondeed this difference seems to be irr_lplicit in the non-
among a node’s daughters: the marking of certairfiocal feature templates used by Dienes and Dubey

nodes as dislocated; or the relocation of dislocated20032,0) in their empty element tagger, in partic-
nodes to other positions within the tree. The content!lar l00kback forwh-words preceding a candidate
and ordering of phases is consistent with the syntac/er®: L . ,

tic theory upon which treebank annotation is based. AS described in Section 2, NEGRA's nonlocal
For example, WSJ annotates relative clauses lackingnotation schema is much simpler, involving no
overt relative pronouns, such as the SBAR in Fig-  +the wsJ contains a number of SBARs headed by empty
ure 1, with a trace in the relativization site whosecomplementizers with trace S’s. These SBARs are introduced
antecedent is an empty relative pronoun. This reinouralgorithm as projections of identified empty compleme
quires that empty relative pronoun insertion precedélZe;;(?;t?:#agrtexhgrggg -;Zﬁ(?af:éegggzjare always overt
dislocated element identification. Likewise, dislo- control loci mg;/ be controlled by other (null) contrgl loci, ’
cated elements can serve as controllers of contrgheaning that identifying controllers before control locwid
loci, based on theioriginating site so it is sensible  still entail looking for nulls.




IDENTMOVED s Expletive dislocation s O " 5
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IDENTLOCUS s VP-internal context Feature type 3 23 8 238 2 ¢
\ to determine null TAG v v
VP .
| subjecthood Hbp v
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INSERTNULLS s 7w Possible null com- CAT xMCAT x GCAT v v v
o plementizer (records CAT xHDxMCAT x MHD ®
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every S in sentence) CAT X TAG v v
CATxHD &
Figure 3: Different classifiers’ specialized tree-matchin EF/'RET/;-éST)CAT j j
H L/RSIS)CAT
fragments and their purposes DPomx Car y
PATH v v
ind d fi trol loci. C d CAT xRCAT v
uncoindexed empties or control loci. Correspond- 1,g, gcar Y
ingly, our NEGRA algorithm includes only phase CarxTacxRCAT v
2 of the WSJ algorithm, step (c) of which is trivial ﬁgTXRFLCDATXDPOS . 4
.. - apn . X
for NEGRA due to the deterministic positioning of  cxr, HpxrHo v
trace insertion in the treebank. CAT X DCAT v v v v

In each case we use a loglinear model for node MHDxHD ©
wp . . . . . # Special 9 0 11 0 0 12 0 3

classification, with a combination of quadratic reg-
ularization and thresholding by individual feature Table 1: Shared feature templates. See text for template
count to prevent overfitting. In the second and thirddescriptions. # Special is the number of special templates
parts of phases 2 and 3, when determining an origused for the classifierx denotes that all subsets of the
inating site or controller for a given node N, or template conjunction were included.
an insertion position for a node’h N, we use a

competition-based setting, using a binary classificaz,qeq as follows. The prefixef),M,G,0,R} in-
tion (yes/no for association with N) on each node Ngjicate that the feature value is calculated with re-
the tree, and during testing choosmg the no<_:ie Wltl’épect to the node in question, its mother, grand-
the highest score for positive association witl$ N. mother, daughter, orelative node respectively.
All other phases of classification involve indepen- (~,: pos Tag WORD! stand for syntactic cate-
dent d(_90|5|ons at each _noc_zle. In phase 3, we |ncIl_Jd ory, position (of daughter) in mother, head tag, and
a special zero node to indicate a control locus W'thnead word respectively. For example, when deter-
no antecedent. mining whether an infinitival VP is extraposed, such
3.1 Featuretemplates as S-2 in Figure 1, the plausibility of the VP head

. eing a deep dependent of the head verb is captured
Each subphase of our dependency reconstruction iith the MHD xHD template. (FRST/LAST)CAT
gorithm involves the training of a separate model nd (/RSIS)CAT are templates used for choosing
and the de_velopment of a separate feature set. e position to insert insert relocated nodes, respec-
found that it was important to include both avarlety,[ively recording whether a node of a given category

of general feature templates and a number of manyz e firsy/iast daughter, and the syntactic category
ally designed, specialized features to resolve spe

i bl b d for individual classifi of a node’s left/right sisters. A?H is the syntac-
cimc problems observed for indiviaual ClassHlers. ;. path between relative and base node, defined as

