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Abstract

One of the most robust findings of experimental psycholinguistics is that the context in which
a word is presented influences the effort involved in processing that word. We present a com-
putational model of contextual facilitation based on word co-occurrence vectors, and empiri-
cally validate the model through simulation of three representative types of context
manipulation: single word priming, multiple-priming and contextual constraint. The aim of our
study is to find out whether special-purpose mechanisms are necessary in order to capture the

pattern of the experimental results.

1 Introduction

In psycholinguistics, lexical access is the proc-
ess of retrieving a word from the mental lexi-
con using perceptual and contextual
information. In everyday life, the point of this
process is to facilitate communication. Many
different experimental methodologies have
been brought to bear on the study of this proc-
ess, including visual and auditory lexical deci-
sion tasks (e.g., Meyer & Schvaneveldt, 1971;
Moss, Ostrin, Tyler & Marslen-Wilson, 1995),
event-related brain potentials (e.g., Brown,
Hagoort & Chwilla, 2000), and the recording
of eye movements during normal reading. The
extensive literature concerned with contextual
influences on lexical processing divides into
three main strands: (1) lexical priming (single-
word contexts, where the prime-target relation
is semantic or associative in nature); (2) multi-
ple priming (two or more individual lexical
primes); and (3) contextual constraint (the set
of primes is structured by linguistic relation-
ships with one another).

Because these effects are robust and appar-
ently automatic, researchers often seek expla-
nations in terms of low-level mechanisms such
as spreading activation, compound-cue models

(Ratcliff & McKoon, 1988), and distributed
neural network models (Cree, McRae &
McNorgan, 1999; Plaut, 1995). When these
relatively simple models fail to cover every
aspect of the behavioral data, one response has
been to develop theories that meld several
mechanisms (Keefe & Neely, 1990). Another
response is to prefer simplicity over detailed
explanatory power. Plaut and Booth (2000),
for example, make no claim about their net-
work model’s ability to account for blocking
and strategy effects, arguing that it would de-
tract from the main point of their work to focus
on these, which may in any case be due to
other mechanisms.

We present a model even simpler than Plaut
and Booth’s. We demonstrate that distribu-
tional information available from the linguistic
environment — information about word usage
that is inherent in large language corpora — can
capture salient aspects of a range of data from
the literature. It is not necessary to invoke dis-
tinct mechanisms for the different priming set-
tings. Furthermore, we did not need to vary the
independently tunable parameters of our algo-
rithm in order to obtain our results. The same
model has been used in simulations of eye
movement behavior during reading (McDon-
ald, 2000) and event-related potentials re-



corded from the brain (McDonald & Brew,
2001).

2 Distributional models

The normal setting for speech processing is an
environment in which acoustic cues are unreli-
able or absent, so it makes sense for the hearer
to draw upon available resources in order to
maximize the chances of successful compre-
hension. Such resources include any prior
knowledge that the hearer might have about
what the speaker will say next.

One way to encode prior knowledge is to
construct probabilistically weighted hypotheses
about the meaning of upcoming words. Our
model, which we call the ICE model (for In-
cremental Construction of semantic Expecta-
tions), is of this type. Specifically, it maintains
a vector of probabilities as its representation of
the current best guess about the likely location
in semantic space of the upcoming word. We
use the semantic space defined by the 500
most frequent content words of the spoken por-
tion of the British National Corpus (BNC-
spoken).

When a word is observed, the system up-
dates its meaning representation to reflect the
newly arrived information. The update mecha-
nism, which uses standard multivariate distri-
butions from Bayesian statistics, is designed to
give greater weight to recent words than to
those far in the past.

A number of studies have tried to uncover
correlations between the similarity structure of
word vectors and measurable indicators of hu-
man performance, such as lexical priming
(e.g., Lund, Burgess & Atchley, 1995;
McDonald & Lowe, 1998) and semantic simi-
larity ratings (McDonald, 2000). The same
representations also play a role in simulations
of children’s vocabulary acquisition and syno-
nym choice tests (Landauer & Dumais, 1997).
All of these studies rely on the basic assump-
tion that word vectors can function as conven-
ient proxies for more highly articulated
semantic representations. Our primary claim is
that word vectors also provide a compact and
perspicuous account of priming phenomena
normally ascribed to a multitude of mecha-
nisms.

