
Data-Driven Strategies for an Automated Dialogue System 

Hilda HARDY, Tomek 
STRZALKOWSKI, Min WU 

ILS Institute 
University at Albany, SUNY 

1400 Washington Ave., SS262 
Albany, NY  12222   USA 

hhardy|tomek|minwu@ 
cs.albany.edu  

Cristian URSU, Nick WEBB 
Department of Computer Science 

University of Sheffield 
Regent Court, 211 Portobello St. 

Sheffield  S1 4DP   UK 
c.ursu@sheffield.ac.uk, 
n.webb@dcs.shef.ac.uk 

Alan BIERMANN, R. Bryce 
INOUYE, Ashley MCKENZIE 
Department of Computer Science 

Duke University 
P.O. Box 90129, Levine Science 

Research Center, D101  
Durham, NC  27708   USA 

awb|rbi|armckenz@cs.duke.edu 
 

Abstract 

We present a prototype natural-language 
problem-solving application for a financial 
services call center, developed as part of the 
Amitiés multilingual human-computer 
dialogue project. Our automated dialogue 
system, based on empirical evidence from real 
call-center conversations, features a data-
driven approach that allows for mixed 
system/customer initiative and spontaneous 
conversation. Preliminary evaluation results 
indicate efficient dialogues and high user 
satisfaction, with performance comparable to 
or better than that of current conversational 
travel information systems. 

1 Introduction 

Recently there has been a great deal of interest in 
improving natural-language human-computer 
conversation. Automatic speech recognition 
continues to improve, and dialogue management 
techniques have progressed beyond menu-driven 
prompts and restricted customer responses. Yet 
few researchers have made use of a large body of 
human-human telephone calls, on which to form 
the basis of a data-driven automated system.  

The Amitiés project seeks to develop novel 
technologies for building empirically induced 
dialogue processors to support multilingual 
human-computer interaction, and to integrate these 
technologies into systems for accessing 
information and services (http://www.dcs.shef.ac. 
uk/nlp/amities). Sponsored jointly by the European 
Commission and the US Defense Advanced 
Research Projects Agency, the Amitiés Consortium 
includes partners in both the EU and the US, as 
well as financial call centers in the UK and France. 

A large corpus of recorded, transcribed 
telephone conversations between real agents and 
customers gives us a unique opportunity to analyze 
and incorporate features of human-human 
dialogues into our automated system. (Generic 

names and numbers were substituted for all 
personal details in the transcriptions.) This corpus 
spans two different application areas: software 
support and (a much smaller size) customer 
banking. The banking corpus of several hundred 
calls has been collected first and it forms the basis 
of our initial multilingual triaging application, 
implemented for English, French and German 
(Hardy et al., 2003a); as well as our prototype 
automatic financial services system, presented in 
this paper, which completes a variety of tasks in 
English. The much larger software support corpus 
(10,000 calls in English and French) is still being 
collected and processed and will be used to 
develop the next Amitiés prototype. 

We observe that for interactions with structured 
data – whether these data consist of flight 
information, spare parts, or customer account 
information – domain knowledge need not be built 
ahead of time. Rather, methods for handling the 
data can arise from the way the data are organized. 
Once we know the basic data structures, the 
transactions, and the protocol to be followed (e.g., 
establish caller’s identity before exchanging 
sensitive information); we need only build 
dialogue models for handling various 
conversational situations, in order to implement a 
dialogue system. For our corpus, we have used a 
modified DAMSL tag set (Allen and Core, 1997) 
to capture the functional layer of the dialogues, and 
a frame-based semantic scheme to record the 
semantic layer (Hardy et al., 2003b). The “frames” 
or transactions in our domain are common 
customer-service tasks: VerifyId, ChangeAddress, 
InquireBalance, Lost/StolenCard and Make 
Payment. (In this context “task” and “transaction” 
are synonymous.) Each frame is associated with 
attributes or slots that must be filled with values in 
no particular order during the course of the 
dialogue; for example, account number, name, 
payment amount, etc. 



2 Related Work 

Relevant human-computer dialogue research 
efforts include the TRAINS project and the 
DARPA Communicator program. 

