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Abstract proaches to coreference resolution have performed
Knowledge of the anaphoricity of a noun phrasereasonably well without anaphoricity dett_ermlnatlon

. . . (e.g., Soon et al. (2001), Ng and Cardie (2002b),
might be profitably exploited by a coreference SYSStrube and Milller (2003), Yang et al. (2003)). Nev-
tem to bypass the resolution of non-anaphoric noun ' j i

phrases. Perhaps surprisingly, recent attempts t%rtheless, there is empirical evidence that resolution

incorporate automatically acquired anaphoricity in->YStems might further be improved with anaphoric-

formation into coreference systems, however, hav tgn']n:ﬁir;?:ig}' li:é)ér:gﬁin;% ggtrezg:je;ﬁ{e%crenfgﬁ'
led to the degradation in resolution performance. y y

. . : . non-anaphoric common nouns in the absence of
This paper examines several key issues in com- b

puting and using anaphoricity information to im- angphorlcnly_mf:)hr_matlon (Ng z;md_ Cardie, |2002f"‘)-
prove learning-based coreference systems. In par- ur-goai In this paper IS 1o Improve iearning-
ticular, we present a new corpus-based approach ased coreference systems using automatically

anaphoricity determination. Experiments on threecomputed anaphoricity information. In particular,

standard coreference data sets demonstrate the &f€ €xamine two |_m_portant, ygt Ie}rgely unexplored,
fectiveness of our approach. Issues in anaphoricity determination for coreference

resolution:representation andoptimization.
Constraint-based vs. feature-based representa-
tion. How should the computed anaphoricity
Noun phrase coreference resolution, the task of deinformation be used by a coreference system?
termining which noun phrases (NPs) in a text referFrom a linguistic perspective, knowledge of non-
to the same real-world entity, has long been conanaphoricity is most naturally represented as “by-
sidered an important and difficult problem in nat- passing” constraints, with which the coreference
ural language processing. Identifying the linguis-system bypasses the resolution of NPs that are deter-
tic constraints on when two NPs can co-refer re-mined to be non-anaphoric. But for learning-based
mains an active area of research in the commueoreference systems, anaphoricity information can
nity. One significant constraint on coreference, thebe simply and naturally accommodated into the ma-
non-anaphoricity constraint, specifies that a non- chine learning framework by including it as a fea-
anaphoric NP cannot be coreferent with any of itsture in the instance representation.
preceding NPs in a given text. Local vs. global optimization.  Should the
Given the potential usefulness of knowledgeanaphoricity determination procedure be developed
of (non-)anaphoricity for coreference resolution,independently of the coreference system that uses
anaphoricity determination has been studied fairlythe computed anaphoricity information (local opti-
extensively. One common approach involves themization), or should it be optimized with respect
design of heuristic rules to identify specific typesto coreference performance (global optimization)?
of (non-)anaphoric NPs such as pleonastic pro-The principle of software modularity calls for local
nouns (e.g., Paice and Husk (1987), Lappin and Leeptimization. However, if the primary goal is to im-
ass (1994), Kennedy and Boguraev (1996), Denprove coreference performance, global optimization
ber (1998)) and definite descriptions (e.g., Vieiraappears to be the preferred choice.
and Poesio (2000)). More recently, the problem Existing work on anaphoricity determination
has been tackled using unsupervised (e.g., Bean aridr anaphora/coreference resolution can be char-
Riloff (1999)) and supervised (e.g., Evans (2001),acterized along these two dimensions. Inter-
Ng and Cardie (2002a)) approaches. estingly, most existing work employs constraint-
Interestingly, existing machine learning ap- based, locally-optimized methods (e.g., Mitkov et

1 Introduction



al. (2002) and Ng and Cardie (2002a)), leavingone of ANAPHORIC Or NOT ANAPHORIC — is de-
the remaining three possibilities largely unexplored.rived from coreference chains in the training doc-
In particular, to our knowledge, there have beenuments. Specifically, gositive instance is created
no attempts to (1) globally optimize an anaphoric-for each NP that is involved in a coreference chain
ity determination procedure for coreference perfor-but is not the head of the chain. msgative instance
mance and (2) incorporate anaphoricity into coreferis created for each of the remaining NPs.
ence systems as a feature. Consequently, as part applying the classifier. To determine the
our investigation, we propose a new corpus-basednaphoricity of an NP in a test document, an
method for achieving global optimization and ex- instance is created for it as during training and pre-
periment with representing anaphoricity as a featurgented to the anaphoricity classifier, which returns
in the coreference system. a value ofANAPHORIC OF NOT ANAPHORIC.