2.1 The ICE model

We use a vector-based representation of the
“best-guess” hypothesis about context.
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Figure 1. Distributional representations of
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“sake”,”make”,”run” and the null context.

The vector representations in Figure 1 encode
the number of times the window five words to
either side of the target word is discovered to
include each of two context words ¢, and ¢y
(Figure 1 shows the semantic space as having
two dimensions, rather than the 500 actually
used in our simulations.) The representations
for the real words are formed by examining the
distribution of context words in the neighbor-
hood of these target words, while the represen-
tation of the null context is derived from the
distribution of context words over the corpus
as a whole. “Sake” is shown as having a distri-
butional representation far from that of the null
context, while “make” and “run” are relatively
close. Therefore we predict that it will be
harder to process “sake” in the null context
than it is to process the other words.

The account of priming: in single word prim-
ing, we need two moves within the semantic
space. Consider the case of the word “metal”
being primed by the word “bronze”, as shown
in Figure 2. The first step moves the system’s
hypothesis away from the null context. The
resulting intermediate position is shown as the
diagonal of the quadrilateral linking “metal” to
the origin and the null context.



Figure 2. A distributional account of priming.

In the second step, the system needs to move
from the intermediate position to the final posi-
tion, which is the vector representation of the
target word. The relative entropy between the
intermediate position and the target distribu-
tion is our simulation of the effort expended by
the lexical processor in understanding the
word.

The model: Our model is Bayesian; the vec-
tors shown in the diagrams are summaries of
its ongoing estimates of the underlying high-
dimensional probability distribution that gives
rise to the observed distribution of co-
occurring context words. This licenses the use
of relative entropy, which we employ as the
primary dependent variable in our simulations
of semantic context effects. Because every dis-
tribution that we consider involves a contribu-
tion from a highly unspecific distribution
associated with the null context, there are no
zeroes in the distributions, and relative entropy
can be used directly, with no need for smooth-
ing.

The distributions: We can simulate mean-
ings using multinomials — computing relative
entropy by comparing entries in the 500-
dimensional vectors associated with the con-
text words — but to model the dynamic proc-
esses involved in semantic priming we need to
represent more than just the maximum of the
likelihood. We also want to model the extent to
which the lexical processor is committed to the
hypothesis that the target will be found in the
location that we expect.

For reasons of simplicity we prefer distribu-
tions that have convenient analytical properties
and concise parametric representations. One
such is the Dirichlet distribution, which is
widely used in Bayesian statistics (Gelman,
Carlin, Stern & Rubin, 1995). We begin with
prior information expressed in the form of a

Dirichlet, then update it with data drawn from
a multinomial. The resulting posterior distribu-
tion is also a Dirichlet, albeit one whose pa-
rameters have been adjusted to better fit the
recently observed data. This closure property
(known in the statistical literature as conju-
gacy) is crucial to our application, since it al-
lows us to model both prior and posterior
hypotheses in the same way.

The difference between the Dirichlet and the
multinomial is that the latter is parameterized
by a vector of probabilities, subject to the con-
straint that the sum must be zero, while the
Dirichlet is specified by a vector of arbitrary
real-valued weights, subject to no such con-
straint. It represents both a direction in seman-
tic space and the number of “virtual samples”
on which the estimate of that direction is
based. It can therefore be used in priming
simulations to represent both the current best
guess about the upcoming word’s position in
semantic space and the strength with which
this belief is held.

We need to decide how the balance will be
struck between the prior and the incoming new
word, and we need to implement some dis-
counting strategy to prevent the weight given
to the prior from increasing without limit and
overwhelming the incoming data.

Figure 3: Discounting

To avoid this, we first add together the vectors
corresponding to the two words, then shrink
the result, as shown in Figure 3. The sum of
the two word vectors is the full diagonal of the
quadrilateral, while the shrunken version is just
the bold part of the diagonal.