The classic TRAINS natural-language dialogue 
project (Allen et al., 1995) is a plan-based system 
which requires a detailed model of the domain and 
therefore cannot be used for a wide-ranging 
application such as financial services. 

The US DARPA Communicator program has 
been instrumental in bringing about practical 
implementations of spoken dialogue systems. 
Systems developed under this program include 
CMU’s script-based dialogue manager, in which 
the travel itinerary is a hierarchical composition of 
frames (Xu and Rudnicky, 2000). The AT&T 
mixed-initiative system uses a sequential decision 
process model, based on concepts of dialog state 
and dialog actions (Levin et al., 2000). MIT’s 
Mercury flight reservation system uses a dialogue 
control strategy based on a set of ordered rules as a 
mechanism to manage complex interactions 
(Seneff and Polifroni, 2000). CU’s dialogue 
manager is event-driven, using a set of hierarchical 
forms with prompts associated with fields in the 
forms. Decisions are based not on scripts but on 
current context (Ward and Pellom, 1999). 

Our data-driven strategy is similar in spirit to 
that of CU. We take a statistical approach, in 
which a large body of transcribed, annotated 
conversations forms the basis for task 
identification, dialogue act recognition, and form 
filling for task completion.  

3 System Architecture and Components 

The Amitiés system uses the Galaxy 
Communicator Software Infrastructure (Seneff et 
al., 1998). Galaxy is a distributed, message-based, 
hub-and-spoke infrastructure, optimized for spoken 
dialogue systems. 

  

 
Figure 1. Amitiés System Architecture 

 
Components in the Amitiés system (Figure 1) 

include a telephony server, automatic speech 

recognizer, natural language understanding unit, 
dialogue manager, database interface server, 
response generator, and text-to-speech conversion. 

3.1 Audio Components 

Audio components for the Amitiés system are 
provided by LIMSI. Because acoustic models have 
not yet been trained, the current demonstrator 
system uses a Nuance ASR engine and TTS 
Vocalizer.  

To enhance ASR performance, we integrated 
static GSL (Grammar Specification Language) 
grammar classes provided by Nuance for 
recognizing several high-frequency items: 
numbers, dates, money amounts, names and yes-no 
statements. 

Training data for the recognizer were collected 
both from our corpus of human-human dialogues 
and from dialogues gathered using a text-based 
version of the human-computer system. Using this 
version we collected around 100 dialogues and 
annotated important domain-specific information, 
as in this example: “Hi my name is [fname ; 
David] [lname ; Oconnor] and my account number 
is [account ; 278 one nine five].” 

Next we replaced these annotated entities with 
grammar classes. We also utilized utterances from 
the Amitiés banking corpus (Hardy et al., 2002) in 
which the customer specifies his/her desired task, 
as well as utterances which constitute common, 
domain-independent speech acts such as 
acceptances, rejections, and indications of non-
understanding. These were also used for training 
the task identifier and the dialogue act classifier 
(Section 3.3.2). The training corpus for the 
recognizer consists of 1744 utterances totaling 
around 10,000 words. 

Using tools supplied by Nuance for building 
recognition packages, we created two speech 
recognition components: a British model in the UK 
and an American model at two US sites. 

For the text to speech synthesizer we used 
Nuance’s Vocalizer 3.0, which supports multiple 
languages and accents. We integrated the 
Vocalizer and the ASR using Nuance’s speech and 
telephony API into a Galaxy-compliant server 
accessible over a telephone line. 

3.2 Natural Language Understanding 

The goal of the language understanding 
component is to take the word string output of the 
ASR module, and identify key semantic concepts 
relating to the target domain. This is a specialized 
kind of information extraction application, and as 
such, we have adapted existing IE technology to 
this task.  