In particular, we systematically evaluate all four o
combinations of local vs. global optimization and 2-2 The Globally-Optimized Approach
constraint-based vs. feature-based representation & achieve global optimization, we construct a para-
anaphoricity information in terms of their effec- metric anaphoricity model with which we optimize
tiveness in improving a learning-based coreferencéhe parametérfor coreference accuracy on held-
system. Results on three standard coreferenceut development data. In other words, we tighten
data sets are somewhat surprising: our proposethe connection between anaphoricity determination
globally-optimized method, when used in conjunc-and coreference resolution by using the parameter
tion with the constraint-based representation, outto generate a set of anaphoricity models from which
performs not only the commonly-adopted locally- we select the one that yields the best coreference
optimized approach but also its seemingly more natperformance on held-out data.
ural feature-based counterparts. Global optimization for a constraint-based rep-

The rest of the paper is structured as follows.resentation. We view anaphoricity determination
Section 2 focuses on optimization issues, dis-as a problem of determining howonservative an
cussing locally- and globally-optimized approachesanaphoricity model should be in classifying an NP
to anaphoricity determination. In Section 3, we as (non-)anaphoric. Given a constraint-based repre-
give an overview of the standard machine learningsentation of anaphoricity information for the coref-
framework for coreference resolution. Sections 4erence system, if the model is too liberal in classi-
and 5 present the experimental setup and evaluatiolying an NP as non-anaphoric, then many anaphoric
results, respectively. We examine the features thatiPs will be misclassified, ultimately leading to a de-
are important to anaphoricity determination in Sec-terioration of recall and of the overall performance

tion 6 and conclude in Section 7. of the coreference system. On the other hand, if the
o o model is too conservative, then only a small fraction
2 The Anaphoricity Determination of the truly non-anaphoric NPs will be identified,

System: Local vs. Global Optimization and so the resulting anaphoricity information may
In this section, we will show how to build a model Not be effective in improving the coreference sys-

of anaphoricity determination. We will first present t€m- The challenge then is to determine a “good”
the standard, locally-optimized approach and therfl€gree of conservativeness. As a result, we can de-

introduce our globally-optimized approach. sign a parametric anaphoricity model whose con-
servativeness can be adjusted vimaservativeness
2.1 The Locally-Optimized Approach parameter. To achieve global optimization, we can

In this approach, the anaphoricity model is sim-Simply tune this parameter to optimize for corefer-
ply a classifier that is trained and optimized inde-ence performance on held-out development data.

pendently of the coreference system (e.g., Evans Now, to implement this conservativeness-based
(2001), Ng and Cardie (2002a)). anaphoricity determination model, we propose two

Building a classifier for anaphoricity determina- methods, each of which is built upon a different def-

X . . ' ; . inition of conservativeness.

tion. A learning algorithm is used to train a classi- Method 1- Varving the Cost Ratio

fier that, given a description of an NP in a document, T fying . ]

decides whether or not the NP is anaphoric. EaclPur first method exploits a parameter present in
training instance represents a single NP and consist§any off-the-shelf machine learning algorithms for

of a set of features that are potentially useful for dis-— =, .2 inroduce multiple parameters for this purpose,

tingUi_S_hing anaphor_ic and non—ana}p_hori_c NPs. Th&yt to simply the optimization process, we will only conside
classification associated with a training instance —single-parameter models in this paper.




