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Abstract tices that are the output from a baseline recognizer. We

This paper describes discriminative language modelingﬁlrzc;g;]\/:sa ?ﬁrgbiigéeﬁgﬁr%nguf dcogvgagnlgé?/e gggjﬁie
for a large vocabulary speech recognition task. We conr ' P P 9 270

trast two parameter estimation methods: the perceptro'rﬁnar?;(?\;ﬁzgg::nrzg:{%%ggweeéézrc?%gheifgvgiﬂgﬁzrrd i?r;
algorithm, and a method based on conditional rando ’ 9 gain,

. - . o
fields (CRFs). The models are encoded as determin—he final abs_olute improvement being 1.8%. .
A central issue we focus on concerns feature selection.

@stic weighted finite state automata, an(_j are applied byI'he number of distinct n-grams in our training data is
intersecting the automata with word-lattices that are the

output from a baseline recognizer. The perceptron algo\-(ilorse tov4? mII”I\C/)vrIL a\r;dnwv(\a/r?hr?\?: t?nat dcvsilt:htram”;)g cton—f
rithm has the benefit of automatically selecting a rela- ?zgisz rr?ill)i/ ?10 f¥he ef ter aB € ?tﬁ? ?Ne (c))(
tively small feature set in just a couple of passes over the'2€ on) o ese leatures. because ot this, we ex-
training data. However, using the feature set output fro lore methods for picking a smgll subset of the available
the perceptron algorithm (initialized with their weights), eatures. The perceptron algorithm can be used as one

CRF training provides an additional 0.5% reduction in method for feature selection, selecting around 1.5 million

word error rate, for a total 1.8% absolute reduction from;enadtqrr].efa'ln é%tal'. tr;r hgrgrsgtgral?r?)(rjnwglctglstrgena;[gi .f]et’
the baseline of 39.2%. Inialized with p S p p ining,

converges much more quickly than other approaches, and
1 ducti also gives the optimal performance on the held-out set.
ntroduction We explore other approaches to feature selection, but find
A crucial component of any speech recognizer iddime  that the perceptron-based approach gives the best results
guage mode{LM), which assigns scores or probabilities in our experiments.
to candidate output strings in a speech recognizer. The While we focus on n-gram models, we stress that our
language model is used in combination with an acousmethods are applicable to more general language mod-
tic model, to give an overall score to candidate word se-<ling features — for example, syntactic features, as ex-
guences that ranks them in order of probability or plau-plored in, e.g., Khudanpur and Wu (2000). We intend
sibility. to explore methods with new features in the future. Ex-
A dominant approach in speech recognition has beeferimental results with n-gram models on 1000-best lists
to use a “source-channel”, or “noisy-channel” model. Inshow a very small drop in accuracy compared to the use
this approach, language modeling is effectively framedof lattices. This is encouraging, in that it suggests that
as density estimation: the language model’s task is tanodels with more flexible features than n-gram models,
define a distribution over the source — i.e., the possiblevhich therefore cannot be efficiently used with lattices,
strings in the language. Markov (n-gram) models are of-may not be unduly harmed by their restriction to n-best
ten used for this task, whose parameters are optimizelists.
to maximize the likelihood of a large amount of training
text. Recognition performance is a direct measure of thel‘1 Related Work
effectiveness of a language model; an indirect measurkarge vocabulary ASR has benefitted from discrimina-
which is frequently proposed within these approaches idive estimation of Hidden Markov Model (HMM) param-
the perplexity of the LM (i.e., the log probability it as- €ters in the form of Maximum Mutual Information Es-
signs to some held-out data set). timation (MMIE) or Conditional Maximum Likelihood

This paper explores alternative methods for languagéstimation (CMLE). Woodland and Povey (2000) have
modeling, which complement the source-channel apshown the effectiveness of lattice-based MMIE/CMLE in
proach through discriminatively trained models. The lan-challenging large scale ASR tasks such as Switchboard.
guage models we describe do not attempt to estimate & fact, state-of-the-art acoustic modeling, as seen, for
generative modeP(w) over strings. Instead, they are example, at annual Switchboard evaluations, invariably
trained on acoustic sequences with their transcriptionsncludes some kind of discriminative training.
in an attempt to directly optimize error-rate. Our work  Discriminative estimation of language models has also
builds on previous work on language modeling using theédeen proposed in recent years. Jelinek (1995) suggested
perceptron algorithm, described in Roark et al. (2004).an acoustic sensitive language model whose parameters
In parthUIar’ we explore conditional random field meth- INote also that in addition to concerns about training time, a lan-

ods, as an alternative training method to th_e perceptronyuage model with fewer features is likely to be considerably more effi-
We describe how these models can be trained over lakient when decoding new utterances.