We deygloped all feature templates exc_:l_usw_ely Nhe list of the syntactic categories on the (inclusive)

the training and development sets specified in Secﬁode path linking the relative node to the node in

tion 2. ) question, paired with whether the step on the path
Table 1 shows which general feature templatesy 55 ypward or downward. For example, in Figure

we used in each classifier. The features are 4o syntactic path from VP-1 to PP is-YP,]-
5The choice of a unique origin site makes our algorithm un-S»/-VP,[-PP]. This is a crucial feature for the rel-

able to deal with right-node raising or parasitic gaps. €ase ativized classifiers RLOCATEMOVED and HND-

of right-node raising could be automatically transformethi CONTROLLER; in an abstract sense it mediates the

single-origin dislocations by making use of a theory of cor _ N i inn i i _
nation such as Maxwell and Manning (1996), while parasiticgap threading information incorporated into GPSG
gaps could be handled with the introduction of a secondary.
classifier. Both phenomena are low-frequency, however, and The relative node is BLOCATED in RELOCMOVED and
we ignore them here. Locusin FINDCONTROLLER.




Gold trees Parser output Pcgp P AoP JoP D G AoG JoG

Jn Pres Jn DD Pres Overall | 91.2] 87.6 90.5 90.0 88.3] 95.7 99.4 98.5

NP-* | 62.4| 75.3| 55.6| (69.5) | 61.1 NP 91.6]89.9 914 912 89.4[ 979 998 99.6
WH-t | 85.1| 67.6 || 80.0| (82.0) | 63.3 S 93.3 834 912 89.9 89.2/89.0 980 96.0
0 89.3|99.6| 77.1| (48.8) | 87.0 VP 91.287.3 902 89.6 88.0/95.2 990 97.7
SBAR | 74.8 | 74.7|| 71.0| 73.8| 71.0 ADJP | 73.1| 728 729 728 725|99.7 996 98.8
St 90 | 93.3 87| 84.5|83.6 SBAR [ 94.4| 66.7 893 849 850|726 994 941
ADVP | 70.1| 69.7 69.5 69.7 67.7| 99.4 99.4 99.7

Table 2: Comparison with previous work using John-
son’s PARSEVAL metric. Jn is Johnson (2002); DD is Table 3: Typed dependency F1 performance when com-

Dienes and Dubey (2003b); Pres is the presentwork. Posed with statistical parsefic - is parser output eval-
uated by context-free (shallow) dependencies; all oth-

. ers are evaluated on deep dependenciess parser
style (Gazdar et al., 1985) parsers, and in concretg string-to-context-free-gold-tree mappingjs present

terms it closely matches the information derivedemapping algorithm/ is Johnson 2002 is the Gom-
from Johnson (2002)’s connected local tree set pats;nep model of Dienes 2003.

terns. Gildea and Jurafsky (2002) is to our knowl-
edge the first use of such a feature for classificationne parse tree. In Figure 1, for example, WHNP-

tasks on syntactic trees; they fou_nd it_i_mpc_>rtant for{ could be erroneously remapped to the right edge
the related task of semantic role identification. of any S or VP node in the sentence without result-
We expressed specialized hand-coded featurgg in error according to this metric. We therefore

templates as tree-matching patterns that capture ghandon this metric in further evaluations as it is
fragment of the content of the pattern in the fea-nqt clear whether it adequately approximates perfor-

ture value. Representative examples appear in Fignance in predicate-argument structure recodry.
ure 3. The italicized node is the node for which

a given feature is recorded; underscoresindi- 4.2 Composition with a context-free parser

cate variables that can match any category; and thi we think of a statistical parser as a function from
angle-bracketed parts of the tree fragment, togethestrings to CF trees, and the nonlocal dependency
with an index for the pattern, determine the featurerecovery algorithmA presented in this paper as a

value® function from trees to trees, we can naturailym-

) poseour algorithm with a parseP to form a func-
4 Evaluation tion A o P from strings to trees whose dependency
4.1 Comparison with previouswork interpretation is, hopefully, an improvement over