training a classifier — the cost ratier{), which is  anaphoricity models. Again, can be tuned using

defined as follows. held-out development data.
_ cost of misclassifying a positive instance Global optimization for a feature-based repre-
7= Cost of misclassifying anegative mstance  Sentation. We can similarly optimize our pro-

posed conservativeness-based anaphoricity model

Inspection of this definition shows that provides for coreference performance when anaphoricity in-
a means of adjusting the relative misclassificationformation is represented as a feature for the corefer-
penalties placed on training instances of differentence system. Unlike in a constraint-based represen-
classes. In particular, the largeris, the more con- tation, however, we cannot expect that the recall of
servative the classifier is in classifying an instancethe coreference system would increase with the con-
as negative (i.e., non-anaphoric). Given this obserservativeness parameter. The reason is that we have
vation, we can naturally define the conservativenesso control over whether or how the anaphoricity
of an anaphoricity classifier as follows. We say thatfeature is used by the coreference learner. In other
classifierA is more conservative than classifigin ~ words, the behavior of the coreference system is less
determining an NP as non-anaphoricdifis trained  predictable in comparison to a constraint-based rep-
with a higher cost ratio thar. resentation. Other than that, the conservativeness-

Based on this definition of conservativeness, webased anaphoricity model is as good to use for
can construct an anaphoricity model parameterizeglobal optimization with a feature-based represen-
by cr. Specifically, the parametric model mapstation as with a constraint-based representation.
a given value ofcr to the anaphoricity classifier  \We conclude this section by pointing out that the
trained with this cost ratio. (For the purpose of train-|ocally-optimized approach to anaphoricity deter-
ing anaphoricity classifiers with different values of mination is indeed a special case of the global one.
cr, we use RIPPER (Cohen, 1995), a propositionalunlike the global approach in which the conserva-
rule learning algorithm.) It should be easy to seetiveness parameter values are tuned based on la-
that increasingr makes the model more conserva- peled data, the local approach uses “default” param-
tive in classifying an NP as non-anaphoric. With eter values. For instance, when RIPPER is used to
this parametric model, we can tune to optimize  train an anaphoricity classifier in the local approach,
for coreference performance on held-out data.  ¢r is set to the default value of one. Similarly, when
Method 2: Varying the Classification Threshold probabilistic anaphoricity decisions generated via a
We can also define conservativeness in terms of th¥laxEnt model are converted to binary anaphoricity
number of NPs classified as non-anaphoric for alecisions for subsequent use by a coreference sys-
given set of NPs. Specifically, given two anaphoric-tem,t is set to the default value of 0.5.
ity models A and B and a set of instancekto be
classified, we say that is more conservative than 3 The Machine Learning Framework for
B in determining an NP as non-anaphoriclitlas- Coreference Resolution

sifies fewer instances ihas non-anaphoric thall. e coreference system to which our automatically

Again, this definition is consistent with our intuition computed anaphoricity information will be applied
regarding conservativeness. _ ___implements the standard machine learning approach
We can now design a parametric anaphoricityy, coreference resolution combining classification

model based on this definition. First, we train 5nq clystering. Below we will give a brief overview
in a supervised fashion a probablistic model ofy hig standard approach. Details can be found in

anaphoricity P (c | i), wherei is an instance rep- gqoon et al. (2001) or Ng and Cardie (2002b).
resenting an NP and is one of the two possible

anaphoricity values. (In our experiments, we uselraining an NP coreference classifier. After a
maximum entropy classification (MaxEnt) (Berger Pre-processing step in which the NPs in a document
et al., 1996) to train this probability model.) Then, are automatically identified, a learning algorithm is
we can construct a parametric model making bi-used to train a classifier that, given a description of
nary anaphoricity decisions froms by introduc- two NPs in the document, decides whether they are
ing a threshold parametéras follows. Given a COREFERENTOrNOT COREFERENT

specifict (0 < t < 1) and a new instancé we Applying the classifier to create coreference
define an anaphoricity modal’} in which M% (i)  chains. Test texts are processed from left to right.
= NOT ANAPHORIC if and only if Po(c = NOT  Each NP encounteredir;, is compared in turn to
ANAPHORIC | i) > t. It should be easy to see that each preceding NRR. For each pair, a test in-
increasingt yields progressively more conservative stance is created as during training and is presented



to the learned coreference classifier, which returnis BNEWS [ NPAPER [ NWIRE
P Number of training text§ 216 76 130

a number between 0 and 1 that indicates the Iikgli- Number of test texts 51 17 29
hood that the two NPs are coreferent. The NP with E\flumber %f tr_al_?lglg insty 20567 | 21970 | 27338

; ikali |, (for anaphoricity
the hlg_hest corefgrence likelihood value among the {1 ver of training insts, 97036 | 148850 | 122168
preceding NPs with coreference class values above(for coreference)
0.5 is selected as the antecedentef, otherwise,

no antecedent is selected fom,.