Hub 

Speech 
Recognition 

Dialogue 
Manager Database 

Server 

Nat’l Language 
Understanding 

Telephony 
Server 

Response      
Generation 

Customer 
Database 

Text-to-speech
Conversion 



We have used a modified version of the ANNIE 
engine (A Nearly-New IE system; Cunningham et 
al., 2002; Maynard, 2003). ANNIE is distributed as 
the default built-in IE component of the GATE 
framework (Cunningham et al., 2002). GATE is a 
pure Java-based architecture developed over the 
past eight years in the University of Sheffield 
Natural Language Processing group. ANNIE has 
been used for many language processing 
applications, in a number of languages both 
European and non-European. This versatility 
makes it an attractive proposition for use in a 
multilingual speech processing project. 

ANNIE includes customizable components 
necessary to complete the IE task – tokenizer, 
gazetteer, sentence splitter, part of speech tagger 
and a named entity recognizer based on a powerful 
engine named JAPE (Java Annotation Pattern 
Engine; Cunningham et al., 2000). 

Given an utterance from the user, the NLU unit 
produces both a list of tokens for detecting 
dialogue acts, an important research goal inside 
this project, and a frame with the possible named 
entities specified by our application. We are 
interested particularly in account numbers, credit 
card numbers, person names, dates, amounts of 
money, locations, addresses and telephone 
numbers.  

In order to recognize these, we have updated the 
gazetteer, which works by explicit look-up tables 
of potential candidates, and modified the rules of 
the transducer engine, which attempts to match 
new instances of named entities based on local 
grammatical context. There are some significant 
differences between the kind of prose text more 
typically associated with information extraction, 
and the kind of text we are expecting to encounter. 
Current models of IE rely heavily on punctuation 
as well as certain orthographic information, such as 
capitalized words indicating the presence of a 
name, company or location. We have access to 
neither of these in the output of the ASR engine, 
and so had to retune our processors to data which 
reflected that. 

In addition, we created new processing 
resources, such as those required to spot number 
units and translate them into textual representations 
of numerical values; for example, to take “twenty 
thousand one hundred and fourteen pounds”, and 
produce “£20,114”. The ability to do this is of 
course vital for the performance of the system. 

If none of the main entities can be identified 
from the token string, we create a list of possible 
fallback entities, in the hope that partial matching 
would help narrow the search space. 

For instance, if a six-digit account number is not 
identified, then the incomplete number recognized 

in the utterance is used as a fallback entity and sent 
to the database server for partial matching. 

Our robust IE techniques have proved 
invaluable to the efficiency and spontaneity of our 
data-driven dialogue system. In a single utterance 
the user is free to supply several values for 
attributes, prompted or unprompted, allowing tasks 
to be completed with fewer dialogue turns. 

3.3 Dialogue Manager 

The dialogue manager identifies the goals of the 
conversation and performs interactions to achieve 
those goals. Several “Frame Agents”, implemented 
within the dialogue manager, handle tasks such as 
verifying the customer’s identity, identifying the 
customer’s desired transaction, and executing those 
transactions. These range from a simple balance 
inquiry to the more complex change of address and 
debit-card payment. The structure of the dialogue 
manager is illustrated in Figure 2. 

Rather than depending on a script for the 
progression of the dialogue, the dialogue manager 
takes a data-driven approach, allowing the caller to 
take the initiative. Completing a task depends on 
identifying that task and filling values in frames, 
but this may be done in a variety of ways: one at a 
time, or several at once, and in any order. 

For example, if the customer identifies himself 
or herself before stating the transaction, or even if 
he or she provides several pieces of information in 
one utterance—transaction, name, account number, 
payment amount—the dialogue manager is flexible 
enough to move ahead after these variations. 
Prompts for attributes, if needed, are not restricted 
to one at a time, but they are usually combined in 
the way human agents request them; for example, 
city and county, expiration date and issue number, 
birthdate and telephone number. 

 

 
 

Figure 2. Amitiés Dialogue Manager 

If the system fails to obtain the necessary values 
from the user, reprompts are used, but no more 
than once for any single attribute. For the customer 
verification task, different attributes may be 

 
 
 

 
 
 
 
 
 Response Decision 

Input:  
from NLU via 
Hub (token string, 
language id, 
named entities) 

Task infoExternal files, 
domain-specific

Dialogue Act 
Classifier 
Frame Agent 

Task ID 
Frame Agent 

Verify-Caller 
Frame Agent 

DB Server 

Customer 
Database

 
 

 
 

 
 

Task Execution 
Frame Agents via Hub 

Dialogue History 



requested. If the system fails even after reprompts, 
it will gracefully give up with an explanation such 
as, “I’m sorry, we have not been able to obtain the 
information necessary to update your address in 
our records. Please hold while I transfer you to a 
customer service representative.” 