Our algorithm’s performance can be compared withthe trees fromP.

the work of Johnson (2002) and Dienes and Dubey To test this idea quantitatively we evaluate perfor-
(2003a) on WSJ. Valid comparisons exist for themance with respect to recoverytyped dependency
insertion of uncoindexed empty nodesq(@p and  relations between words. A dependency relation,
ARB-SUBJ), identification of control and raising commonly employed for evaluation in the statistical
loci (ConTROLLOCUS), and pairings of dislo- Parsing literature, is defined at a node N of a lexi-
cated and controller/raised nodes with their originscalized parse tree as a péiv;, w;) wherew; is the
(DISLOC,CONTROLLER). In Table 2 we present lexical head of N andb; is the lexical head of some
comparative results, using the PARSEVAL-basedlon-head daughter of N. Dependency relations may
evaluation metric introduced by Johnson (2002) — durther be typed according to information at or near
correct empty category inference requiresstiing ~ the relevant tree node; Collins (1999), for exam-
position of the empty category, combined with the Ple, reports dependency scores typed on the syn-
left and right boundaries plus syntactic category oftactic categories of the mother, head daughter, and
the antecedent, if any, for purposes of compari-dependent daughter, plus on whether the dependent
son?-10 Note that this evaluation metric does not re-precedes or follows the head. We present here de-

quire correct attachment of the empty category intd*eéndency evaluations where the gold-standard de-
pendency set is defined by tremapped tregtyped

8A complete description of feature templates can be found

at http://nlp.stanford.edu/"rog/acl2004/templates/irdegml gory of null insertions, whereas previous work has; as dtiesu
°For purposes of comparability with Johnson (2002) we the null complementizer class 0 and Widlislocation class are
used Charniak’s 2000 parser Bs aggregates of classes used in previous work.

100ur algorithm was evaluated on a more stringent standard *'Collins (1999) reports 93.8%/90.1% precision/recall is hi
for NP-* than in previous work: control loci-related mappings Model 3 for accurate identification of relativization siterion-
were done after dislocated nodes were actually relocatéleby infinitival relative clauses. This figure is difficult to comme
algorithm, so an incorrect dislocation remapping can reivde  directly with other figures in this section; a tree search-ind
correct the indices of a corremp-* labeled bracketing. Addi- cates that non-infinitival subjects make up at most 85.4%ef t
tionally, our algorithm does not distinguish the syntactéte-  WHNP dislocations in WSJ.



Performance on gold trees Performance on parsed trees

ID Rel Combo ID Combo
P R F1 Acc P R F1 P R F1 P R F1
WSJ(full) [ 92.0] 82.9] 87.2[] 95.0[] 89.6| 80.1] 84.6 [ 34.5] 47.6] 40.0 17.8] 24.3| 20.5
WSJ(sm) | 92.3| 79.5| 85.5| 93.3|| 90.4| 77.2| 83.2|| 38.0| 47.3| 42.1 | 19.7| 24.3| 21.7
NEGRA | 73.9| 64.6| 69.0| 85.1| 63.3| 55.4| 59.1| 48.3| 39.7 | 43.6| 20.9| 17.2| 18.9

Table 4: Cross-linguistic comparison of dislocated nodmidication and remapping. ID is correct identification
of nodes as +/— dislocated; Rel is relocation of node to com®ther given gold-standard data on which nodes are
dislocated (only applicable for gold trees); Combo is batfrect identification and remapping.