are estimated by minimizingl (W |A), the expected un- Inputs: Training examplegz;, ;)

certainty of the spoken text W, given the acoustic se-nitialization: Seta =0

quence A. Stolcke and Weintraub (1998) experimentedigorithm: _

with various discriminative approaches including MMIE FC():rtlz Ili. 'VT_’Z =1...N B(1: _
with mixed results. This work was followed up with Ifé?l;a ?}&s;grznz"fg?;(mi)) j%(j) ‘zc_“)
some success by Stolcke et al. (2000) where an “antibutputl' Pg;ameter@ nyi v
LM”, estimated from weighted N-best hypotheses of a '

baseline ASR system, was used with a negative weight
in combination with the baseline LM. Chen et al. (2000)
presented a method based on changing the trigram coun@l, y1)...(zx,yn). This section describes the per-
discriminatively, together with changing the Iexicon_to ceptron algorithm, which was previously applied to lan-
add new words. Kuo et al. (2002) used the generalizedy ;age modeling in Roark et al. (2004). The next section

probabilistic descent algorithm to train relatively small gegcripes an alternative method, based on conditional
language models which attempt to minimize string error,;nqom fields.

rate on the DARPA Communicator task. Banerjee etal. The perceptron algorithm is shown in figure 1. At
(2003) used a language model modification algorithm ing5py training exampléz;, y;), the current best-scoring
the context of a reading tutor that listens. The"algorithmhypothesiSzi is found, and if it differs from the refer-
first uses a classifier to predict what effect each pParamesncey, | then the cost of each featdris increased by

ter has on the error rate, and then modifies the paramete{ge count of that feature i, and decreased by the count
to reduce the error rate based on this prediction. of that feature iny;. The features in the model are up-
dated, and the algorithm moves to the next utterance.
. o After each pass over the training data, performance on
Algorithm, and Conditional Random a held-out data set is evaluated, and the parameterization
Fields with the best performance on the held out set is what is

This section describes a general framework, global lineakltimately produced by the algorithm.

models, and two parameter estimation methods within Following Collins (2002), we used theveragedpa-

the framework, the perceptron algorithm and a method@meters from the training algorithm in decoding held-
based on conditional random fields. The linear modelPUt and test examples in our experiments. &ajs the

we describe are general enough to be applicable to a dRarameter vector after théh example is processed on
verse range of NLP and speech tasks — this section givé§e ¢'th pass through the data in the algorithm in fig-
a general description of the approach. In the next sectiol'® 1. Then the averaged parameters ¢ are defined

of the paper we describe how global linear models carfS@ave = >_;, &;/NT. Freund and Schapire (1999)
be applied to speech recognition. In particular, we focusriginally proposed the averaged parameter method; it
on how the decoding and parameter estimation problem#as shown to give substantial improvements in accuracy
can be implemented over lattices using finite-state techfor tagging tasks in Collins (2002).

niques. 2.3 Conditional Random Fields

Conditional Random Fields have been applied to NLP
tasks such as parsing (Ratnaparkhi et al., 1994; Johnson
etal., 1999), and tagging or segmentation tasks (Lafferty
et al., 2001; Sha and Pereira, 2003; McCallum and Li,
2003; Pinto et al., 2003). CRFs use the parameters

to define a conditional distribution over the members of

Figure 1:A variant of the perceptron algorithm.

2 Linear Models, the Perceptron

2.1 Global linear models

We follow the framework outlined in Collins (2002;
2004). The task is to learn a mapping from inputs X
to outputsy € Y. We assume the following compo-
nents: (1) Training example&:;,y;) fori = 1...N.
(2) A function GEN which enumerates a set of candi-

datesGEN(z) for an inputz. (3) A representation
® mapping eachz,y) € X x Y to a feature vector
®(z,y) € R (4) A parameter vector @ € R?,

The component$sEN, & and & define a mapping
from an inputz to an outputF'(z) through

F(z)

(1)

argmax @(x,y) - a
yeEGEN(z)

where®(z,y) - a is the inner producd | a P, (z,y).

The learning task is to set the parameter valuesing
the training examples as evidence. Tdecoding algo-
rithm is a method for searching for thethat maximizes
Eq. 1.

2.2 The Perceptron algorithm

We now turn to methods for training the parameters

GEN(x) for a given inputz:

pa(ylz) = exp (®(z,y) - @)

1
Z(x,a)
where Z(z,a) = > corn() &P (P(z,y)-a) is a
normalization constant that dependsmoanda.

Given these definitions, the log-likelihood of the train-
ing data under parametefss

N
> logpal(yilzi)

2

LL(a)

-

= ) [®@i,y:) - a—log Z(wi,@)]

=

)

-

2Note that here lattice weights are interpreted as costs, which

a of the model, given a set of training examples changes the sign in the algorithm presented in figure 1.



Following Johnson et al. (1999) and Lafferty et al. ®,(x,y) could be essentially any function of the acous-
(2001), we use a zero-mean Gaussian prior on the paic input z and the candidate transcriptign The first
rameters resulting in the regularized objective function: feature we define i9((x, y) asthe log-probability ofy

N givenz under the lattice produced by the baseline recog-
LLg(a) = Z [®(2s,1:) - & — log Z(z4,a)] — ||2 G nizer. Thus this feature will include contributions from

=1 o the acoustic model and the original language model. The
remaining features are restricted to be functions over the
transcriptiony alone and they track all n-grams up to
gome length (say = 3), for example:

all”

The valueos dictates the relative influence of the log-
likelihood term vs. the prior, and is typically estimated
using held-out data. The optimal parameters under thi
criterion area* = argmax, LLg(&).