Table 1: Statistics of the three ACE data sets
4 Experimental Setup

In Section 2, we examined how to construct locally-ACE provides much more labeled data for both
and globally-optimized anaphoricity models. Re-training and testing. However, OUI’_ system was set
call that, for each of these two types of models,UP to perform core_ference r_esolu_tlon according to
the resulting (non-)anaphoricity information can bethe MUC rules, which are fairly different from the
used by a learning-based coreference system eith&CE guidelines in terms of the identification of
as hard bypassing constraints or as a feature. Henc&arkables as well as evaluation schemes. Since our
given a coreference system that implements the twgd0@l is to evaluate the effect of anaphoricity infor-
step learning approach shown above, we will be ablénation on coreference resolution, we make no at-
to evaluate the four different combinations of com-te€mpt to modify our system to adhere to the rules
puting and using anaphoricity information for im- SPecifically designed for ACE.

proving the coreference system described in the in- The coreference corpus is composed of three data

troduction. Before presenting evaluation details, weSets made up of three different news sources: Broad-
will describe the experimental setup. cast News (BNEWS), Newspaper (NPAPER), and

Newswire (NWIRE). Statistics collected from these

X data sets are shown in Table 1. For each data set,
we use our learning-based coreference system (Ngq t14in an anaphoricity classifier and a coreference
and Cardie, 2002D). classifier on the (same) set of training texts and eval-

Features for anaphoricity determination. In a6 the coreference system on the test texts.
both the locally-optimized and the globally-

optimized approaches to anaphoricity determinatiors  Eyaluation

described in Section 2, an instance is represented by ) ) )

37 features that are specifically designed for distinIn this section, we will compare the effectiveness of
guishing anaphoric and non-anaphoric NPs. Spacfur approaches to anaphoricity determination (see
limitations preclude a description of these featuresthe introduction) in improving our baseline corefer-
see Ng and Cardie (2002a) for details. ence system.

Learning algorithms. ~ For training coreference 51 Coreference Without Anaphoricity

classifiers and locally-optimized anaphoricity mod- .
els. we use both RIPPER and MaxEnt as the unfS mentioned above, we use our coreference system

derlying learning algorithms. However, for training &S the baseline system where no explicit anaphoric-
ity determination system is employed. Results us-

globally-optimized anaphoricity models, RIPPER s, :
always used in conjunction with Method 1 and Max- N9 RIPPER and MaxEnt as the underlying learners
Ent with Method 2, as described in Section 2.2.  @ré shown in rows 1 and 2 of Table 2 where perfor-

In terms of setting learner-specific parametersmance is reported in terms of recall, precision, and

we use default values for all RIPPER parametertl,:'measure using the model-theoretic MUC scoring

unless otherwise stated. For MaxEnt, we alwaysprOgram (X?'ai” et al., 1995). W]!thGF‘;,”?PER' theS
train the feature-weight parameters with 100 iter-SYSteém achieves an F-measure of 56.3 for BNEWS,

ations of the improved iterative scaling algorithm 81-8 for NPAPER, and 51.7 for NWIRE. The per-

(Della Pietra et al., 1997), using a Gaussian priOIIormaPce f?f MaxEntSis c?jmparable todthat of RIE'
to prevent overfitting (Chen and Rosenfeld, 2000). "ER for the BNEWS and NPAPER data sets but

Data sets. We use the Automatic Content Ex- slightly worse for the NWIRE data set.
traction (ACE) Phase Il data sets.We choose 52 Coreference With Anaphoricity
ACE rather than the more widely-used MUC COr- 1y o Constraint-Based, Locally-Optimized

pus (MUC-6, 1995; MUC-7, 1998) simply because(CBLO) Approach. As mentioned before, in

2See http://wwmv itl.nist.gov/iad/894.01/  constraint-based approaches, the automatically
t est s/ ace for details on the ACE research program. computed non-anaphoricity information is used as