by syntactic category of the mother notfeln Fig-  comparison we tested WSJ using the smaller train-
ure 1, for exampleto would be an ADJP dependent ing set described in Section 2, comparable in size
of quick rather than a VP dependent was and to NEGRA'. Since the positioning of traces within
Farmerswould be an S dependent bothtofin to  NEGRA nodes is trivial, we evaluate remapping and
point out ... and ofwas We use the head-finding combination performances requiring only proper se-
rules of Collins (1999) to lexicalize trees, and as-lection of the originating mother node; thus we
sume that null complementizers do not participatecarry the algorithm out on both treebanks through
in dependency relations. To further compare the restep (2b). This is adequate for purposes of our
sults of our algorithm with previous work, we ob- typed dependency evaluation in Section 4.2, since
tained the output trees produced by Johnson (2002yped dependencies do not depend on positional in-
and Dienes (2003) and evaluated them on typed ddermation. State-of-the-art statistical parsing is far
pendency performance. Table 3 shows the results dietter on WSJ (Charniak, 2000) than on NEGRA
this evaluation. For comparison, we include shal-(Dubey and Keller, 2003), so for comparison of
low dependency accuracy for Charniak’s parser unparser-composed dependency performance we used
der Pcg. vanilla PCFG models for both WSJ and NEGRA
L ) trained on comparably-sized datasets; in addition to
4.3 Crosslinguistic comparison making similar types of independence assumptions,
In order to compare the results of nonlocal depenthese models performed relatively comparably on
dency reconstruction between languages, we musébeled bracketing measures for our development
identify equivalence classes of nonlocal dependencgets (73.2% performance for WSJ versus 70.9% for
annotation between treebanks. NEGRA's nonlocaNEGRA).

dependency annotation is quite different from WSJ, Table 5 compares the testset performance of al-
as described in Section 2, ignoring controlled andgorithms on the two treebanks on the typed depen-
arbitrary unexpressed subjects. The natural basigency measure introduced in Section 2.

of comparison is therefore the set of all nonlocal

NEGRA annotations against all WSJ dislocations,5 Discussion

excluding relativizations (defined simply as dislo- The WSJ results shown in Tables 2 and 3 suggest
catedwh- constituents under SBARY. that discriminative models incorporating both non-
Table 4 shows the performance comparison betgcal and local lexical and syntactic information can
tween WSJ and NEGRA obENTDISLOCand RE- achieve good results on the task of non-local depen-
LOCMOVED, on sentences of 40 tokens or less.dency identification. On the PARSEVAL metric,
For this evaluation metric we use syntactic cate-oyr algorithm performed particularly well on null
gory and left & right edges of (1) dislocated nodescomplementizer and control locus insertion, and on
(ID); and (2) originating mother node to which dis- 5 node relocation. In particular, Johnson noted that
located node is mapped (Rel). Combo requires botlhe proper insertion of control loci was a difficult
(1) and (2) to be correct. NEGRA is smaller thanjssye involving lexical as well as structural sensitiv-
WSJ (~350,000 words vs. 1 million), so for fair ity \We found the loglinear paradigm a good one
2Unfortunately, 46 WSJ dislocation annotations in this-test n V\I_hlph to.mOdEI this feature combination; when
set involve dislocated nodes dominating their origin sites  'UN i isolation on gold-standard development trees,
is not entirely clear how to interpret the intended semargic ~ Our model reached 96.4% F1 on control locus inser-

these examples, so we ignore them in evaluation. tion, reducing error over the Johnson model’s 89.3%

BThe interpretation of comparative results must be modu-
lated by the fact that more total time was spent on feature en- *Many head-dependent relations in NEGRA are explicitly
gineering for WSJ than for NEGRA, and the first author, who marked, but for those that are not we used a Collins (1999)-
engineered the NEGRA feature set, is not a native speaker aftyle head-finding algorithm independently developed fer-G
German. man PCFG parsing.




Pecp P AoP G AoG i iden-
wsiy (705 75T s Tro8Teer) ot e Ll Spits were largely the
WSJ(sm) | 76.3 | 75.4| 75.7|98.7| 99.6 :

NEGRA | 62.0( 59.3| 61.0| 90.9| 93.6 same between gold and parsed data, and manual
inspection revealed that incorrect nonlocal depen-

Table 5: Typed dependency F1 performance when comgency choices often arose from syntactically rea-

posed with statistical parser. Remapped dependencieg,nahje yet incorrect input from the parser. For

Ln(;/r?:r\i)el I(())r(l:liy non-relativization dislocations and exclude example, the gold-standard parght-wing whites

' will [Vp step Up[Np their threats[s [Vp * to take
matters into their own handg]] has an unindexed
control locus because Treebank annotation specifies
that infinitival VPs inside NPs are not assigned con-
%ollers. Charniak’s parser, however, attaches the in-

by nearly two-thirds. The performance of our algo-
rithm is also evident in the substantial contribution
to typed dependency accuracy seen in Table 3. F

gold-standard input trees, our algorithm reduces ®lfinitival VP into the highestep up .. VP. Infinitival

ror by over 80% from the surface—o_lependency,base\-/PS inside VPs generallgo receive controllers for
line, and over 60% compared with Johnson’s re-

. X their null subjects, and our algorithm accordingly
sults. For parsed input trees, our algorithm reduceg mistakenly assignsght-wing-whitesas the an-
dependency error by 23% over the baseline, and b bcedent.