Model parameters: The ICE model has two
free parameters. The first parameter deter-
mines how much weight should be given to
prior information. Recall that the ICE model
forms its probabilistically weighted hypotheses
by integrating prior knowledge (derived from
previous words in the context) with new data



(the currently encountered word). For example,
if the sum of the prior weights is 1000, and the
results of 100 new “multinomial trials” are
recorded, prior knowledge is deemed ten times
more important to the outcome than the newly
arrived evidence.

After every update we scale the total prior
weight so that it is constant. This produces a
straightforward discounting of old information,
and is the simplest approach that we could find
that has this biologically plausible property.
We set the total prior weight parameter to
2000 by maximizing the predictive probability
of a small corpus (see McDonald, 2000, for
details).

The second parameter is the scheme for de-
termining the weight to be given to the incom-
ing word. We could have given words weight
in proportion to their frequency, but that would
have given undue weight to frequent words.
We therefore used a fixed size sample, setting
the sample size parameter to 500. Thus, our
model weights prior context as four times more
significant than the incoming word. We have
tested the sensitivity of our results to variations
in this parameter, and the results are not sig-
nificantly impacted by any but the largest
changes. Although there are certainly other
conceivable discounting schemes, this one is
simple, robust, and easy to apply.

This tells us how to generate the vectors for
the intermediate stage of the priming process,
producing new positions in the semantic space.
We compare this positions using relative en-
tropy, just as if they were ordinary multinomi-
als. Although it is only an approximation, it
works well, as the results below demonstrate.

The account of multiple priming: with the
Dirichlet-based simulation of priming in hand,
the simulation of multiple priming is easy. We
just need three steps instead of two.

Reaction time modeling: Our Bayesian meas-
ure is only one of the components that would
be needed in a full mechanistic model of hu-
man reaction time (RT) behavior. To do justice
to the richness of RT data, one would need to
model not only the effects of informational
context but also those of time pressure and ex-
perimental setup. Our model could be used, for

example, to parameterize a diffusion model
(Ratcliff & Smith, 2004).

3 Simulations

We used the same model settings for three ex-
periments, of which two are reported here. The
third is simulation of a contextual constraint
study by Altarriba, Kroll, Sholl and Rayner
(1996). This is described in a longer version of
the present paper (McDonald & Brew, 2002).

3.1 Simulation 1: single-word priming

The first test of the ICE model was to simulate
the results of Hodgson’s (1991) single-word
lexical priming study. We tested the hypothesis
that a minimal priming context — a single word
—would have a reliable effect on the amount of
information conveyed by the target word, and
that this effect would pattern with the human
behavioral data. Specifically, we predicted that
a related prime word (such as value) would
reduce the relative entropy of a target word
(like worth), compared with an unrelated prime
(such as tolerate). The difference in ICE val-
ues resulting from the divergent influence of
the related and unrelated prime words on the
form of the posterior distribution was expected
to correspond to the difference in lexical deci-
sion response times reported by Hodgson
(1991, Experiment 1).

Hodgson (1991) employed prime-target
pairs representing a wide range of lexical rela-
tions: antonyms (e.g., enemy-friend), syno-
nyms (e.g., dread-fear), conceptual associates
(e.g., teacher-class), phrasal associates (e.g.,
mountain-range), category co-ordinates (e.g.,
coffee-milk) and superordinate-subordinates
(e.g., travel-drive). Hodgson found equivalent
priming effects for all six types of lexical rela-
tion, indicating that priming was not restricted
to particular types of prime-target relation,
such as the category member stimuli employed
by the majority of semantic priming studies.

Method

From the 144 original prime-target pairs listed
in Hodgson (1991, Appendix), 48 were re-
moved because either the prime or the target
word (or both) had a lexeme frequency of less
than 25 occurrences in the BNC-spoken. The



reliability of co-occurrence vector representa-
tions decreases with word frequency (McDon-
ald & Shillcock, 2001), making it preferable to
refrain from collecting statistics for low-
frequency words. The number of items remain-
ing in each Lexical Relation condition after
frequency thresholding is displayed in Table 1.

The ICE value for each Related prime-target
combination was calculated using the model
parameter settings detailed earlier. The corre-
sponding value for each Unrelated item was
computed as the mean of the ICE values for
the target word paired with each of the other
primes in the Lexical Relation condition.! For
example, each Unrelated datapoint in the An-
tonym condition was computed as the mean of
15 ICE values.

