
Discriminative Training of a Neural Network Statistical Parser

James HENDERSON
School of Informatics, University of Edinburgh

2 Buccleuch Place
Edinburgh EH8 9LW

United Kingdom
james.henderson@ed.ac.uk

Abstract

Discriminative methods have shown significant
improvements over traditional generative meth-
ods in many machine learning applications, but
there has been difficulty in extending them to
natural language parsing. One problem is that
much of the work on discriminative methods
conflates changes to the learning method with
changes to the parameterization of the problem.
We show how a parser can be trained with a dis-
criminative learning method while still param-
eterizing the problem according to a generative
probability model. We present three methods
for training a neural network to estimate the
probabilities for a statistical parser, one gen-
erative, one discriminative, and one where the
probability model is generative but the training
criteria is discriminative. The latter model out-
performs the previous two, achieving state-of-
the-art levels of performance (90.1% F-measure
on constituents).

1 Introduction

Much recent work has investigated the applica-
tion of discriminative methods to NLP tasks,
with mixed results. Klein and Manning (2002)
argue that these results show a pattern where
discriminative probability models are inferior
to generative probability models, but that im-
provements can be achieved by keeping a gener-
ative probability model and training according
to a discriminative optimization criteria. We
show how this approach can be applied to broad
coverage natural language parsing. Our estima-
tion and training methods successfully balance
the conflicting requirements that the training
method be both computationally tractable for
large datasets and a good approximation to the
theoretically optimal method. The parser which
uses this approach outperforms both a genera-
tive model and a discriminative model, achiev-
ing state-of-the-art levels of performance (90.1%
F-measure on constituents).

To compare these different approaches, we
use a neural network architecture called Sim-
ple Synchrony Networks (SSNs) (Lane and Hen-
derson, 2001) to estimate the parameters of the
probability models. SSNs have the advantage
that they avoid the need to impose hand-crafted
independence assumptions on the learning pro-
cess. Training an SSN simultaneously trains a
finite representations of the unbounded parse
history and a mapping from this history repre-
sentation to the parameter estimates. The his-
tory representations are automatically tuned to
optimize the parameter estimates. This avoids
the problem that any choice of hand-crafted in-
dependence assumptions may bias our results
towards one approach or another. The indepen-
dence assumptions would have to be different
for the generative and discriminative probabil-
ity models, and even for the parsers which use
the generative probability model, the same set
of independence assumptions may be more ap-
propriate for maximizing one training criteria
over another. By inducing the history represen-
tations specifically to fit the chosen model and
training criteria, we avoid having to choose in-
dependence assumptions which might bias our
results.

Each complete parsing system we propose
consists of three components, a probability
model for sequences of parser decisions, a Sim-
ple Synchrony Network which estimates the pa-
rameters of the probability model, and a proce-
dure which searches for the most probable parse
given these parameter estimates. This paper
outlines each of these components, but more de-
tails can be found in (Henderson, 2003b), and,
for the discriminative model, in (Henderson,
2003a). We also present the training methods,
and experiments on the proposed parsing mod-
els.

2 Two History-Based Probability
Models

As with many previous statistical parsers (Rat-
naparkhi, 1999; Collins, 1999; Charniak, 2000),
we use a history-based model of parsing. De-
signing a history-based model of parsing in-
volves two steps, first choosing a mapping from
the set of phrase structure trees to the set of
parses, and then choosing a probability model
in which the probability of each parser decision
is conditioned on the history of previous deci-
sions in the parse. We use the same mapping
for both our probability models, but we use two
different ways of conditioning the probabilities,
one generative and one discriminative. As we
will show in section 6, these two different ways
of parameterizing the probability model have a
big impact on the ease with which the parame-
ters can be estimated.