We use alimited memory variable metrienethod
(Benson and Mdg, 2002) to optimize.Ly. Thereisa At an abstract level, features of this form are introduced
general implementation of this method in the Tao/PETSdor all n-grams up to length seen in some training data
software libraries (Balay et al., 2002; Benson et al.,lattice, i.e., n-grams seen in any word sequence within
2002). This technique has been shown to be very effecthe lattices. In practice, we consider methods that search
tive in a variety of NLP tasks (Malouf, 2002; Wallach, for sparse parameter vectaks thus assigning many n-
2002). The main interface between the optimizer and thgyrams0 weight. This will lead to more efficient algo-
training data is a procedure which takes a parameter vegithms that avoid dealing explicitly with the entire set of
tor & as input, and in turn returnEL (&) as well as  n-grams seen in training data.
the gradient ofLLr at@. The derivative of the objec- . )
tive function with respect to a parametey at parameter 3-2 mplementation using WFA
valuesa is We now give a brief sketch of how weighted finite-state

N automata (WFA) can be used to implement linear mod-
=3 |@aliy) = Y palyled)®s(ziy) |- 0‘_2 @)  els for speech recognition. There are several papers de-
i=1 YEGEN (z;) g scribing the use of weighted automata and transducers

Note thatL L (&) is a convex function, so that there is forspeech in detail, 9., Mohrj et a_I. (2002).’ but forc_:lar—
a globally optimal solution and the optimization method ity and completeness this section gives a brief description

will find it. The use of the Gaussian prior tettr||* /202 of lt:he operations wh|cth://Ie:X43e._ > FE
in the objective function has been found to be useful in Orf our purpose, a . ( .’Q’qs’ B p),
several NLP settings. It effectively ensures that there is a here2: is the vocabulary@) is a (finite) set of states,
large penalty for e?ra.metervalueginthe model becomind®. Q Is a unique start statd; ¢ @ is a set of final
toogIaE e— gs surt):h it tends to control over-training. The tates,F? is a (finite) set of transitions, and: F* — R
larg T . aining. is a function from final states to final weights. Each tran-
choice of L L as an objective function can be justified as _... i lee — (1 h
maximum a-posteriori (MAP) training within a Bayesian sitione € EIs a tuplee = (Lel, ple], nle], wle]), where
I[e] € X is a label (in our case, wordg)le] € @ is the

approach. An alternative justification comes through aorigin state ofe, nfe] € Q is the destination state of

connection to support vector machines and other Iarg%mdw[e] € R is the weight of the transition. A suc-

margin approaches. SVM-based approaches use an OBesstul pathr = e; ...¢e; is a sequence of transitions
timization criterion that is closely related fol.r — see such thappler] = g, n[éj] c F,andforl < k < j,

Collins (2004) for more discussion. nlerx—1] = plex]. LetIl4 be the set of successful paths

; i inaWFAA. Foranyr = ey ...e;, l[n] = le1] ... 1[e;].
3 Linear m.Odels for speech recognmoh . The weights of the WFA in our case are always in the
We now describe how the formalism and algorithms iNjog semiring, which means that the weight of a pats
section 2 can be applied to language modeling for speech ~ e; € I, is defined as:
recognition.

®,(z,y) = Number of times the the ofis seen iny

OLLR
dag

3.1 The basic approach 4
As described in the previous section, linear models re- walr] - = <;w[ek}> +oles) ®)
quire definitions oft, Y, z;, v;, GEN, ® and a param- -
eter estimation method. In the language modeling settindy convention, we use negative log probabilities as
we takeX’ to be the set of all possible acoustic inpu¥s; weights, so lower weights are better. All WFA that we
is the set of all possible string&*, for some vocabu- will discuss in this paper are deterministic, i.e. there are
lary . Eachz; is an utterance (a sequence of acouso ¢ transitions, and for any two transitiomse’ € F,
tic feature-vectors), anGtEN(z;) is the set of possible if p[e] = ple’], thenlle] # [e/]. Thus, for any string
transcriptions under a first pass recogniz€xFEIN(z;) w = wi...wj;, there is at most one successful path
is a huge set, but will be represented compactly using a € II4, such thatr = e;...e; and forl < k < j,
lattice — we will discuss this in detail shortly). We take I[ex] = wy, i.e.l[r] = w. The set of stringsv such that
y; to be the member d&EN|(z;) with lowest error rate  there exists ar € 114 with I[r] = w define a regular
with respect to the reference transcriptioneof languagel. 4 C X.