Results and Discussion

We conducted a two-way analysis of variance
on the simulated priming data generated by the
ICE model. The factors were Lexical Relation
(antonyms, synonyms, conceptual associates,
phrasal associates, category co-ordinates, su-
perordinate-subordinates) and Context (related,
unrelated). ICE values for each cell of the de-
sign are presented in Table 1. (ICE values can
be considered analogous to reaction times, the
smaller the value, the shorter the RT). As ex-
pected, there was a main effect of Context:
collapsing across all types of Lexical Relation,
relative entropy was significantly less when
the target is preceded by a related prime than
when it is preceded by an unrelated prime:
F(1,90)=71.63, MSE=0.0037, p<0.001. There
was no main effect of Lexical Relation:
F(5,90)<1, and importantly, no evidence for a
Lexical Relation x Context interaction:
F(5,90)<1. Separate ANOVAs conducted for
each type of Relation showed consistent, reli-
able priming effects for all six relations

As was the case for human subjects, Context
did not interact with Lexical Relation. There is
no evidence here for different mechanisms for

! Because the unrelated primes corresponding to each
target word were not supplied in Hodgson (1991), we
used this technique to simulate the unrelated Context
condition. An alternative would be to select a prime word
at random from the other items in the same condition to
serve as the unrelated prime; both methods give the same
results.

the different types of word-to-word relations.
We know that ICE is using nothing but distri-
butional information, and it could be that hu-
man subjects are doing the same.

3.2 Simulation 2: multiple priming

Simulation 1 demonstrated that single-word
lexical priming can be modeled as the influ-
ence of the local linguistic context on the
quantity of information conveyed by a word
about its contextual behavior. In Simulation 2,
we submit the ICE model to a more stringent
test: the lexical priming situation where more
than one prime word is presented before the
target. The multiple priming paradigm — the
procedure by which two or more lexical primes
precede the target word — is a natural extension
of the single-word priming task. Multiple
priming can be seen as occupying the middle
ground between the lexical priming and con-
textual constraint paradigms. In multiple prim-
ing experiments, the prime words are presented
as unstructured lists, but in contextual con-
straint studies, whole sentences are presented
in their original order, and the usual cues to
syntactic structure are present. Despite the fact
that multiple primes do not form a syntacti-
cally coherent unit, research by Balota and
Paul (1996) and others has shown that two (or
more) primes are better than one.

Balota and Paul were interested in how mul-
tiple primes — construed as independent
sources of spreading activation — influenced
target word processing. Using two-word con-
texts, they separately manipulated the related-
ness of each prime to the target word; this
procedure allowed additive priming effects to
be accurately measured. In their first experi-
ment, they demonstrated that the multiple-
prime advantage was additive: the facilitation
obtained in the two-related-primes condition
(RR) was equivalent to the sum of the facilita-
tion for the one-related-prime conditions (UR
and RU). (See Table 2 for sample stimuli). Be-
cause they found evidence for simple additiv-
ity using a range of prime presentation
durations and both lexical decision and naming
as response tasks (Balota & Paul, 1996, Ex-
periments 1-5), the authors state that “... we
believe that contextual constraints can produce



simple additive influences on target process-
ing.” (p. 839). In terms of the ICE model, two
related prime words would need to constrain
the processor’s expectations about the meaning

of the target to a greater degree than a single
related prime in order to simulate the multiple-
prime advantage.

Table 1: Mean ICE Values (bits) for Related and Unrelated Primes and Simulated Priming Effect
(Difference) for Six Types of Lexical Relation

Lexical Context

Relation N Related Unrelated Effect
Semantic

Antonym 16 1.133  1.230 0.097
Synonym 11 0.673  0.736 0.063
Associate

Conceptual 17 1.086  1.172 0.086
Phrasal 20 1.095 1.153 0.058
Category

Coordinates 18 1.165 1.239 0.074
Super-subordinates 14 1.073 1.140 0.067

Table 2. Results of the Simulation of (Balota and Paul 1996, Experiment 1), with Mean Lexical Deci-
sion Response Times (RT) and Amount of Priming (Priming)

Condition  Prime-1 Prime-2 Target ICE RT Priming
(bits)  (msec) (msec)

Homograph targets
RR game drama play 0.895 601 34
UR lip drama play 0.970 618 17
RU game tuna play 0.932 630 5
Uu lip tuna play 1.011 635

Category label targets
RR hate rage emotion 1.095 606 34
UR author rage emotion 1.151 616 24
RU hate design emotion 1.114 627 13
uu author design emotion 1.193 640

Note: R=related prime, U=unrelated prime.