3.3.1 Task ID Frame Agent 
For task identification, the Amitiés team has 

made use of the data collected in over 500 
conversations from a British call center, recorded, 
transcribed, and annotated. Adapting a vector-
based approach reported by Chu-Carroll and 
Carpenter (1999), the Task ID Frame Agent is 
domain-independent and automatically trained. 
Tasks are represented as vectors of terms, built 
from the utterances requesting them. Some 
examples of labeled utterances are: “Erm I'd like to 
cancel the account cover premium that's on my, 
appeared on my statement” [CancelInsurance] and 
“Erm just to report a lost card please” 
[Lost/StolenCard].   

The training process proceeds as follows: 

1. Begin with corpus of transcribed, annotated 
calls. 

2. Document creation: For each transaction, collect 
raw text of callers’ queries. Yield: one 
“document” for each transaction (about 14 of 
these in our corpus). 

3. Text processing: Remove stopwords, stem 
content words, weight terms by frequency. 
Yield: one “document vector” for each task. 

4. Compare queries and documents: Create “query 
vectors.” Obtain a cosine similarity score for 
each query/document pair. Yield: cosine 
scores/routing values for each query/document 
pair. 

5. Obtain coefficients for scoring: Use binary 
logistic regression. Yield: a set of coefficients 
for each task. 

Next, the Task ID Frame Agent is tested on 
unseen utterances or queries: 

1. Begin with one or more user queries. 
2. Text processing: Remove stopwords, stem 

content words, weight terms (constant weights). 
Yield: “query vectors”. 

3. Compare each query with each document. 
Yield: cosine similarity scores. 

4. Compute confidence scores (use training 
coefficients). Yield: confidence scores, 
representing the system’s confidence that the 
queries indicate the user’s choice of a particular 
transaction. 

Tests performed over the entire corpus, 80% of 
which was used for training and 20% for testing, 

resulted in a classification accuracy rate of 85% 
(correct task is one of the system’s top 2 choices). 
The accuracy rate rises to 93% when we eliminate 
confusing or lengthy utterances, such as requests 
for information about payments, statements, and 
general questions about a customer’s account. 
These can be difficult even for human annotators 
to classify. 

3.3.2 Dialogue Act Classifier 
The purpose of the DA Classifier Frame Agent 

is to identify a caller’s utterance as one or more 
domain-independent dialogue acts. These include 
Accept, Reject, Non-understanding, Opening, 
Closing, Backchannel, and Expression. Clearly, it 
is useful for a dialogue system to be able to 
identify accurately the various ways a person may 
say “yes”, “no”, or “what did you say?” As with 
the task identifier, we have trained the DA 
classifier on our corpus of transcribed, labeled 
human-human calls, and we have used vector-
based classification techniques. Two differences 
from the task identifier are 1) an utterance may 
have multiple correct classifications, and 2) a 
different stoplist is necessary. Here we can filter 
out the usual stops, including speech dysfluencies, 
proper names, number words, and words with 
digits; but we need to include words such as yeah, 
uh-huh, hi, ok, thanks, pardon and sorry.  

Some examples of DA classification results are 
shown in Figure 3. For sure, ok, the classifier 
returns the categories Backchannel, Expression and 
Accept. If the dialogue manager is looking for 
either Accept or Reject, it can ignore Backchannel 
and Expression in order to detect the correct 
classification. In the case of certainly not, the first 
word has a strong tendency toward Accept, though 
both together constitute a Reject act.  

 
Text: “sure, okay” Text: “certainly not”

Categories returned: Backchannel, 
Expression, Accept 

Categories returned:
Reject, Accept 

Expression
Closing

Accept

Back.