All that remains is to define the feature-vector repre- We can now define some operations that will be used
sentation®(z, y). In the general case, each componentin this paper.



e \A. For a set of transition& and A € R, define
AE = {(l[e], ple], nle], Awle]) : e € E}. Then, for
any WFAA = (%, Q, ¢s, F, E, p), definedA for A € R
as follows:\A = (X, Q, g5, F, \E, A\p).

e Ao A’. The intersection of two deterministic WFAs
A o A’ in the log semiring is a deterministic WFA
such thatL soar = La()La. Foranym € Iyoar,
Waoar[m] = walm] + was[me], wherel[r] = I[m] =

I[a]. Figure 2:Representation of a trigram model with failure transitions.
* BestPath(A). This operation takes a WFA, and  n-gram. Then, by definitiony,£ o D accepts the same
returns the best scoring path= argmin, g7, wa[r]. set of strings ag£, but

e MinErr(A4,y). Given a WFAA, a stringy, and
an error-functionE(y, w), this operation returng =
argmin, .y, E(y,[[r]). This operation will generally be
used withy as the reference transcription for a particular
training example, and:(y, w) as some measure of the andargmin ®(z, I[x]) - & = BestPath(aoL o D).
number of errors itw when compared tg. In this case, TEL
the MinErr operation returns the path € II4 such  Thus decoding under our new model involves first pro-
[[7] has the smallest number of errors when compared taucing a latticeZ from the baseline recognizer; second,
Y. scaling £ with «g and intersecting it with the discrimi-

e Norm(A). Given a WFAA, this operation yields native language modé&»; third, finding the best scoring
aWFA A’ such thatLy = L, and for everyr € II4  path in the new WFA.
there is ar’ € 14/ such thai[r] = [[x'] and We now turn to training a model, or more explicitly,

deriving a discriminative language modé?, o) from a

, ~ set of training examples. Given a training &et, r;) for

walr] = walr] +log Z exp(—walr]) |(6) ;= 1. N, wherez; is an acoustic sequence, ands

TEILA a reference transcription, we can construct latti¢efor
1+ = 1...N using the baseline recognizer. We can also

derive target transcriptiong = MinErr(L;,r;). The

_ _ training algorithm is then a mapping frofc,, y;) for

Z xp(—tNorm(a)[m) =1 (D) i=1...N toapair(D, ap). Note that thencfnnstr)uction

of the language model requires two choices. The first

In other words the weights define a probability distribu- concerns the choice of the set of n-gréaturesd; for

Waocop([m] =) ®;(z,l[n])a;

M-

I
=)

J

Note that

mENorm(A)

tion over the paths. ¢ = 1...d implemented byD. The second concerns
e ExpCount(4, w). Given a WFAA and an n-gram  the choice oparametersy; fori = 0. .. d which assign
w, we define the expected countwfin A as weights to the n-gram features as well as the baseline
feature®,.
ExpCount(A, w) = Z WNorm(a) [T C(w, I[r]) Before describing methods for training a discrimina-
? - orm Y

tive language model using perceptron and CRF algo-
rithms, we give a little more detail about the structure

whereC(w, I[r]) is defined to be the number of times Of D, focusing on how n-gram language models can be
the n-gramw appears in a strinjr]. implemented with finite-state techniques.

Given an acoustic input, let £, pe a deterministic 3.3 Representation of n-gram language models
word-lattice produced by the baseline recognizer. TheA del be efficientl dinad
lattice £, is an acyclic WFA, representing a weighted sett n n_—g.rat\_m Vn\]/gAe tﬁan (;?hluent y rfefpr_;asentte "?t.a e
of possible transcriptions af under the baseline recog- erministic , through the use of failure transitions

nizer. The weights represent the combination of acoustiéA”auzen etal., 2093)' Every string accepted by such an
and language model scores in the original recognizer. automgton has a sm_gle'path through the aut_omaton, and
The new, discriminative language model constructedn® Weight of the string is the sum of the weights of the
during training consists of a deterministic WFA which Uansitions in that path. In such a representation, every
we will denoteD, together with a single parametes. state in the automaton represents an n-gram hisiory

: : o 0. Wi _ow; _ d there are transitions leaving the state
The parametery, is the weight for the log probability €.9.wi—zw;—1, an :
feature®, given by the baseline recognizer. The WFA fﬁ: every v;/ordwfi ﬁUCh that the f(alaturiezui T]as aweilghbt. ed
D is constructed so thatp, = ¥* and for allr € IIp ere is also a failure transition leaving the state, labele

with some reserved symbal, which can only be tra-
versed if the next symbol in the input does not match any
wp[r] = Z @, (z, 7)) transition leaving the state. This failure transition points
= to the backoff staté’, i.e. the n-gram history: minus
its initial word. Figure 2 shows how a trigram model can
Recall that®,; (x, w) for j > 0 is the count of thg’th n-  be represented in such an automaton. See Allauzen et al.
gram inw, ande; is the parameter associated with that (2003) for more details.