Method

The design was identical to that of Balota and
Paul’s Experiment 1. This was a 2 x 4 mixed fac-
tors design, with Type of Target (homograph,
category label) as the between-items factor, and
Prime Type (RR, UR, RU, UU) as the within-
items factor.

Preparation of the lexical stimuli was very
similar to the procedure carried out in Simulation
1. Inflected stimuli were first converted to their

canonical forms, and items containing target or
related prime words that did not meet the 25-
occurrence frequency threshold were removed.
Unrelated prime words that failed to meet the
frequency threshold were replaced with unrelated
primes randomly chosen from the set of dis-
carded items. From the 106 original homograph
items, 69 could be used in the simulation. Out of
the 94 original category stimuli, 39 met the fre-
quency criterion. (See Table 2 for sample materi-
als).



We computed ICE values for each target word
when preceded by each of the four Prime Types.
Model parameter settings were identical to those
used in Simulation 1.

Results and Discussion

As in Simulation 1, facilitation was simulated by
a reduction in relative entropy in one of the Re-
lated prime conditions (RR, RU and UR), com-
pared with the UU (two-unrelated-primes)
condition. Facilitation was apparent for all three
Related conditions. The size of the context effect
was 0.110 bits for the RR condition, 0.041 bits
for the UR condition, and 0.079 bits for the RU
condition. These differences in mean ICE value
were verified by an analysis of variance, which
revealed a main effect of Prime Type,
F(3,306)=40.53, MSE=0.0058, p<0.001. There
was no reliable effect of Target Type.

The pattern of results was closely comparable
to the human data. As expected, the strongest
context effect was observed in the RR condition,
which was larger than the effects in both the UR
and RU conditions. This result replicates the mul-
tiple-prime advantage reported by Balota and
Paul. The results of the ICE simulation did not
match the human data completely; specifically,
the context effect for the RU targets was larger
than for the UR targets, whereas the pattern ob-
served in human subjects was the opposite. This
difference between the RU and UR conditions
was statistically reliable: planned comparisons
(with suitable alpha corrections) confirmed that
all four conditions differed reliably from one
other, at the a=0.05 level of significance. We
investigated further. Briefly, it appears that the
discrepancy may be an artifact of the particular
choice of experimental materials. The larger
simulated priming effect for the RU condition
was probably due to the differences between the
Prime-1 words and the Prime-2 words.

4 Conclusions and future work

Our approach is simple, and involves few tunable
parameters, and so lends itself to exploratory
work and to the generation of clear and testable
hypotheses. It is straightforward, given a large
corpus and a sufficiently precise working hy-
pothesis, to create sets of stimulus materials that
should produce context effects, and to test them

using human participants. Because of the multi-
plicity of relevant linking relations evidenced by
Hodgson, 1991, this would be harder to do in a
spreading activation framework.

Another avenue for exploration is to use the
combination of ICE and the refined lexical rela-
tions encoded in WordNet to create materials that
would allow a larger scale replication of the re-
sults of Hodgson (1991). Such replication is in-
dependently desirable, since new reaction times
would address the potential objection that we
have unintentionally tuned our method to Hodg-
son’s data. In the same vein, since our distribu-
tional methods provide a cheap and easy tool for
exploratory studies, we intend to look more
closely at the reasons for the discrepancies be-
tween our results and those of Balota and Paul
(1996).

The present simulations show that a range of
contextual effects can be subsumed under the
same distributional mechanism, and that no task
specific tuning of the parameters is necessary.
Our model is computationally efficient and us-
able on a large scale to mine corpora for poten-
tially interesting experimental materials.
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