0
0.2
0.4
0.6
0.8

1

Top four cosine scores

Expression

Accept Closing

Back.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Confidence scores

Reject

Reject-part
Accept Expression

0
0.1
0.2
0.3
0.4
0.5
0.6

Top four cosine scores

Reject

Accept Expression
Reject-part

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Confidence scores

Figure 3. DA Classification examples 
 
Our classifier performs well if the utterance is 

short and falls into one of the selected categories 
(86% accuracy on the British data); and it has the 
advantages of automatic training, domain 



independence, and the ability to capture a great 
variety of expressions. However, it can be 
inaccurate when applied to longer utterances, and it 
is not yet equipped to handle domain-specific 
assertions, questions, or queries about a 
transaction. 

3.4 Database Manager 

Our system identifies users by matching 
information provided by the caller against a 
database of user information. It assumes that the 
speech recognizer will make errors when the caller 
attempts to identify himself. Therefore perfect 
matches with the database entries will be rare. 
Consequently, for each record in the database, we 
attach a measure of the probability that the record 
is the target record. Initially, these measures are 
estimates of the probability that this individual will 
call. When additional identifying information 
arrives, the system updates these probabilities 
using Bayes’ rule. 

Thus, the system might begin with a uniform 
probability estimate across all database records. If 
the user identifies herself with a name recognized 
by the machine as “Smith”, the system will 
appropriately increment the probabilities of all 
entries with the name “Smith” and all entries that 
are known to be confused with “Smith” in 
proportion to their observed rate of substitution. Of 
course, all records not observed to be so 
confusable would similarly have their probabilities 
decreased by Bayes’ rule. When enough 
information has come in to raise the probability for 
some record above a threshold (in our system 0.99 
probability), the system assumes that the caller has 
been correctly identified. The designer may choose 
to include a verification dialog, but our decision 
was to minimize such interactions to shorten the 
calls.  

Our error-correcting database system receives 
tokens with an identification of what field each 
token should represent. The system processes the 
tokens serially. Each represents an observation 
made by the speech recognizer. To process a token, 
the system examines each record in the database 
and updates the probability that the record is the 
target record using Bayes’ rule: 

 
 
  

where rec is the event where the record under 
consideration is the target record.  

As is common in Bayes’ rule calculations, the 
denominator P(obs) is treated as a scaling factor, 
and is not calculated explicitly. All probabilities 
are renormalized at the end of the update of all of 
the records. P(rec) is the previous estimate of the 

probability that the record is the target record. 
P(obs|rec) is the probability that the recognizer 
returned the observation that it did given that the 
target record is the current record under 
examination. For some of the fields, such as the 
account number and telephone number, the user 
responses consist of digits. We collected data on 
the probability that the speech recognition system 
we are using mistook one digit for another and 
calculated the values for P(obs|rec) from the data. 
For fields involving place names and personal 
names, the probabilities were estimated.  

Once a record has been selected (by virtue of its 
probability being greater than the threshold) the 
system compares the individual fields of the record 
with values obtained by the speech recognizer. If 
the values differ greatly, as measured by their 
Levenshtein distance, the system returns the field 
name to the dialogue manager as a candidate for 
additional verification. If no record meets the 
threshold probability criterion, the system returns 
the most probable record to the dialogue manager, 
along with the fields which have the greatest 
Levenshtein distance between the recognized and 
actual values, as candidates for reprompting.  

Our database contains 100 entries for the system 
tests described in this paper. We describe the 
system in a more demanding environment with one 
million records in Inouye et al. (2004). In that 
project, we required all information to be entered 
by spelling the items out so that the vocabulary 
was limited to the alphabet plus the ten digits. In 
the current project, with fewer names to deal with, 
we allowed the complete vocabulary of the 
domain: names, streets, counties, and so forth.  

3.5 Response Generator 

Our current English-only system preserves the 
language-independent features of our original tri-
lingual generator, storing all language- and 
domain-specific information in separate text files. 
It is a template-based system, easily modified and 
extended. The generator constructs utterances 
according to the dialogue manager’s specification 
of one or more speech acts (prompt, request, 
confirm, respond, inform, backchannel, accept, 
reject), repetition numbers, and optional lists of 
attributes, values, and/or the person’s name. As far 
as possible, we modeled utterances after the 
human-human dialogues. 