w€ellg



Note that in such a deterministic representation, then-grams seen in the training data (in either correct or in-
entire weight of all features associated with the wordcorrect transcriptions) may be computationally very de-
w; following history h must be assigned to the transi- manding. One training scenario that we will consider
tion labeled withw; leaving the staté in the automa-  will be using the output of the perceptron algorithm (the
ton. For example, ifh = w;_ow;_1, then the trigram averaged parameters) to provide the feature set and the
w; _ow;_1w; IS a feature, as is the bigram;_;w; and initial feature weights for use in the CRF algorithm. This
the unigramw;. In this case, the weight on the transi- leads to a model which is reasonably sparse, but has the
tion w; leaving stateh must be the sum of the trigram, benefit of CRF training, which as we will see gives gains
bigram and unigram feature weights. If only the trigramin performance.
feature weight were assigned to the transition, neither th - .
unigram nor the bigram feature contribution would be in—%‘5 Conditional Random Fields ) o
cluded in the path weight. In order to ensure that the corThe CRF methods that we use assume a fixed definition
rect weights are assigned to each string, every transitioff the n-gram feature®; for i = 1...d in the model.
encoding an ordek n-gram must carry the sum of the In the expel’-imental section we will deSCfi.be- a n.Umber of
weights for all n-gram features of ordersk. To ensure ~ Ways of defining the feature set. The optimization meth-
that every string inc* receives the correct weight, for 0ds we use begin at some initial setting farand then
any n-gramhw represented explicitly in the automaton, search for the parametefis: which maximizeLL (&)

h'w must also be represented explicitly in the automatonas defined in Eq. 3.

even if its weight is 0. The optimization method requires calculation of
. LLg(&) and the gradient of. Lz (&) for a series of val-
3.4 The perceptron algorithm ues fora. The first step in calculating these quantities is

The perceptron algorithm is incremental, meaning thato take the parameter valués and to construct an ac-
the language moddD is built one training example at ceptorD which accepts all strings iE*, such that

a time, during several passes over the training set. Ini- 4

tially, we build D to accept all strings ix* with weight _

0. For the perceptron experiments, we chose the param- wolr] = (@, )y

eterq to be a fixed constant, chosen by optimization on =1

the held-out set. The loop in the algorithm in figure 1 is For each training lattic&€,, we then construct a new lat-

implemented as: tice £, = Norm(aoL; o D). The latticeL, represents
Fort=1...T,i=1...N: (in the log domain) the distributiop (y|z;) over strings
~ y € GEN(x;). The value ofog ps (y;|z;) for any: can
o Calculatez; = argmax,cgen() ®(2,9) - & be computed by simply taking the path weighta$uch
= BestPath(aL; o D) thati[r] = y; in the new latticel!. Hence computation

of LLr(&) in Eq. 3 is straightforward.
f Calculating the n-gram feature gradients for the CRF
optimization is also relatively simple, one® has been
constructed. From the derivative in Eq. 4, for each
1...N,j=1...dthe quantity

In addition, averaged parameters need to be stored
(see section 2.2). These parameters will replace the un- D (4, yi) — Z Pa(yle:)®i(xs,y)  (8)
averaged parametersihonce training is completed. yEGEN (z;)

Note that the only n-gram features to be included in
D at the end of the training process are those that ocmust be computed. The first term is simply the num-
cur in either a best scoring path or a minimum error  ber of times thej'th n-gram feature is seen . The
pathy; at some point during training. Thus the percep-second term is the expected number of times that the
tron algorithm is in effect doing feature selection as aj'th n-gram is seen in the acceptdl,. If the j'th
by-product of training. GiverV training examples, and n-gram isw; ...w,, then this can be computed as
T passes over the training séf{ NT') n-grams willhave ~ExpCount (L}, w; ...w,). The GRM library, which
non-zero weight after training. Experiments in Roark etwas presented in Allauzen et al. (2003), has a direct im-
al. (2004) suggest that the perceptron reaches optimallementation of the functiokixpCount, which simul-
performance after a small number of training iterations taneously calculates the expected value of all n-grams of
for examplel’ = 1 or T = 2. ThusO(NT) can be very order less than or equal to a givenn a latticeL.
small compared to the full number of n-grams seen in The one non-ngram feature weight that is being esti-
all training lattices. In our experiments, the perceptronmated is the weight, given to the baseline ASR nega-
method chose around 1.4 million n-grams with non-zerdtive log probability. Calculation of the gradient 6L
weight. This compares to 43.65 million possible n-gramswith respect to this parameter again requires calculation
seen in the training data. of the term in Eq. 8 foj = 0 and: = 1...N. Com-

This is a key contrast with conditional random fields, putation ofy ", qrn(,,) Pa(y[z:)Po(2i, y) turns out to
which optimize the parameters of a fixed feature set. Feabe not as straightforward as calculating n-gram expec-
ture selection can be critical in our domain, as trainingtations. To do so, we rely upon the fact thiaf(z;, y),
and applying a discriminative language model oa#tr  the negative log probability of the path, decomposes to

e If z; # MinErr(L,,r;), then update the feature
weights as in figure 1 (modulo the sign, because o
the use of costs), and modify so as to assign the
correct weight to all strings.



the sum of negative log probabilities of each transition 40
in the path. We index each transition in the latti¢g

and store its negative log probability under the baseline  39.5¢
model. We can then calculate the required gradient from

L;, by calculating the expected value &f of each in- g 391 R o R Latiice
dexed transition irC;. 5 _ _ Perceptron, Feat=PN, N=1000
We found that an approximation to the gradient of 5385f —+— CRF,0 =, Feat=PL, Latfice
o, however, performed nearly identically to this exact R e

gradient, while requiring substantially less computation. > 38%.. S e

Let w} be a string ofn words, labeling a path in word-

lattice £}. For brevity, letP;(w}) = pa(w?|z;) be the 37.50

conditional probability under the current model, and let

Q;(w) be the probability ofv} in the normalized base- 37 500 1000

line ASR latticeNorm(L£;). Let L, be the set of strings Iterations over training

in the language defined b;. Then we wish to compute

E;fori=1...N, where Figure 3:Word error rate on the rt02 eval set versus training
iterations for CRF trials, contrasted with baseline recognizer

E, = E P (w?) log Q;(w?) performance and perceptron performance. Points are at every
wiel; 20 iterations. Each point (x,y) is the WER at the iteration with

the best objective function value in the interval (x-20,x].