5% compared with Johnson’s results. Note that the . . .
dependency figures of Dienes lag behind even th The English/German comparison shown in Ta-

parsed results for Johnson’s model; this may wel Igs 4 and 5 is _suggestive, but caution is. necessary
be due to the fact that Dienes built his model ag" it interpretation due to the fact that differences

an extension of Collins (1999), which lags behing!" both language structure and treebank annotation
Charniak (2000) by about 1 3_1’ 5% may be involved. Results in thé column of Ta-

Manual investigation of errors on English gold- ble 3 showing the act(;ura](cy of th(ladcclnteéd-fgee de-
standard data revealed two major issues that suggeg?n ency approximation from goid-standard parse
further potential for improvement in performance wrees, quantitatively C(_)rroborates the '”W'“O” that
without further increase in algorithmic complexity Neniocal dependency is more prominent in German

or training set size. First, we noted that annotationthan in English.
inconsistency accounted for a large number of er- Manual investigation of errors made on German
rors, particularly false positives. VPs from which an gold-standard data revealed two major sources of er-
S has been extractefsShut up,] he {p saidt]) are  ror beyond sparsity. The first was a widespread am-
inconsistently given an empty SBAR daughter, sugiguity of S and VP nodes within S and VP nodes;
gesting the cross-model low-70's performance orimany true dislocations of all sorts are expressed at
null SBAR insertion models (see Table 2) may bethe S and VP levels in CFG parse trees, such as VP-
a ceiling. Control loci were often under-annotated;1 of Figure 2, but many adverbial and subordinate
the first five development-set false positive controlPhrases of S or VP category are genuine dependents
loci we checked were all due to annotation error.0f the main clausal verb. We were able to find a
And whyWHADVPs under SBAR, which are al- number of features to distinguish some cases, such
ways dislocations, were not so annotated 20% of th@s the presence of certain unambiguous relative-
time. Second, both control locus insertion and dis-clause introducing complementizers beginning an S
located NP remapping must be sensitive to the preg?ode, but much ambiguity remained. The second
ence of argument NPs under classified nodes. Buvas the ambiguity that some matrix S-initial NPs
temporal NPs, indistinguishable by gross categoryare actually dependents of the VP head (in these
also appear under such nodes, creating a major cofases, NEGRA annotates the finite verb as the head
found. We used customized features to compensa@f S and the non-finite verb as the head of VP). This
to some extent, but temporal annotation already exiS not necessarily a genuine discontinuity per se,
ists in WSJ and could be used. We note that Kleinput rather corresponds to identification of the sub-
and Manning (2003) independently found retentioniect NP in a clause. Obviously, having access to
of temporal NP marking useful for PCFG parsing. reliable case marking would improve performance
As can be seen in Table 3, the absolute improvein this area; such information is in fact included in
ment in dependency recovery is smaller for bothNEGRA's morphological annotation, another argu-
our and Johnson’s postprocessing algorithms wheRent for the utility of involving enhanced annota-
applied to parsed input trees than when applied téion in CF parsing.
gold-standard input trees. It seems that this degra- As can be seen in the right half of Table 4, per-
dation isnot primarily due to noise in parse tree out- formance falls off considerably on vanilla PCFG-



parsed data. This fall-off seems more dramatic tharthomsky, N. (1956). Three models for the description of lan-
that seen in Sections 4.1 and 4.2, no doubt partly %;ZQGJRE Transactions on Information Theoi(3):113-
glljteI;[I(()etlgea?so(;)fgc%irégrrgr?l;cﬁo?lggg X&ZQJSOE%T‘S Collins, M. (1999).!—|ead-Driveq StatigticallModels for Naturgl