For a more natural-sounding system, we 
collected variations of the utterances, which the 
generator selects at random. Requests, for 
example, may take one of twelve possible forms: 

Request, part 1 of 2: 
Can you just confirm | Can I have | Can I take | 

What is | What’s | May I have 

)(
)()|()|(

obsP
recPrecobsPobsrecP ×

=



Request, part 2 of 2: 
[list of attributes], [person name]? | [list of 

attributes], please? 
Offers to close or continue the dialogue are 

similarly varied: 
Closing offer, part 1 of 2: 
Is there anything else | Anything else | Is there 

anything else at all 
Closing offer, part 2 of 2: 
I can do for you today? | I can help you with 

today? | I can do for you? | I can help you with? | 
you need today? | you need? 

4 Preliminary Evaluation 

Ten native speakers of English, 6 female and 4 
male, were asked to participate in a preliminary in-
lab system evaluation (half in the UK and half in 
the US). The Amitiés system developers were not 
among these volunteers. Each made 9 phone calls 
to the system from behind a closed door, according 
to scenarios designed to test various customer 
identities as well as single or multiple tasks. After 
each call, participants filled out a questionnaire to 
register their degree of satisfaction with aspects of 
the interaction. 

Overall call success was 70%, with 98% 
successful completions for the VerifyId and 96% 
for the CheckBalance subtasks (Figure 4). 
“Failures” were not system crashes but simulated 
transfers to a human agent. There were 5 user 
terminations. 

Average word error rates were 17% for calls that 
were successfully completed, and 22% for failed 
calls. Word error rate by user ranged from 11% to 
26%. 

 

0.70

0.98 0.96
0.88 0.90

0.57

0.85

0.00

0.20
0.40

0.60
0.80

1.00

1.20

Call
 Suc

ce
ss

Veri
fyI

d

Che
ck

Bala
nc

e

Lo
stC

ard

Mak
eP

ay
men

t

Cha
ng

eA
dd

res
s

Fini
sh

Dial
og

ue

 
Figure 4. Task Completion Rates 

Call duration was found to reflect the 
complexity of each scenario, where complexity is 
defined as the number of “concepts” needed to 
complete each task. The following items are 
judged to be concepts: task identification; values 
such as first name, last name, house number, street 

and phone number; and positive or negative 
responses such as whether a new card is desired. 
Figures 5 and 6 illustrate the relationship between 
length of call and task complexity. It should be 
noted that customer verification, a task performed 
in every dialogue, requires a minimum of 3 
personal details to be verified against a database 
record, but may require more in the case of 
recognition errors. 

The overall average number of turns per 
dialogue was 18.28. The user spoke an average of 
6.89 words per turn and the system 11.42. 

User satisfaction for each call was assessed by 
way of a questionnaire containing five statements. 
These covered the clarity of the instructions, ease 
of doing the task, how well the system understands 
the caller, how well the system works, and the 
caller’s enjoyment of the system. Participants rated 
each on a five-point Likert scale. Summed results 
showed an average score of 20.45 over all users 
(range 5–25; higher = stronger agreement). 

 

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9

Scenario

Nu
m

be
r o

f c
on

ce
pt

s

 

85.0

135.8
119.3

88.3
106.7 114.0

48.4

109.3
127.1

0.0
20.0
40.0
60.0
80.0

100.0
120.0
140.0
160.0

1 2 3 4 5 6 7 8 9

Figures 5 and 6. Scenario Complexity (top) and 
Average Call Duration by Scenario (in seconds) 

Although user satisfaction was high, we were 
more interested in identifying the major problems 
for the callers. Users were often frustrated by 
recognition failures and/or unsuccessful attempts 
to capture values such as a new street address, 
county, or phone number. Sometimes the system 
failed to determine that the user was finished. 
Because the system is designed to be non-
restrictive in accepting users’ input, 
misidentifications were common. One user spoke 
for many by saying, “There were times when the 
system would ask me to repeat information I had 
not yet given to it.” We plan to revise our strategy 



so that we are a little more cautious in our 
reprompts. Occasionally, the system misidentified 
the user’s desired task and had difficulty backing 
off gracefully and starting the correct task. We are 
working on improving our recovery strategies for 
these cases. 