DY Pi(wi)log Qi(welwi ™) (9)

Wi el kT m each utterance, a weighted word-lattice was produced,

representing alternative transcriptions, from the ASR
system. From each word-lattice, the oracle best path
was extracted, which gives the best word-error rate from
among all of the hypotheses in the lattice. The oracle

o om , k—1 word-error rate for the training set lattices was 12.2%.
B~ 3 ) Pilwd)logQilwnlui™s) We also performed trials with 1000-best lists for the same
training set, rather than lattices. The oracle score for the

= ) ExpCount(L},zyz)log Qi(z|zy)(10)  1000-best lists was 16.7%.

@yz€S; To produce the word-lattices, each training utterance
wheres; is the set of all trigrams seen i, The term W8S processed by the baseline ASR system. However,
log Q; (z|zy) can be calculated once before training forthese same utterances are what the acoustic and language

models are built from, which leads to better performance

every lattice in the training set; tHéxpC t term is g
calczlated as before usir?g the GRI\I;I Ii(k))lrla?y We have! the training utterances than can be expected when the

found this approximation to be effective in practice, ang/\SR system processes unseen utterances. To somewhat
it was used for the trials reported below. control for this, the training set was partitioned into 28

When the gradients and conditional likelihoods areSets. and baseline Katz backoff trigram models were built

collected from all of the utterances in the training set, thefor each set by including only transcripts from the other

contributions from the regularizer are combined to give27 sets. Since language models are generally far more

an overall gradient and objective function value. Thesd’O"€ to overtrain than standard acoustic models, this

values are provided to the parameter estimation routineJ0¢s & long way towqrq making the training conditions
similar to testing conditions.

which then returns the parameters for use in the next it Th th baseli inst which
eration. The accumulation of gradients for the feature set . ere are three baselines against which we are com-
aring. The first is the ASR baseline, with no reweight-

is the most time consuming part of the approach, but thid

is parallelizable, so that the computation can be dividedﬂ% frot\r:]v abdlsclr_lm|nat|vely_ttrr]a|ned n-tgran: ”.'Odg'- The
among many processors. other two baselines are with perceptron-trained n-gram

model re-weighting, and were reported in Roark et al.
4 Empirical Results (2004). The first 01_‘ these is for a prune_d—la;tlce trained
- . __ trigram model, which showed a reduction in word er-
We present empirical results on the Rich Transcriptionygr rate (WER) of 1.3%, from 39.2% to 37.9% on rt02.
2002 evaluation test set (rt02), which we used as our dethe second is for a 1000-best list trained trigram model,

velopment set, as well as on the Rich Transcription 2003yhich performed only marginally worse than the lattice-
Spring evaluation CTS test set (rt03). The rt02 set contrained perceptron, at 38.0% on rt02.

sists of 6081 sentences (63804 words) and has three sub-

sets: Switchboard 1, Switchboard 2, Switchboard Cel#-1 Perceptron feature set

lular. The rt03 set consists of 9050 sentences (76088Ve use the perceptron-trained models as the starting

words) and has two subsets: Switchboard and Fisher. point for our CRF algorithm: the feature set given to
We used the same training set as that used in Roarthe CRF algorithm is the feature set selected by the per-

et al. (2004). The training set consists of 276726 tran-ceptron algorithm; the feature weights are initialized to

scribed utterances (3047805 words), with an additionathose of the averaged perceptron. Figure 3 shows the

20854 utterances (249774 words) as held out data. Fgrerformance of our three baselines versus three trials of

The approximation is to make the following Markov
assumption:

wieLl; k=1...n
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40 ; ; ; ; Trial Iter | rt02 | rt03

ASR Baseline - 39.2 | 38.2

39.5¢ 1 Perceptron, Lattice - 37.9| 36.9

e Perceptron, N-best - 38.0| 37.2

o 39 .. Baseline recognizer CREF, Lattice, Percep Feats (1.4M1) 769 | 37.4 | 36.5

© — EeRf'geP”OgvsFiatjPlL;LLitht? CRF, N-best, Percep Feats (0.9M) 946 | 37.4 | 36.6

= —— ,0 = 0.5, Feat=PL, Lattice ; —

§38 5 T CRE.0- 05 Feat-E, 6-0.01 CREF, Latt!ce,e =0.01 (12M) 2714 | 376 | 36.5

o N . CRF.0=05 Fea=E. 8=0.9 CREF, Latticep = 0.9 (1.5M) 1679 | 37.5| 36.6

S [T . 4 d ! ] ]
2 ) gl —— 1 Table 1: Word-error rate results at convergence iteration for