Coreference system. In all of our experiments,




System Variation BNEWS NPAPER NWIRE

Experiments| L R P F C R P F C R P F C
1 NoO RIP | 57.4  55.3 56.3 - 60.0 63.6 61.8 - 53.2 50.3 51.7 -
2 Anaphoricity | ME | 60.9 52.1 56.2 - 65.4 586 61.8 - 549 46.7 504 -
3 Constraint- | RIP | 425 77.2 548 cr=1 46.7 /9.3 588 cr=1 421 ©64.72 509 cr=1
4 Based, RIP | 45.4 728 559 +¢=05 |522 759 619 =05 | 369 615 46.1 t=05
5 Locally- ME | 444 769 56.3 c¢r=1 | 501 757 603 c¢r=1 | 439 63.0 517 cr=1
6 Optimized | ME | 47.3 708 56.7 ¢=0.5 |57.1 706 631 =05 | 38.1 60.0 46.6 =05
7 Feature- RIP | 53.5 ©61.3 57.2 cr=1 58.7 ©69.7 634 cr=1 54272 468 50.Z cr=1
8 Based, RIP | 58.3 583 583 =05 |635 57.0 601 =05 |634 353 453 =05
9 Locally- ME | 59.6 516 558 ¢r=1 | 656 579 615 c¢r=1 | 551 46.2 503 cr=1
10 Optimized | ME | 59.6 516 553 =05 |66.0 577 616 =05 | 549 46.7 504 =05
11 | Constraint- | RIP | 545 68.6 60.8 cr=b 584 688 632 cr=4 505 56.7 534 cr=3
12 Based, RIP | 54.1 67.1 59.9 ¢=0.7 | 56,5 68.1 61.7 ¢t=0.65| 50.3 53.8 52.0 t=0.7
13 Globally- ME | 548 629 585 c¢r=5 | 624 656 64.0. c¢r=3 | 522 57.0 545 cr=3
14 | Optimized | ME | 54.1 60.6 57.2 ¢=0.7 | 61.7 640 628 ¢=0.7 | 52.0 52.8 524 {=0.7
15 Feature- RIP | 60.8 56.1 584 c¢r=8 62.2 ©61.3 61.7 cr=6 546 494 51.9 c¢r=8
16 Based, RIP | 59.7 570 583 t=0.6 |63.6 59.1 613 ¢=0.8 |56.7 484 523 =07
17 Globally- ME | 59.9 51.0 554 ¢r=9 |665 571 614 cr=1 | 563 469 512 ¢r=10
18 Optimized | ME | 59.6 51.6 55.83 t=095| 659 575 614 ¢=095| 56.5 46.7 511 =05

Table 2: Results of the coreference systems using diffen@mtoaches to anaphoricity determination on the
three ACE test data settformation on whichLearner RIPPER orM axEnt) is used to train the coreference clas-
sifier, as well as performance results in termRetall,Precision,F-measure and the correspondibgnservativeness
parameter are provided whenever appropriate. The stroregest obtained for each data set is boldfaced. In addition
results that represent statistically significant gains @mghs with respect to the baseline are marked with an asteris
(*) and a daggeri(), respectively.

hard bypassing constraints, with which the corefer\Worse still, F-measure drops significantly in three
ence system attempts to resolve only NPs that theases.
anaphoricity classifier determines to be anaphoricThe Feature-Based, Locally-Optimized (FBLO)
As a result, we hypothesized that precision wouldApproach. The experimental setting employed
increase in comparison to the baseline system. Iiere is essentially the same as that in CBLO, ex-
addition, we expect that recall will drop owing to cept that anaphoricity information is incorporated
the anaphoricity classifier's misclassifications ofinto the coreference system as a feature rather than
truly anaphoric NPs. Consequently, overall per-as constraints. Specifically, each training/test coref-
formance is not easily predictable: F-measure willerence instance, v, v p,) (created fromnp and
improve only if gains in precision can compensatea preceding NANR) is augmented with a feature
for the loss in recall. whose value is the anaphoricity ®f; as computed
Results are shown in rows 3-6 of Table 2. Eachby the anaphoricity classifier.
row corresponds to a different combination of In general, we hypothesized that FBLO would
learners employed in training the coreference angberform better than the baseline: the addition of an
anaphoricity classifier. As mentioned in Section anaphoricity feature to the coreference instance rep-
2.2, locally-optimized approaches are a special casgesentation might give the learner additional flexi-
of their globally-optimized counterparts, with the bility in creating coreference rules. Similarly, we
conservativeness parameter set to the default valuexpect FBLO to outperform its constraint-based
of one for RIPPER and 0.5 for MaxEnt. counterpart: since anaphoricity information is rep-
In comparison to the baseline, we see large gainsesented as a feature in FBLO, the coreference
in precision at the expense of recall. Moreover,learner can incorporate the information selectively
CBLO does not seem to be very effective in improv-rather than as universal hard constraints.
ing the baseline, in part due to the dramatic loss in Results using the FBLO approach are shown in
recall. In particular, although we see improvementsows 7-10 of Table 2. Somewhat unexpectedly, this
in F-measure in five of the 12 experiments in thisapproach is not effective in improving the baseline:
group, only one of them is statistically significént. F-measure increases significantly in only two of the
12 cases. Perhaps more surprisingly, we see signif-