 The following transcription of an interaction 
with our system illustrates the efficiency made 
possible when the data supplied by the caller drives 
the conversation: 

AMITIÉS:  Hello, this is Am-ih-tee-eh! What can 
I do for you? 

USER:  yes this is Stella Lang. My card number 
is three one six seven one four. Can you tell me the 
balance on my account please? 

AMITIÉS:  Can you just confirm the city and 
county? 

USER:  uh yes it’s London, Middlesex 
AMITIÉS:  I’m sorry, I didn’t understand what 

you said.  Can you repeat, please? 
USER:  London, Middlesex 
AMITIÉS:  All right, your balance is 1753 

pounds and 20 pence. Anything else I can do for 
you? 

USER:  yes I'd like to make a payment of fifty 
three pounds with my debit card please 

AMITIÉS:  Can I have the debit card number, 
Miss Lang? 

USER:  sure, it's two eight seven four six six four 
nine five eight nine five three eight nine one, and it 
expires October two thousand six 

AMITIÉS:  What's the issue number, please? 
USER:  one 
AMITIÉS:  Ok, Miss Lang, I'll send in the 

payment amount of 53 pounds. Did I get that right? 
USER:  yes, what's my new balance please? 
AMITIÉS:  Ok, that's gone through. Your 

payment will be credited overnight and will reflect 
on your next statement. Your balance is 1700 
pounds and 20 pence. Anything else I can do for 
you today? 

USER:  no, that's it thanks 
AMITIÉS:  Thanks very much for your call, 

goodbye. 
USER:  bye 

5 Discussion, Future Work 

The preliminary evaluation reported here 
indicates promise for an automated dialogue 
system such as ours, which incorporates robust 
techniques for information extraction, record 
matching, task identification, dialogue act 
classification, and an overall data-driven strategy. 
Task duration and number of turns per dialogue 
both appear to indicate greater efficiency and 
corresponding user satisfaction than many other 

similar systems. In the DARPA Communicator 
evaluation, for example, between 60 and 79 calls 
were made to each of 8 participating sites (Walker, 
et al., 2001, 2002). A sample scenario for a 
domestic round-trip flight contained 8 concepts 
(airline, departure city, state, date, etc.). The 
average duration for such a call was over 300 
seconds; whereas our overall average was 104 
seconds. ASR accuracy rates in 2001 were about 
60% and 75%, for airline itineraries not completed 
and completed; and task completion rates were 
56%. Our average number of user words per turn, 
6.89, is also higher than that reported for 
Communicator systems. This number seems to 
reflect lengthier responses to open prompts, 
responses to system requests for multiple 
attributes, and greater user initiative. 

We plan to port the system to a new domain: 
from telephone banking to information-technology 
support. As part of this effort we are again 
collecting data from real human-human calls. For 
advanced speech recognition, we hope to train our 
ASR on new acoustic data. We also plan to expand 
our dialogue act classification so that the system 
can recognize more types of acts, and to improve 
our classification reliability.  

6 Acknowledgements 

This paper is based on work supported in part by 
the European Commission under the 5th 
Framework IST/HLT Programme, and by the US 
Defense Advanced Research Projects Agency. 

References 

J. Allen and M. Core. 1997. Draft of DAMSL: 
Dialog Act Markup in Several Layers. 
http://www.cs.rochester.edu/research/cisd/resour
ces/damsl/. 

J. Allen, L. K. Schubert, G. Ferguson, P. Heeman, 
Ch. L. Hwang, T. Kato, M. Light, N. G. Martin, 
B. W. Miller, M. Poesio, and D. R. Traum. 
1995. The TRAINS Project: A Case Study in 
Building a Conversational Planning Agent. 
Journal of Experimental and Theoretical AI, 7 
(1995), 7–48. 

Amitiés, http://www.dcs.shef.ac.uk/nlp/amities.  