) - ] . "~ Language ParsingPhD thesis, University of Pennsylvania.
locations are considered in Section 4.3. These dispienes, P. (2003).Statistical Parsing with Non-local Depen-
locations often require non-local information (such dencies PhD thesis, Saarland University.
as identity of surface lexical governor) for identifi- Dienes, P. and Dubey, A. (2003a). Antecedent recovery: Ex-
cation and are thus especially susceptible to degra=. Pe"ments with a trace tagger. Rroceedings of EMNLP

. . ienes, P. and Dubey, A. (2003b). Deep processing by com-
dation in parsed data. Nevertheless, seemingly dis-" i shallow methods. IRroceedings of ACL

mal performance here still prc_)vided a strong boospupey, A. and Keller, F. (2003). Parsing German with sister-
to typed dependency evaluation of parsed data, as head dependencies. Rioceedings of ACL
seen inAd o P of Table 5. We suspect this indicates Gazdar, G., Klein, E., Pullum, G., and Sag, I. (1985gneral-

; ; ; ; _ ized Phrase Structure Grammadarvard.
that dislocated terminals are being usefully iden Gildea, D. and Jurafsky, D. (2002). Automatic labeling of se

tified and mapped back to their proper governors, mantic roles.Computational Linguistic28(3):245-288.

even if the syntactic proje_ctions of the_se te_rminalaﬁockenmaier, J. (2003PData and models for Statistical Pars-
and governors are not being correctly identified by ing with Combinatory Categorial GrammarPhD thesis,

the parser. University of Edinburgh.
Johnson, M. (2002). A simple pattern-matching algorithm fo
6 Further Work recovering empty nodes and their antecedentfroceed-
ings of ACL volume 40.

Against the baCkground Of CFG as the Standa.l’d(apkinl R., Riez|er, S, King7 T.H., Maxwe”’ J. T., Vassam
approximation of dependency structure for broad- A., and Crouch, R. (2004). Speed and accuracy in shallow
coverage parsing’ there are essentia”y three op- and deep stochastic parsing.Rroceedings of NAACL

tions for the recovery of nonlocal dependency. The@Pian, R. M. and Maxwell, J. T. (1993). The interface be-
. . . . tween phrasal and functional constraint€omputational
first option is to postprocess CF parse trees, which Linguistics 19(4):571—590.

we have closely investigated in this paper. Thexlein, D. and Manning, C. D. (2003). Accurate unlexicalized
second is to incorporate nonlocal dependency in- parsing. InProceedings of ACL

formation into thecategorystructure of CF trees. Kruiiff, G.-J. (2002). Learning linearization _rules

: : from treebanks. Invited talk at the Formal
This was the approach taken by Dienes and Dubey Grammar'02/COLOGNET-ELSNET Symposium.

(2003a,b) and Dienes (2003); it is also practiced ey, r. (2004) Probabilistic Models of Syntactic Discontinu-
in recent work on broad-coverage CCG parsing ity. PhD thesis, Stanford University. In progress.

(Hockenmaier, 2003). The third would be to in- Maxwell, J. T. and Manning, C. D. (1996). A theory of non-
corporate nonlocal dependency information into the constituent coordination based on finite-state rules. Iti,Bu

. . . M. and King, T. H., editorsProceedings of LFG
edgestructure parse ”.e?S’ allowing dIS.Contmuou asca, M. and Harabagiu, S. M. (2001). High performance
constituency to be explicitly represented in the parse - q,estion/answering. IRroceedings of SIGIR
chart. This approach was tentatively investigatedplaehn, 0. (2000). Computing the most probable parse for a
by Plaehn (2000). As the syntactic diversity of discontinuous phrase structure grammarPtaceedings of
languages for which treebanks are available grows, 'WPT, Trento, Italy.

S
. . . . . Riezler, S., King, T. H., Kaplan, R. M., Crouch, R. S., Maxlyel
it will become increasingly important to compare J. T., and Johnson, M. (2002). Parsing the Wall Street Jour-

these three approaches. nal using a Lexical-Functional Grammar and discriminative
estimation techniques. IRroceedings of ACLpages 271—
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