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Abstract
Often one may wish to learn a tree-to-tree mapping, training it
on unaligned pairs of trees, or on a mixture of trees and strings.
Unlike previous statistical formalisms (limited to isomorphic
trees),synchronous TSGallows local distortion of the tree topol-
ogy. We reformulate it to permit dependency trees, and sketch
EM/Viterbi algorithms for alignment, training, and decoding.

1 Introduction: Tree-to-Tree Mappings

Statistical machine translation systems are trained on
pairs of sentences that are mutual translations. For exam-
ple, (beaucoup d’enfants donnent un baiserà Sam, kids
kiss Sam quite often). This translation is somewhat free,
as is common in naturally occurring data. The first sen-
tence is literallyLots of’children give a kiss to Sam.

This short paper outlines “natural” formalisms and al-
gorithms for training on pairs oftrees. Our methods work
on either dependency trees (as shown) or phrase-structure
trees. Note that the depicted trees are not isomorphic.

a

kiss

baiser

donnent

Sam often

quite

beaucoup un Sam

d’

enfants

kids

Our main concern is to develop models that can align
and learn from these tree pairs despite the “mismatches”
in tree structure. Many “mismatches” are characteristic
of a language pair: e.g., preposition insertion (of → ε),
multiword locutions (kiss↔ give a kiss to; misinform
↔ wrongly inform), and head-swapping (float down↔
descend by floating). Such systematic mismatches should
be learned by the model, and used during translation.

It is even helpful to learn mismatches that merely tend
to arise during free translation. Knowing thatbeaucoup
d’ is often deleted will help in aligning the rest of the tree.

When would learned tree-to-tree mappings be useful?
Obviously, in MT, when one has parsers for both the
source and target language. Systems for “deep” anal-
ysis and generation might wish to learn mappings be-
tween deep and surface trees (Böhmov́a et al., 2001)
or between syntax and semantics (Shieber and Schabes,
1990). Systems for summarization or paraphrase could
also be trained on tree pairs (Knight and Marcu, 2000).
Non-NLP applications might include comparing student-
written programs to one another or to the correct solution.

Our methods can naturally extend to train on pairs of
forests(including packed forests obtained by chart pars-
ing). The correct tree is presumed to be an element of
the forest. This makes it possible to train even when the
correct parse is not fully known, or not known at all.

2 A Natural Proposal: Synchronous TSG

We make the quite natural proposal of using a syn-
chronous tree substitution grammar (STSG). An STSG
is a collection of (ordered) pairs of alignedelementary
trees. These may be combined into aderived pair of
trees. Both the elementary tree pairs and the operation to
combine them will be formalized in later sections.

As an example, the tree pair shown in the introduction
might have been derived by “vertically” assembling the
6 elementary tree pairs below. The_ symbol denotes
a frontier node of an elementary tree, which must be
replaced by the circledroot of another elementary tree.
If two frontier nodes are linked by a dashed line labeled
with thestateX, then they must be replaced by two roots
that are also linked by a dashed line labeled withX.
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The elementary trees represent idiomatic translation
“chunks.” The frontier nodes represent unfilled roles in
the chunks, and the states are effectively nonterminals
that specify the type of filler that is required. Thus,don-
nent un baiser̀a (“give a kiss to”) corresponds tokiss,
with the French subject matched to the English subject,
and the French indirect object matched to the English
direct object. The states could be more refined than
those shown above: the state for the subject, for exam-
ple, should probably be notNPbut a pair (Npl, NP3s).

STSG is simply a version of synchronous tree-
adjoining grammar or STAG (Shieber and Schabes, 1990)
that lacks the adjunction operation. (It is also equivalent
to top-down tree transducers.) What, then, is new here?

First, we know of no previous attempt tolearn the
“chunk-to-chunk” mappings. That is, we do notknowat
training time how the tree pair of section 1 was derived,
or even what it was derived from. Our approach is to
reconstructall possible derivations, using dynamic pro-
gramming to decompose the tree pair into aligned pairs
of elementary trees in all possible ways. This produces
a packed forest of derivations, some more probable than



others. We use an efficient inside-outside algorithm to
do Expectation-Maximization, reestimating the model by
training on all derivations in proportion to their probabil-
ities. The runtime is quite low when the training trees are
fully specified and elementary trees are bounded in size.1

Second,it is not a priori obvious that one can reason-
ably use STSG instead of the slower but more powerful
STAG. TSG can be parsed as fast as CFG. But without
an adjunction operation,2, one cannot break the training
trees into linguistically minimal units. An elementary
tree pairA = (elle est finalement partie, finally she left)
cannot be further decomposed intoB = (elle est partie,
she left)andC = (finalement, finally). This appears to
miss a generalization. Our perspective is that the gener-
alization should be picked up by the statistical model that
defines the probability of elementary tree pairs.p(A) can
be defined using mainly the same parameters that define
p(B) andp(C), with the result thatp(A) ≈ p(B) · p(C).
The balance between the STSG and the statistical model
is summarized in the last paragraph of this paper.