*Bear in mind that different learners employed in train- icant drops in F-measure in five cases. To get a bet-
ing anaphoricity classifiers correspond to different paain
methods. For ease of exposition, however, we will refer & th (1989) is applied to determine if the differences in the F-
method simply by the learner it employs. measure scores between two coreference systems are-statist

“The Approximate Randomization test described in Noreencally significant at the 0.05 level or higher.




System variation BNEWS (dev) NPAPER (dev) NWIRE (dev)
Experiments| L R P F C R P F C R P F

1 Constraint- | RIP | 626 /6.3 688 c¢r=5 | 655 73.0 69.1 c¢r=4 56.1 589 574 cr=3

2 Based, RIP | 625 755 684 t=0.7| 63.0 717 67.1 t=0.65| 56.7 54.8 55.7 t=0.7

3 Globally- ME | 63.1 713 66.9 cr=5|66.2 718 689 cr=3 |57.9 59.7 58.8 cr=3

4 Optimized | ME | 629 70.8 66.6 ¢=0.7 | 61.4 743 67.3 t=0.65| 58.4 55.3 56.8 t=0.7

Table 3: Results of the coreference systems using a camstased, globally-optimized approach to
anaphoricity determination on the three ACE held-out dawelent data setdnformation on which_earner
(RIPPER orMaxEnt) is used to train the coreference classifier as well aoopednce results in terms étecall,
Precision,F-measure and the correspondi@gnservativeness parameter are provided whenever apat@piThe
strongest result obtained for each data set is boldfaced.

ter idea of why F-measure decreases, we examineutperform both the baseline and the locally-
the relevant coreference classifiers induced by RIPeptimized approaches, since coreference perfor-
PER. We find that the anaphoricity feature is used irmance is being explicitly maximized. Results using
a somewhat counter-intuitive manner: some of theCBGO, which are shown in rows 11-14 of Table 2,
induced rules posit a coreference relationship beare largely consistent with our hypothesis. The best
tweennp; and a preceding NRR even thouginp  results on all of the three data sets are achieved us-
is classified as non-anaphoric. These results seem tng this approach. In comparison to the baseline,
suggest that the anaphoricity feature is an irrelevanive see statistically significant gains in F-measure in
feature from a machine learning point of view. nine of the 12 experiments in this group. Improve-

In comparison to CBLO, the results are mixed: ments stem primarily from large gains in precision
there does not appear to be a clear winner in any achccompanied by smaller drops in recall. Perhaps
the three data sets. Nevertheless, it is worth noticingnore importantly, CBGO never produces results
that the CBLO systems can be characterized as hathat are significantly worse than those of the base-
ing high precision/low recall, whereas the reverse idine systems on these data sets, unlike CBLO and
true for FBLO systems in general. As a result, everFBLO. Overall, these results suggest that CBGO is
though CBLO and FBLO systems achieve similarmore robust than the locally-optimized approaches
performance, the former is the preferred choice inn improving the baseline system.