To define the mapping from phrase structure
trees to parses, we use a form of left-corner pars-
ing strategy (Rosenkrantz and Lewis, 1970). In
a left-corner parse, each node is introduced after
the subtree rooted at the node’s first child has
been fully parsed. Then the subtrees for the
node’s remaining children are parsed in their
left-to-right order. Parsing a constituent starts
by pushing the leftmost word w of the con-
stituent onto the stack with a shift(w) action.
Parsing a constituent ends by either introducing
the constituent’s parent nonterminal (labeled
Y) with a project(Y) action, or attaching to the
parent with an attach action.1 A complete parse
consists of a sequence of these actions, d1,..., dm,
such that performing d1,..., dm results in a com-
plete phrase structure tree.

Because this mapping from phrase structure
trees to sequences of decisions about parser
actions is one-to-one, finding the most prob-
able phrase structure tree is equivalent to
finding the parse d1,..., dm which maximizes
P (d1,..., dm|w1,..., wn). This probability is only
nonzero if yield(d1,..., dm) = w1,..., wn, so we
can restrict attention to only those parses
which actually yield the given sentence. With
this restriction, it is equivalent to maximize
P (d1,..., dm), as is done with our first probability
model.

The first probability model is generative, be-
cause it specifies the joint probability of the in-
put sentence and the output tree. This joint
probability is simply P (d1,..., dm), since the

1More details on the mapping to parses can be found
in (Henderson, 2003b).

probability of the input sentence is included in
the probabilities for the shift(wi) decisions in-
cluded in d1,..., dm. The probability model is
then defined by using the chain rule for con-
ditional probabilities to derive the probability
of a parse as the multiplication of the proba-
bilities of each decision di conditioned on that
decision’s prior parse history d1,..., di−1.

P (d1,..., dm) = ΠiP (di|d1,..., di−1)

The parameters of this probability model are
the P (di|d1,..., di−1). Generative models are the
standard way to transform a parsing strategy
into a probability model, but note that we are
not assuming any bound on the amount of in-
formation from the parse history which might
be relevant to each parameter.

The second probability model is discrimina-
tive, because it specifies the conditional proba-
bility of the output tree given the input sen-
tence. More generally, discriminative models
try to maximize this conditional probability, but
often do not actually calculate the probabil-
ity, as with Support Vector Machines (Vapnik,
1995). We take the approach of actually calcu-
lating an estimate of the conditional probability
because it differs minimally from the generative
probability model. In this form, the distinc-
tion between our two models is sometimes re-
ferred to as “joint versus conditional” (John-
son, 2001; Klein and Manning, 2002) rather
than “generative versus discriminative” (Ng and
Jordan, 2002). As with the generative model,
we use the chain rule to decompose the entire
conditional probability into a sequence of prob-
abilities for individual parser decisions, where
yield(dj ,..., dk) is the sequence of words wi from
the shift(wi) actions in dj ,..., dk.

P (d1,..., dm|yield(d1,..., dm)) =
ΠiP (di|d1,..., di−1, yield(di,..., dm))

Note that d1,..., di−1 specifies yield(d1,..., di−1),
so it is sufficient to only add yield(di,..., dm) to
the conditional in order for the entire input sen-
tence to be included in the conditional. We
will refer to the string yield(di,..., dm) as the
lookahead string, because it represents all those
words which have not yet been reached by the
parse at the time when decision di is chosen.
The parameters of this model differ from those
of the generative model only in that they in-
clude the lookahead string in the conditional.

Although maximizing the joint probability is
the same as maximizing the conditional proba-

bility, the fact that they have different param-
eters means that estimating one can be much
harder than estimating the other. In general we
would expect that estimating the joint probabil-
ity would be harder than estimating the condi-
tional probability, because the joint probability
contains more information than the conditional
probability. In particular, the probability distri-
bution over sentences can be derived from the
joint probability distribution, but not from the
conditional one. However, the unbounded na-
ture of the parsing problem means that the in-
dividual parameters of the discriminative model
are much harder to estimate than those of the
generative model.