§% \ e various trials, on both Switchboard 2002 test set (rt02), which
37.5} T ey was used as the dev set, and Switchboard 2003 test set (rt03).
trigram must occur in a set of paths, the sum of the con-
500 1000 1500 2000 2500 ditional probabilities of which must be greater than our

Iterations over training thresholdd = 0.01. This threshold resulted in a feature
. ] _set of roughly 12 million features, nearly 10 times the
Figure 4:Word error rate on the rt02 eval set versus training i, ¢ of the perceptron feature set. For better comparabil-
iterations for CRF trials, contrasted with basel_lne recognizeny \vith that feature set. we set our thresholds higher, so
performance and perceptron performance. Points are at evey at trigrams were prun,ed if their expected count fell i)e-
20 iterations. Each point (x,y) is the WER at the iteration with . . -
the best objective function value in the interval (x-20,x]. low 6 = 0.9, and bigrams were pruned if their expected

] i ) ~_count fell belowd = 0.1. We were concerned that this

the CRF algorithm. In the first two trials, the training may leave out some of the features on the oracle paths, so
set consists of the pruned lattices, and the feature Sgje added back in all bigram and trigram features that oc-
is from the perceptron algorithm trained on pruned lat-cyrred on oracle paths, giving a feature set of 1.5 million

The first trial set the regularizer constant oo, so that

the algorithm was optimizing raw conditional likelihood.
The second trial is with the regularizer constant 0.5,
which we found empirically to be a good parameteriza-

37
0

Figure 4 shows the results for three CRF trials versus
our ASR baseline and the perceptron algorithm baseline
on o he hldout 5. A can be see 0 165 1 o esmot et b3y e o
sults, reg.ularl'zatllon IS critical. viously shown. The WER at convergence for the big

The third trial in this set uses the feature.set from thefeature set (12 million features) is 37.6%; the WER at
perceptron algorithm trained on 1000-best lists, and use(§onvergence for the smaller feature set (1,.5 million fea-

CRF optimization on these on the_se same 1OOO'bQSt”St?ures) is 37.5%. While both of these other feature sets
There were 0.9 million features in this feature set. For

A X converge to performance close to that using the percep-
this trial, we also used = 0.5. As with the PEICEP-  1on features, the number of iterations over the training
tr(_)?] bﬁsellnes, gh? n-_best t;]'al per;‘orms nela_lrly 'qegt'?czgydata that are required to reach that level of performance
with the pruned lattices, here also resulting in 37.4% P
WER. This may be useful for techniques that would beare many more than for the perceptron-initialized feature
more expensive to extend to lattices versus n-best lists
(e.g. models with unbounded dependencies).

These trials demonstrate that the CRF algorithm ca
do a better job of estimating feature weights than the per

Table 1 shows the word-error rate at the convergence
Jteration for the various trials, on both rt02 and rt03. All
of the CRF trials are significantly better than the percep-

; : formance, using the Matched Pair Sentence Seg
ceptron algorithm for the same feature set. As mentioned @ PET i .
in the earlier section, feature selection is a by-product ofnent test for WER included with SCTK (NIST, 2000).

the perceptron algorithm, but the CRF algorithm is givenon rt02, the N-best and perceptron initialized CRF trials

a set of features. The next two trials looked at selecting€"e Were significantly better than the lattice perceptron
tp < 0.001; the other two CRF trials were significantly

Elatu_re sets other than those provided by the perceptro@etter than the lattice perceptronzatc 0.01. On rt03,
gorithm. X -

the N-best CRF trial was significantly better than the lat-
4.2 Other feature sets tice perceptron ap < 0.002; the other three CRF tri-
In order for the feature weights to be non-zero in this ap-2ls were significantly better than the lattice perceptron at
proach, they must be observed in the training set. The < 0.001.
number of unigram, bigram and trigram features with Finally, we measured the time of a single iteration over
non-zero observations in the training set lattices is 43.6%he training data on a single machine for the perceptron
million, or roughly 30 times the size of the perceptron algorithm, the CRF algorithm using the approximation to
feature set. Many of these features occur only rarelythe gradient ofyy, and the CRF algorithm using an exact
with very low conditional probabilities, and hence cannotgradient ofa. Table 2 shows these times in hours. Be-
meaningfully impact system performance. We prunedcause of the frequent update of the weights in the model,
this feature set to include all unigrams and bigrams, buthe perceptron algorithm is more expensive than the CRF
only those trigrams with an expected count of greateralgorithm for a single iteration. Further, the CRF algo-
than 0.01 in the training set. That is, to be included, arithm is parallelizable, so that most of the work of an