applications where precision is critical. As can be seen, CBGO fails to produce statisti-
Finally, we note that there are other ways 104y significant improvements over the baseline in
encode anaphoricity information in a coreferenceinree cases. The relatively poorer performance in
system. For instance, it is possible t0 represenfege cases can potentially be attributed to the un-
anaphoricity as a real-valued feature indicating th‘%lerlying learner combination. Fortunately, we can
probability of an NP being anaphoric rather than a;se”the development data not only for parameter
a binary-valued feature. Future work will examine y,ning put also in predicting the best learner com-
alternative encodings of anaphoricity. bination. Table 3 shows the performance of the
The Constraint-Based, Globally-Optimized coreference system using CBGO on the develop-
(CBGO) Approach. As discussed above, we ment data, along with the value of the conservative-
optimize the anaphoricity model for coreferenceness parameter used to achieve the results in each
performance via the conservativeness parameter. lgase. Using the notatiohearneri/Learners to
particular, we will use this parameter to maximize denote the fact thatearner; and Learnery are
the F-measure score for a particular data set andsed to train the underlying coreference classifier
learner combination using held-out developmentand anaphoricity classifier respectively, we can see
data. To ensure a fair comparison between globahat the RIPPER/RIPPER combination achieves the
and local approaches, we do not rely on additionabest performance on the BNEWS development set,
development data in the former; instead we usavhereas MaxEnt/RIPPER works best for the other
% of the original training texts for acquiring the two. Hence, if we rely on the development data to
anaphoricity and coreference classifiers and theick the best learner combination for use in testing,
remaining for development for each of the data the resulting coreference system will outperform the
sets. As far as parameter tuning is concernedpaseline in all three data sets and yield the best-
we tested values of 1, 2, ..., 10 as well as theirperforming system on all but the NPAPER data sets,
reciprocals foler and 0.05, 0.1, ..., 1.0 far achieving an F-measure of 60.8 (row 11), 63.2 (row
In general, we hypothesized that CBGO would11), and 54.5 (row 13) for the BNEWS, NPAPER,



® T T e is augmented with a feature whose value is the
— Freae computed anaphoricity ofip. The development

| data is used to select the anaphoricity model
R | (and hence the parameter value) that yields the
T best-performing coreference system. This model
) is then used to compute the anaphoricity value for
the test instances. As mentioned before, we use the
same parametric anaphoricity model as in CBGO
. for achieving global optimization.

op ) 1 Since the parametric model is designed with a
' constraint-based representation in mind, we hypoth-
s 1 esized that global optimization in this case would

’ not be as effective as in CBGO. Nevertheless, we
Tz s 4 s s 7 s s b expect that this approach is still more effective in
improving the baseline than the locally-optimized
approaches.

Figure 1: Effect ofcr on the performance of the  Results using FBGO are shown in rows 15-18
coreference system for the NPAPER developmenef Table 2. As expected, FBGO is less effective
data using RIPPER/RIPPER than CBGO in improving the baseline, underper-

forming its constraint-based counterpart in 11 of the

and NWIRE data sets, respectively. Moreover, the12 cases. In fact, FBGO is able to significantly im-

high correlation between the relative coreferencd’fOVe the corresponding baseline in only four cases.

performance achieved by different learner combina—SOmeWhat surpnsmgly,_ F_BGO is by no means su-
erior to the locally-optimized approaches with re-

tions on the development data and that on the tedt . . i
data also reflects the stability of CBGO. spect to improving the baseline. These results seem

to suggest that global optimization is effective only

In comparison to the locally-optimized ap- . . y . .
proaches, CBGO achieves better F-measure scor gve have a "good” parameterization that is able to

in almost all cases. Moreover. the learned Conser_ake into account how anaphoricity information will

vativeness parameter in CBGé) always has a larg e exploited by the coreference system. Neverthe-
value than the default value employed by CBLO ess, as discussed before, effective global optimiza-
This provides empirical evidence that the CBLO’tion with a feature-based representation is not easy

anaphoricity classifiers are too liberal in classifyingt0 accomplish.
NPs as non-anaphoric. . -