The parameters of the discriminative model
include an unbounded lookahead string in the
conditional. Because these words have not yet
been reached by the parse, we cannot assign
them any structure, and thus the estimation
process has no way of knowing what words in
this string will end up being relevant to the next
decision it needs to make. The estimation pro-
cess has to guess about the future role of an
unbounded number of words, which makes the
estimate quite difficult. In contrast, the param-
eters of the generative model only include words
which are either already incorporated into the
structure, or are the immediate next word to
be incorporated. Thus it is relatively easy to
determine the significance of each word.

3 Estimating the Parameters with a
Neural Network

The most challenging problem in estimat-
ing P (di|d1,..., di−1, yield(di,..., dm)) and
P (di|d1,..., di−1) is that the conditionals
include an unbounded amount of information.
Both the parse history d1,..., di−1 and the
lookahead string yield(di,..., dm) grow with
the length of the sentence. In order to apply
standard probability estimation methods, we
use neural networks to induce finite repre-
sentations of both these sequences, which we
will denote h(d1,..., di−1) and l(yield(di,..., dm)),
respectively. The neural network training
methods we use try to find representations
which preserve all the information about the
sequences which are relevant to estimating the
desired probabilities.

P (di|d1,..., di−1) ≈ P (di|h(d1,..., di−1))

P (di|d1,..., di−1, yield(di,..., dm)) ≈
P (di|h(d1,..., di−1), l(yield(di,..., dm)))

Of the previous work on using neural net-

works for parsing natural language, by far the
most empirically successful has been the work
using Simple Synchrony Networks. Like other
recurrent network architectures, SSNs compute
a representation of an unbounded sequence by
incrementally computing a representation of
each prefix of the sequence. At each position i,
representations from earlier in the sequence are
combined with features of the new position i to
produce a vector of real valued features which
represent the prefix ending at i. This repre-
sentation is called a hidden representation. It
is analogous to the hidden state of a Hidden
Markov Model. As long as the hidden repre-
sentation for position i − 1 is always used to
compute the hidden representation for position
i, any information about the entire sequence
could be passed from hidden representation to
hidden representation and be included in the
hidden representation of that sequence. When
these representations are then used to estimate
probabilities, this property means that we are
not making any a priori hard independence as-
sumptions (although some independence may
be learned from the data).

The difference between SSNs and most other
recurrent neural network architectures is that
SSNs are specifically designed for process-
ing structures. When computing the his-
tory representation h(d1,..., di−1), the SSN uses
not only the previous history representation
h(d1,..., di−2), but also uses history representa-
tions for earlier positions which are particularly
relevant to choosing the next parser decision di.
This relevance is determined by first assigning
each position to a node in the parse tree, namely
the node which is on the top of the parser’s
stack when that decision is made. Then the
relevant earlier positions are chosen based on
the structural locality of the current decision’s
node to the earlier decisions’ nodes. In this way,
the number of representations which informa-
tion needs to pass through in order to flow from
history representation i to history representa-
tion j is determined by the structural distance
between i’s node and j’s node, and not just the
distance between i and j in the parse sequence.
This provides the neural network with a lin-
guistically appropriate inductive bias when it
learns the history representations, as explained
in more detail in (Henderson, 2003b).

When computing the lookahead representa-
tion l(yield(di,..., dm)), there is no structural in-
formation available to tell us which positions are

most relevant to choosing the decision di. Prox-
imity in the string is our only indication of rele-
vance. Therefore we compute l(yield(di,..., dm))
by running a recurrent neural network backward
over the string, so that the most recent input is
the first word in the lookahead string, as dis-
cussed in more detail in (Henderson, 2003a).

Once it has computed h(d1,..., di−1) and (for
the discriminative model) l(yield(di,..., dm)), the
SSN uses standard methods (Bishop, 1995) to
estimate a probability distribution over the set
of possible next decisions di given these repre-
sentations. This involves further decomposing
the distribution over all possible next parser ac-
tions into a small hierarchy of conditional prob-
abilities, and then using log-linear models to
estimate each of these conditional probability
distributions. The input features for these log-
linear models are the real-valued vectors com-
puted by h(d1,..., di−1) and l(yield(di,..., dm)), as
explained in more detail in (Henderson, 2003b).
Thus the full neural network consists of a recur-
rent hidden layer for h(d1,..., di−1), (for the dis-
criminative model) a recurrent hidden layer for
l(yield(di,..., dm)), and an output layer for the
log-linear model. Training is applied to this full
neural network, as described in the next section.