J. Chu-Carroll and B. Carpenter. 1999. Vector-
Based Natural Language Call Routing. 
Computational Linguistics, 25 (3): 361–388. 

H. Cunningham, D. Maynard, K. Bontcheva, V. 
Tablan. 2002. GATE: A Framework and 
Graphical Development Environment for Robust 
NLP Tools and Applications. Proceedings of the 
40th Anniversary Meeting of the Association for 



Computational Linguistics (ACL'02), 
Philadelphia, Pennsylvania. 

H. Cunningham and D. Maynard and V. Tablan. 
2000. JAPE: a Java Annotation Patterns Engine 
(Second Edition). Technical report CS--00--10, 
University of Sheffield, Department of 
Computer Science.  

DARPA, 
http://www.darpa.mil/iao/Communicator.htm. 

H. Hardy, K. Baker, L. Devillers, L. Lamel, S. 
Rosset, T. Strzalkowski, C. Ursu and N. Webb. 
2002. Multi-Layer Dialogue Annotation for 
Automated Multilingual Customer Service. 
Proceedings of the ISLE Workshop on Dialogue 
Tagging for Multi-Modal Human Computer 
Interaction, Edinburgh, Scotland. 

H. Hardy, T. Strzalkowski and M. Wu. 2003a. 
Dialogue Management for an Automated 
Multilingual Call Center. Research Directions in 
Dialogue Processing, Proceedings of the HLT-
NAACL 2003 Workshop, Edmonton, Alberta, 
Canada. 

H. Hardy, K. Baker, H. Bonneau-Maynard, L. 
Devillers, S. Rosset and T. Strzalkowski. 2003b. 
Semantic and Dialogic Annotation for 
Automated Multilingual Customer Service. 
Eurospeech 2003, Geneva, Switzerland. 

R. B. Inouye, A. Biermann and A. Mckenzie. 
2004. Caller Identification from Spelled-Out 
Personal Data Using a Database for Error 
Correction. Duke University Internal Report. 

E. Levin, S. Narayanan, R. Pieraccini, K. Biatov, 
E. Bocchieri, G. Di Fabbrizio, W. Eckert, S. 
Lee, A. Pokrovsky, M. Rahim, P. Ruscitti, and 
M. Walker. 2000. The AT&T-DARPA 
Communicator Mixed-Initiative Spoken Dialog 
System. ICSLP 2000. 

D. Maynard. 2003. Multi-Source and Multilingual 
Information Extraction. Expert Update. 

S. Seneff, E. Hurley, R. Lau, C. Pao, P. Schmid, 
and V. Zue. 1998. Galaxy-II: A Reference 
Architecture for Conversational System 
Development. ICSLP 98, Sydney, Australia. 

S. Seneff and J. Polifroni. 2000. Dialogue 
Management in the Mercury Flight Reservation 
System. Satellite Dialogue Workshop, ANLP-
NAACL, Seattle, Washington. 

M. Walker, J. Aberdeen, J. Boland, E. Bratt, J. 
Garofolo, L. Hirschman, A. Le, S. Lee, S. 
Narayanan, K. Papineni, B. Pellom, J. Polifroni, 
A. Potamianos, P. Prabhu, A. Rudnicky, G. 
Sanders, S. Seneff, D. Stallard and S. Whittaker. 
2001. DARPA Communicator Dialog Travel 

Planning Systems: The June 2000 Data 
Collection. Eurospeech 2001. 

M. Walker, A. Rudnicky, J. Aberdeen, E. Bratt, J. 
Garofolo, H. Hastie, A. Le, B. Pellom, A. 
Potamianos, R. Passonneau, R. Prasad, S. 
Roukos, G. Sanders, S. Seneff and D. Stallard. 
2002. DARPA Communicator Evaluation: 
Progress from 2000 to 2001. ICSLP 2002. 

W. Ward and B. Pellom. 1999. The CU 
Communicator System. IEEE ASRU, pp. 341–
344. 

W. Xu and A. Rudnicky. 2000. Task-based Dialog 
Management Using an Agenda. ANLP/NAACL 
Workshop on Conversational Systems, pp. 42–
47. 

 