To examine the effect of the conservativeness pa6 Analyzing Anaphoricity Features
rameter on the performance of the coreference sysso far we have focused on computing and us-
tem, we plot in Figure 1 the recall, precision, F-ing anaphoricity information to improve the perfor-
measure curves againstfor the NPAPER develop- mance of a coreference system. In this section, we
ment data using the RIPPER/RIPPER learner comexamine which anaphoricity features are important
bination. Ascr increases, recall rises and precisionin order to gain linguistic insights into the problem.
drops. This should not be surprising, since (1) in- Specifically, we measure the informativeness of
creasinger causes fewer anaphoric NPs to be mis-a feature by computing itsformation gain (see
classified and allows the coreference system to fing).22 of Quinlan (1993) for details) on our three
a correct antecedent for some of them, and (2) dedata sets for training anaphoricity classifiers. Over-
creasing:r causes more truly non-anaphoric NPs toall, the most informative features a#tEAD_MATCH
be correctly classified and prevents the coreferenc@vhether the NP under consideration has the same
system from attempting to resolve them. The beshead as one of its preceding NPSTR.MATCH
F-measure in this case is achieved wher4. (whether the NP under consideration is the same
The Feature-Based, Globally-Optimized string as one of its preceding NPs), aPRONOUN
(FBGO) Approach. The experimental set- (whether the NP under consideration is a pronoun).
ting employed here is essentially the same as thafthe high discriminating power ofiEAD_MATCH
in the CBGO setting, except that anaphoricityand STR.MATCH is a probable consequence of the
information is incorporated into the coreferencefact that an NP is likely to be anaphoric if there is
system as a feature rather than as constraints lexically similar noun phrase preceding it in the
Specifically, each training/test instanég;p, np;)  text. The informativeness #fRoNOUNcan also be
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expected: most pronominal NPs are anaphoric.  Richard Evans. 2001. Applying machine learning to-
Features that determine whether the NP under ward an automatic classification @f Literary and

consideration is @ROPERNOUN, whether it is a  Linguistic Computing, 16(1):45-57.

BARE_SINGULAR Of aBARE_PLURAL, and whether Christopher Kennedy and Branimir Boguraev. 1996.

it begins with an “a” or a “the” ARTICLE) are also Anaphlor for everyone: Pronommal anaphora resolu-

highly informative. This is consistent with our in-  1on Without a parser. IrProceedings of COLING,

e . . pages 113-118.
tuition that the (in)definiteness of an NP plays aNshalom Lappin and Herbert Leass. 1994. An algorithm
important role in determining its anaphoricity.

for pronominal anaphora resolutiofComputational
7 C lusi Linguistics, 20(4):535-562.
onclusions Ruslan Mitkov, Richard Evans, and Constantin Orasan.

We have examined two largely unexplored issues 2002. A new, fully automatic version of Mitkov’s
in computing and using anaphoricity information knowledge-poor pronoun resolution method. In Al.
for improving learning-based coreference systems: Gelbukh, editorComputational Linguistics and Intel-
representation and optimization. In particular, we ligent Text Processing, pages 169-187.
have systematically evaluated all four combinationg'UC-6. 1995. Proceedings of the Sxth Message Un-
of local vs. global optimization and constraint—basedMSg_s;anldéggs C;gg:;‘;zg\gg r?:ss)éventh Viessage Un-
VS. fea_ture_-based representation of anaph_orluty in- derstanding Conference (MUC-7).
formatlon in terms of their effectiveness in improv- Vincent Ng and Claire Cardie. 2002a. Identifying
ing a learning-based coreference system. anaphoric and non-anaphoric noun phrases to improve

Extensive experiments on the three ACE corefer- coreference resolution. IRroceedings of COLING,
ence data sets using a symbolic learner (RIPPER) pages 730-736.
and a statistical learner (MaxEnt) for training coref- Vincent Ng and Claire Cardie. 2002b. Improving ma-
erence classifiers demonstrate the effectiveness of chine learning approaches to coreference resolution.
the constraint-based, globally-optimized approach In Proceedingsof the ACL, pages 104-111.
to anaphoricity determination, which employs our Eric W. Noreen. 1989Computer Intensive Methods for
conservativeness-based anaphoricity model. Not -Srﬁ;‘g Hypothesis: An Introduction. John Wiley &
only does this approach improve a “no anaphoric-_ ~~" "
ity” baseline coreference system, it is more effec-ChrIS Paice and Gareth Husk. 1987. Towards the au-
. T tomatic recognition of anaphoric features in English
tive than the commonly-adopted locally-optimized

- . o text: the impersonal pronoun 'it'Computer Speech
approach without relying on additional labeled data. ang |anguage, 2.
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