4 Three Optimization Criteria and
their Training Methods

As with many other machine learning methods,
training a Simple Synchrony Network involves
first defining an appropriate learning criteria
and then performing some form of gradient de-
scent learning to search for the optimum values
of the network’s parameters according to this
criteria. In all the parsing models investigated
here, we use the on-line version of Backprop-
agation to perform the gradient descent. This
learning simultaneously tries to optimize the pa-
rameters of the output computation and the
parameters of the mappings h(d1,..., di−1) and
l(yield(di,..., dm)). With multi-layered networks
such as SSNs, this training is not guaranteed to
converge to a global optimum, but in practice
a network whose criteria value is close to the
optimum can be found.

The three parsing models differ in the crite-
ria the neural networks are trained to optimize.
Two of the neural networks are trained using the
standard maximum likelihood approach of opti-
mizing the same probability which they are esti-
mating, one generative and one discriminative.
For the generative model, this means maximiz-

ing the total joint probability of the parses and
the sentences in the training corpus. For the
discriminative model, this means maximizing
the conditional probability of the parses in the
training corpus given the sentences in the train-
ing corpus. To make the computations easier,
we actually minimize the negative log of these
probabilities, which is called cross-entropy er-
ror. Minimizing this error ensures that training
will converge to a neural network whose outputs
are estimates of the desired probabilities.2 For
each parse in the training corpus, Backpropaga-
tion training involves first computing the proba-
bility which the current network assigns to that
parse, then computing the first derivative of
(the negative log of) this probability with re-
spect to each of the network’s parameters, and
then updating the parameters proportionately
to this derivative.3

The third neural network combines the ad-
vantages of the generative probability model
with the advantages of the discriminative opti-
mization criteria. The structure of the network
and the set of outputs which it computes are
exactly the same as the above network for the
generative model. But the training procedure
is designed to maximize the conditional proba-
bility of the parses in the training corpus given
the sentences in the training corpus. The con-
ditional probability for a sentence can be com-
puted from the joint probability of the gener-
ative model by normalizing over the set of all
parses d′1,..., d

′
m′ for the sentence.

P (d1,..., dm|w1,..., wn) = P (d1,...,dm)∑
d′
1

,...,d′
m′

P (d′
1
,...,d′

m′)

So, with this approach, we need to maximize
this normalized probability, and not the proba-
bility computed by the network.

The difficulty with this approach is that there
are exponentially many parses for the sentence,
so it is not computationally feasible to com-
pute them all. We address this problem by
only computing a small set of the most prob-
able parses. The remainder of the sum is es-
timated using a combination of the probabili-
ties from the best parses and the probabilities

2Cross-entropy error ensures that the minimum of the
error function converges to the desired probabilities as
the amount of training data increases (Bishop, 1995),
so the minimum for any given dataset is considered an
estimate of the true probabilities.

3A number of additional training techniques, such as
regularization, are added to this basic procedure, as will
be specified in section 6.

from the partial parses which were pruned when
searching for the best parses. The probabilities
of pruned parses are estimated in such a way
as to minimize their effect on the training pro-
cess. For each decision which is part of some un-
pruned parses, we calculate the average proba-
bility of generating the remainder of the sen-
tence by these un-pruned parses, and use this
as the estimate for generating the remainder of
the sentence by the pruned parses. With this
estimate we can calculate the sum of the prob-
abilities for all the pruned parses which origi-
nate from that decision. This approach gives us
a slight overestimate of the total sum, but be-
cause this total sum acts simply as a weighting
factor, it has little effect on learning. What is
important is that this estimate minimizes the
effect of the pruned parses’ probabilities on the
part of the training process which occurs after
the probabilities of the best parses have been
calculated.