CRF Steven J. Benson, Lois Curfman Mclnnes, Jorge J.&yland Jason
Features Percep| approx | exact Sarich. 2002. Tao users manual. Technical Report ANL/MCS-TM-
Lattice, Percep Feats (1.4M) 7.10 1.69 3.61 242-Revision 1.4, Argonne National Laboratory.
N-best, Percep Feats (0.9M) 3.40 0.96 1.40 Zheng Chen, Kai-Fu Lee, and Ming Jing Li. 2000. Discriminative
Lattice,d = 0.01 (12M) - 204 4.75 training on language model. IRroceedings of the Sixth Interna-
tional Conference on Spoken Language Processing (ICR&l)
Table 2: Time (in hours) for one iteration on a single Intel  jing, China.
Xeon 2.4Ghz processor with 4GB RAM. Michael Collins. 2002. Discriminative training methods for hidden

iterati be sh d ltiol 0 markov models: Theory and experiments with perceptron algo-
lteraton can be shared among muftiple processors. OUr yjipmg |n Proceedings of the Conference on Empirical Methods

mOSt common tl’alnlng Setup fOI’ the CRF a|g0l‘lthm was in Natural Language Processing (EMNL@)ages 1-8.

parallelized between 20 processors, using the approxiichael Collins. 2004. Parameter estimation for statistical parsing
mation to the gradient. In that setup, using the 1.4M fea- models: Theory and practice of distribution-free methods. In Harry
ture set, one iteration of the perceptron algorithm took Bunt, John Carroll, and Giorgio Satta, editokew Developments

th t of | ti imatelv 80 it in Parsing TechnologyKluwer.
€ Ssame amount ot real ime as approximatety €raysay Freund and Robert Schapire. 1999. Large margin classification

tions of CRF. using the perceptron algorithrMachine Learning3(37):277—296.
. Frederick Jelinek. 1995. Acoustic sensitive language modeling. Tech-
5 Conclusion nical report, Center for Language and Speech Processing, Johns

L . Hopkins University, Baltimore, MD.
We have contrasted two approaCheS to dls’C”mmatw%/lark Johnson, Stuart Geman, Steven Canon, Zhiyi Chi, and Stefan

language model estimation on a difficult large vocabu- Riezler. 1999. Estimators for stochastic “unification-based” gram-
lary task, showing that they can indeed scale effectively mars. InProceedings of the 37th Annual Meeting of the Association
to handle this size of a problem. Both algorithms have for Comhpu(;at'ona' L'QQU'St'CﬂoageS 535-541. -
their benefits. The perceptron algorithm selects a relaSaeev Khudanpur and Jun Wu. 2000. Maximum entropy techniques
vel I fth | f . for exploiting syntactic, semantic and collocational dependencies in
.“Ve y small subset of the tota eatu.r? set, and requires language modelingComputer Speech and Languade}(4):355—
just a couple of passes over the training data. The CRF 372.
algorithm does a better job of parameter estimation foHong-Kwang Jeff Kuo, Eric Fosler-Lussier, Hui Jiang, and Chin-
the same feature set, and is parallelizable, so that each Hui Lee. 2002. Discriminative training of language models for
o . : speech recognition. IRroceedings of the International Conference
pass over the training set can require just a fraction of Acoustics, Speech, and Signal Processing (ICASSR3Ndo,
the real time of the perceptron algorithm. Florida.

The best scenario from among those that we investigohn Lafferty, Andrew McCallum, and Fernando Pereira. 2001. Con-
gated was a combination of both approaches, with the ditional random fields: Probabilistic models for segmenting and
output of the perceptron algorithm taken as the starting 'é‘gﬁggg sequence data, firoc. ICML, pages 282289, Willams
point for.CRF Qstlmatlon. . Robert Malouf. 2002. A comparison of algorithms for maximum en-

As a final point, note that the methods we describe do ropy parameter estimation. Proc. CoNLL, pages 49-55.
not replace an existing language model, but rather comandrew McCallum and Wei Li. 2003. Early results for named entity
plement it. The existing language model has the benefit recognition with conditional random fields, feature induction and
that it can be trained on a large amount of text that does "r‘]’eb'emar?@i'ex'cogs-g’ﬁ- gON_LL 4 Michael Riev. 2002

. ; ehryar Mohri, Fernando C. N. Pereira, and Michael Riley. .
not have.Speech trgngcrlptlons. It has the dlsadvantad\é Weighted finite-state transducers in speech recognit@mputer
of not being a discriminative model. The new language  speech and Languag#s(1):69-88.
model is trained on the speech transcriptions, meaningsST. 2000. Speech recognition scoring toolkit (sctk) version 1.2c.
that it has less training data, but that it has the advan- Available athttp://www.nist.gov/speech/tools .
tage Of discriminative training — and in particuiar, the ad_DaVId Pinto, Andrew McCallum, Xlng Wei, and W. Bruce Croft. 2003.

vantage of being able to learn negative evidence in the Table extraction using conditional random fields Pioc. ACM SI-

form of neQatlv_e WEIghtS on n-grams which are ra"‘(alyAdwait Ratnaparkhi, Salim Roukos, and R. Todd Ward. 1994. A max-
or never seen in natural language text (e.g., “the of”), imum entropy model for parsing. IRroceedings of the Interna-
but are produced too frequently by the recognizer. The tional Conference on Spoken Language Processing (ICSizRjes
methods we describe combines the two language models, 803-806. _ _ _
allowing them to complement each other. Br|i’:1n Roark, Murat Saraclar, and Michael Cc_)lllns. 2004. Corrective
anguage modeling for large vocabulargr with the perceptron al-
gorithm. InProceedings of the International Conference on Acous-
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