After estimating P (d1,..., dm|w1,..., wn), train-
ing requires that we estimate the first derivative
of (the negative log of) this probability with re-
spect to each of the network’s parameters. The
contribution to this derivative of the numera-
tor in the above equation is the same as in the
generative case, just scaled by the denominator.
The difference between the two learning meth-
ods is that we also need to account for the con-
tribution to this derivative of the denominator.
Here again we are faced with the problem that
there are an exponential number of derivations
in the denominator, so here again we approxi-
mate this calculation using the most probable
parses.

To increase the conditional probability of the
correct parse, we want to decrease the total joint
probabilities of the incorrect parses. Probability
mass is only lost from the sum over all parses be-
cause shift(wi) actions are only allowed for the
correct wi. Thus we can decrease the total joint
probability of the incorrect parses by making
these parses be worse predictors of the words in
the sentence.4 The combination of training the
correct parses to be good predictors of the words
and training the incorrect parses to be bad pre-
dictors of the words results in prediction prob-

4Non-prediction probability estimates for incorrect
parses can make a small contribution to the derivative,
but because pruning makes the calculation of this con-
tribution inaccurate, we treat this contribution as zero
when training. This means that non-prediction outputs
are trained to maximize the same criteria as in the gen-
erative case.

abilities which are not accurate estimates, but
which are good at discriminating correct parses
from incorrect parses. It is this feature which
gives discriminative training an advantage over
generative training. The network does not need
to learn an accurate model of the distribution
of words. The network only needs to learn an
accurate model of how words disambiguate pre-
vious parsing decisions.

When we apply discriminative training only
to the most probable incorrect parses, we train
the network to discriminate between the correct
parse and those incorrect parses which are the
most likely to be mistaken for the correct parse.
In this sense our approximate training method
results in optimizing the decision boundary be-
tween correct and incorrect parses, rather than
optimizing the match to the conditional prob-
ability. Modifying the training method to sys-
tematically optimize the decision boundary (as
in large margin methods such as Support Vector
Machines) is an area of future research.

5 Searching for the most probable
parse

The complete parsing system uses the probabil-
ity estimates computed by the SSN to search for
the most probable parse. The search incremen-
tally constructs partial parses d1,..., di by taking
a parse it has already constructed d1,..., di−1 and
using the SSN to estimate a probability distri-
bution P (di|d1,..., di−1, ...) over possible next de-
cisions di. These probabilities are then used to
compute the probabilities for d1,..., di. In gen-
eral, the partial parse with the highest proba-
bility is chosen as the next one to be extended,
but to perform the search efficiently it is nec-
essary to prune the search space. The main
pruning is that only a fixed number of the
most probable derivations are allowed to con-
tinue past the shifting of each word. Setting
this post-word beam width to 5 achieves fast
parsing with reasonable performance in all mod-
els. For the parsers with generative probability
models, maximum accuracy is achieved with a
post-word beam width of 100.

6 The Experiments

We used the Penn Treebank (Marcus et al.,
1993) to perform empirical experiments on the
proposed parsing models. In each case the input
to the network is a sequence of tag-word pairs.5

5We used a publicly available tagger (Ratnaparkhi,
1996) to provide the tags. For each tag, there is an

We report results for three different vocabulary
sizes, varying in the frequency with which tag-
word pairs must occur in the training set in or-
der to be included explicitly in the vocabulary.
A frequency threshold of 200 resulted in a vo-
cabulary of 508 tag-word pairs, a threshold of 20
resulted in 4215 tag-word pairs, and a threshold
of 5 resulted in 11,993 tag-word pairs

For the generative model we trained net-
works for the 508 (“GSSN-Freq≥200”) and 4215
(“GSSN-Freq≥20”) word vocabularies. The
need to calculate word predictions makes train-
ing times for the 11,993 word vocabulary very
long, and as of this writing no such network
training has been completed. The discrimina-
tive model does not need to calculate word pre-
dictions, so it was feasible to train networks for
the 11,993 word vocabulary (“DSSN-Freq≥5”).
Previous results (Henderson, 2003a) indicate
that this vocabulary size performs better than
the smaller ones, as would be expected.

For the networks trained with the discrimi-
native optimization criteria and the generative
probability model, we trained networks for the
508 (“DGSSN-Freq≥200”) and 4215 (“DGSSN-
Freq≥20”) word vocabularies. For this train-
ing, we need to select a small set of the most
probable incorrect parses. When we tried using
only the network being trained to choose these
top parses, training times were very long and
the resulting networks did not outperform their
generative counterparts. In the experiments re-
ported here, we provided the training with a
list of the top 20 parses found by a network of
the same type which had been trained with the
generative criteria. The network being trained
was then used to choose its top 10 parses from
this list, and training was performed on these
10 parses and the correct parse.6 This reduced
the time necessary to choose the top parses dur-
ing training, and helped focus the early stages
of training on learning relevant discriminations.
Once the training of these networks was com-
plete, we tested both their ability to parse on
their own and their ability to re-rank the top

unknown-word vocabulary item which is used for all
those words which are not sufficiently frequent with that
tag to be included individually in the vocabulary (as
well as other words if the unknown-word case itself does
not have at least 5 instances). We did no morphological
analysis of unknown words.

6The 20 candidate parses and the 10 training parses
were found with post-word beam widths of 20 and 10,
respectively, so these are only approximations to the top
parses.

20 parses of their associated generative model
(“DGSSN-. . ., rerank”).

We determined appropriate training param-
eters and network size based on intermediate
validation results and our previous experience.7

We trained several networks for each of the
GSSN models and chose the best ones based on
their validation performance. We then trained
one network for each of the DGSSN models
and for the DSSN model. The best post-word
beam width was determined on the validation
set, which was 5 for the DSSN model and 100
for the other models.

To avoid repeated testing on the standard
testing set, we first compare the different mod-
els with their performance on the validation set.
Standard measures of accuracy are shown in ta-
ble 1.8 The largest accuracy difference is be-
tween the parser with the discriminative proba-
bility model (DSSN-Freq≥5) and those with the
generative probability model, despite the larger
vocabulary of the former. This demonstrates
the difficulty of estimating the parameters of a
discriminative probability model. There is also
a clear effect of vocabulary size, but there is a
slightly larger effect of training method. When
tested in the same way as they were trained
(for reranking), the parsers which were trained
with a discriminative criteria achieve a 7% and
8% reduction in error rate over their respec-
tive parsers with the same generative probabil-
ity model. When tested alone, these DGSSN
parsers perform only slightly better than their
respective GSSN parsers. Initial experiments on
giving these networks exposure to parses out-
side the top 20 parses of the GSSN parsers at
the very end of training did not result in any im-
provement on this task. This suggests that at
least some of the advantage of the DSSN mod-
els is due to the fact that re-ranking is a simpler
task than parsing from scratch. But additional
experimental work would be necessary to make
any definite conclusions about this issue.

7All the best networks had 80 hidden units for the
history representation (and 80 hidden units in the looka-
head representation). Weight decay regularization was
applied at the beginning of training but reduced to near
0 by the end of training. Training was stopped when
maximum performance was reached on the validation
set, using a post-word beam width of 5.

8All our results are computed with the evalb pro-
gram following the standard criteria in (Collins, 1999),
and using the standard training (sections 2–22, 39,832
sentences, 910,196 words), validation (section 24, 1346
sentence, 31507 words), and testing (section 23, 2416
sentences, 54268 words) sets (Collins, 1999).

LR LP Fβ=1∗

DSSN-Freq≥5 84.9 86.0 85.5
GSSN-Freq≥200 87.6 88.9 88.2
DGSSN-Freq≥200 87.8 88.8 88.3
GSSN-Freq≥20 88.2 89.3 88.8
DGSSN-Freq≥200, rerank 88.5 89.6 89.0
DGSSN-Freq≥20 88.5 89.7 89.1
DGSSN-Freq≥20, rerank 89.0 90.3 89.6

Table 1: Percentage labeled constituent recall
(LR), precision (LP), and a combination of both
(Fβ=1) on validation set sentences of length at
most 100.

LR LP Fβ=1∗

Ratnaparkhi99 86.3 87.5 86.9
Collins99 88.1 88.3 88.2
Collins&Duffy02 88.6 88.9 88.7
Charniak00 89.6 89.5 89.5
Collins00 89.6 89.9 89.7
DGSSN-Freq≥20, rerank 89.8 90.4 90.1
Bod03 90.7 90.8 90.7
* Fβ=1 for previous models may have rounding errors.

Table 2: Percentage labeled constituent recall
(LR), precision (LP), and a combination of both
(Fβ=1) on the entire testing set.

For comparison to previous results, table 2
lists the results for our best model (DGSSN-
Freq≥20, rerank)9 and several other statisti-
cal parsers (Ratnaparkhi, 1999; Collins, 1999;
Collins and Duffy, 2002; Charniak, 2000;
Collins, 2000; Bod, 2003) on the entire testing
set. Our best performing model is more accu-
rate than all these previous models except (Bod,
2003). This DGSSN parser achieves this result
using much less lexical knowledge than other ap-
proaches, which mostly use at least the words
which occur at least 5 times, plus morphological
features of the remaining words. However, the
fact that the DGSSN uses a large-vocabulary
tagger (Ratnaparkhi, 1996) as a preprocessing
stage may compensate for its smaller vocabu-
lary. Also, the main reason for using a smaller
vocabulary is the computational complexity of
computing probabilities for the shift(wi) actions
on-line, which other models do not require.

9On sentences of length at most 40, the DGSSN-
Freq≥20-rerank model gets 90.1% recall and 90.7% pre-
cision.

7 Related Work

Johnson (2001) investigated similar issues for
parsing and tagging. His maximal conditional
likelihood estimate for a PCFG takes the same
approach as our generative model trained with
a discriminative criteria. While he shows a
non-significant increase in performance over the
standard maximal joint likelihood estimate on
a small dataset, because he did not have a com-
putationally efficient way to train this model,
he was not able to test it on the standard
datasets. The other models he investigates con-
flate changes in the probability models with
changes in the training criteria, and the discrim-
inative probability models do worse.

In the context of part-of-speech tagging,
Klein and Manning (2002) argue for the same
distinctions made here between discriminative
models and discriminative training criteria, and
come to the same conclusions. However, their
arguments are made in terms of independence
assumptions. Our results show that these gen-
eralizations also apply to methods which do not
rely on independence assumptions.

While both (Johnson, 2001) and (Klein and
Manning, 2002) propose models which use the
parameters of the generative model but train
to optimize a discriminative criteria, neither
proposes training algorithms which are com-
putationally tractable enough to be used for
broad coverage parsing. Our proposed training
method succeeds in being both tractable and
effective, demonstrating both a significant im-
provement over the equivalent generative model
and state-of-the-art accuracy.

Collins (2000) and Collins and Duffy (2002)
also succeed in finding algorithms for training
discriminative models which balance tractabil-
ity with effectiveness, showing improvements
over a generative model. Both these methods
are limited to reranking the output of another
parser, while our trained parser can be used
alone. Neither of these methods use the param-
eters of a generative probability model, which
might explain our better performance (see ta-
ble 2).

8 Conclusions

This article has investigated the application of
discriminative methods to broad coverage nat-
ural language parsing. We distinguish between
two different ways to apply discriminative meth-
ods, one where the probability model is changed
to a discriminative one, and one where the

probability model remains generative but the
training method optimizes a discriminative cri-
teria. We find that the discriminative proba-
bility model is much worse than the generative
one, but that training to optimize the discrimi-
native criteria results in improved performance.
Performance of the latter model on the stan-
dard test set achieves 90.1% F-measure on con-
stituents, which is the second best current ac-
curacy level, and only 0.6% below the current
best (Bod, 2003).

This paper has also proposed a neural net-
work training method which optimizes a dis-
criminative criteria even when the parameters
being estimated are those of a generative prob-
ability model. This training method success-
fully satisfies the conflicting constraints that it
be computationally tractable and that it be a
good approximation to the theoretically optimal
method. This approach contrasts with previous
approaches to scaling up discriminative meth-
ods to broad coverage natural language pars-
ing, which have parameterizations which depart
substantially from the successful previous gen-
erative models of parsing.

References

Christopher M. Bishop. 1995. Neural Networks
for Pattern Recognition. Oxford University
Press, Oxford, UK.

Rens Bod. 2003. An efficient implementation of
a new DOP model. In Proc. 10th Conf. of Eu-
ropean Chapter of the Association for Com-
putational Linguistics, Budapest, Hungary.

Eugene Charniak. 2000. A maximum-entropy-
inspired parser. In Proc. 1st Meeting of North
American Chapter of Association for Compu-
tational Linguistics, pages 132–139, Seattle,
Washington.

Michael Collins and Nigel Duffy. 2002. New
ranking algorithms for parsing and tagging:
Kernels over discrete structures and the voted
perceptron. In Proc. 35th Meeting of Asso-
ciation for Computational Linguistics, pages
263–270.

Michael Collins. 1999. Head-Driven Statistical
Models for Natural Language Parsing. Ph.D.
thesis, University of Pennsylvania, Philadel-
phia, PA.

Michael Collins. 2000. Discriminative rerank-
ing for natural language parsing. In Proc.
17th Int. Conf. on Machine Learning, pages
175–182, Stanford, CA.

James Henderson. 2003a. Generative ver-

sus discriminative models for statistical left-
corner parsing. In Proc. 8th Int. Workshop on
Parsing Technologies, pages 115–126, Nancy,
France.

James Henderson. 2003b. Inducing history
representations for broad coverage statisti-
cal parsing. In Proc. joint meeting of North
American Chapter of the Association for
Computational Linguistics and the Human
Language Technology Conf., pages 103–110,
Edmonton, Canada.

Mark Johnson. 2001. Joint and conditional es-
timation of tagging and parsing models. In
Proc. 39th Meeting of Association for Compu-
tational Linguistics, pages 314–321, Toulouse,
France.

Dan Klein and Christopher D. Manning. 2002.
Conditional structure versus conditional es-
timation in NLP models. In Proc. Conf. on
Empirical Methods in Natural Language Pro-
cessing, pages 9–16, Univ. of Pennsylvania,
PA.

Peter Lane and James Henderson. 2001. In-
cremental syntactic parsing of natural lan-
guage corpora with Simple Synchrony Net-
works. IEEE Transactions on Knowledge and
Data Engineering, 13(2):219–231.

Mitchell P. Marcus, Beatrice Santorini, and
Mary Ann Marcinkiewicz. 1993. Building
a large annotated corpus of English: The
Penn Treebank. Computational Linguistics,
19(2):313–330.

A. Y. Ng and M. I. Jordan. 2002. On discrim-
inative vs. generative classifiers: A compari-
son of logistic regression and naive bayes. In
T. G. Dietterich, S. Becker, and Z. Ghahra-
mani, editors, Advances in Neural Informa-
tion Processing Systems 14, Cambridge, MA.
MIT Press.

Adwait Ratnaparkhi. 1996. A maximum en-
tropy model for part-of-speech tagging. In
Proc. Conf. on Empirical Methods in Natural
Language Processing, pages 133–142, Univ. of
Pennsylvania, PA.

Adwait Ratnaparkhi. 1999. Learning to parse
natural language with maximum entropy
models. Machine Learning, 34:151–175.

D.J. Rosenkrantz and P.M. Lewis. 1970. De-
terministic left corner parsing. In Proc. 11th
Symposium on Switching and Automata The-
ory, pages 139–152.

Vladimir N. Vapnik. 1995. The Nature of
Statistical Learning Theory. Springer-Verlag,
New York.