Third, our version of the STSG formalism is more
flexible than previous versions. We carefully address the
case of empty trees, which are needed to handle free-
translation “mismatches.” In the example, an STSG can-
not replacebeaucoup d’(“lots of”) in the NP by quite
oftenin the VP; instead it must delete the former and in-
sert the latter. Thus we have the alignments(beaucoup
d’, ε) and(ε, quite often). These require innovations. The
tree-internal deletion ofbeaucoup d’is handled by an
empty elementary tree in which the root is itself a fron-
tier node. (The subject frontier node ofkiss is replaced
with this frontier node, which is then replaced withkids.)
The tree-peripheral insertion ofquite oftenrequires an
English frontier node that is paired with a Frenchnull.

We also formulate STSGs flexibly enough that they can
handle both phrase-structure trees and dependency trees.
The latter are small and simple (Alshawi et al., 2000):
tree nodes are words, and there need be no other structure
to recover or align. Selectional preferences and other in-
teractions can be accommodated by enriching the states.

Any STSG has a weakly equivalent SCFG that gen-
erates the same string pairs. So STSG (unlike STAG)
has no real advantage for modelingstring pairs.3 But
STSGs can generate a wider variety oftree pairs, e.g.,
non-isomorphic ones. So when actual trees are provided
for training, STSG can be more flexible in aligning them.

1Goodman (2002) presents efficient TSG parsing with un-
bounded elementary trees. Unfortunately, that clever method
does not permit arbitrary models of elementary tree probabili-
ties, nor does it appear to generalize to our synchronous case.
(It would need exponentially many nonterminals to keep track
of an matching of unboundedly many frontier nodes.)

2Or a sister-adjunction operation, for dependency trees.
3However, thebinary-branchingSCFGs used by Wu (1997)

and Alshawi et al. (2000) are strictly less powerful than STSG.

3 Past Work

Most statistical MT derives from IBM-style models
(Brown et al., 1993), which ignore syntax and allow ar-
bitrary word-to-word translation. Hence they are able to
align any sentence pair, however mismatched. However,
they have a tendency to translate long sentences into word
salad. Their alignment and translation accuracy improves
when they are forced to translate shallow phrases as con-
tiguous, potentially idiomatic units (Och et al., 1999).

Several researchers have tried putting “more syntax”
into translation models: like us, they use statistical ver-
sions of synchronous grammars, which generate source
and target sentences in parallel and so describe their cor-
respondence.4 This approach offers four features absent
from IBM-style models: (1) a recursive phrase-based
translation, (2) a syntax-based language model, (3) the
ability to condition a word’s translation on the translation
of syntactically related words, and (4) polynomial-time
optimal alignment and decoding (Knight, 1999).

Previous work in statistical synchronous grammars
has been limited to forms of synchronous context-free
grammar (Wu, 1997; Alshawi et al., 2000; Yamada and
Knight, 2001). This means that a sentence and its trans-
lation must have isomorphic syntax trees, although they
may have different numbers of surface words if null
wordsε are allowed in one or both languages. This rigid-
ity does not fully describe real data.

The one exception is the synchronous DOP approach
of (Poutsma, 2000), which obtains an STSG by decom-
posingalignedtraining trees in all possible ways (and us-
ing “naive” count-based probability estimates). However,
we would like to estimate a model from unaligned data.

4 A Probabilistic TSG Formalism

For expository reasons (and to fill a gap in the literature),
first we formally presentnon-synchronous TSG. LetQ be
a set ofstates. Let L be a set oflabels that may decorate
nodes or edges. Node labels might be words or nontermi-
nals. Edge labels might include grammatical roles such
asSubject. In many trees, each node’s children have an
order, recorded in labels on the node’s outgoing edges.

An elementary tree is a a tuple〈V, V i, E, `, q, s〉
whereV is a set ofnodes; V i ⊆ V is the set ofinternal
nodes, and we writeV f = V −V i for the set offrontier
nodes; E ⊆ V i × V is a set ofdirected edges(thus all
frontier nodes are leaves). The graph〈V,E〉must be con-
nected and acyclic, and there must be exactly one node
r ∈ V (the root) that has no incoming edges. The func-
tion ` : (V i ∪E) → L labels each internal node or edge;
q ∈ Q is theroot state, ands : V f → Q assigns afron-
tier state to each frontier node (perhaps includingr).

4The joint probability model can be formulated, if desired,
as a language model times a channel model.



A TSG is a set of elementary trees. The generation
process builds up aderived treeT that has the same form
as an elementary tree, and for whichV f = ∅. Initially,
T is chosen to be any elementary tree whose root state
T.q = Start. As long asT has any frontier nodes,T.V f ,
the process expands each frontier noded ∈ T.V f by sub-
stituting at d an elementary treet whose root state,t.q,
equalsd’s frontier state,T.s(d). This operation replaces
T with 〈T.V ∪ t.V −{d}, T.V i∪ t.V i, T.E′∪ t.E, T.`∪
t.`, T.q, T.s ∪ t.s − {d, t.q}〉. Note that a function is re-
garded here as a set of〈input, output〉 pairs. T.E′ is a
version ofT.E in whichd has been been replaced byt.r.

A probabilistic TSG also includes a functionp(t | q),
which, for each stateq, gives a conditional probability
distribution over the elementary treest with root stateq.
The generation process uses this distribution to randomly
choose which treet to substitute at a frontier node ofT
having stateq. The initial value ofT is chosen fromp(t |
Start). Thus, the probability of a given derivation is a
product ofp(t | q) terms, one per chosen elementary tree.

There is a natural analogy between (probabilistic)
TSGs and (probabilistic) CFGs. An elementary treet
with root stateq and frontier statesq1 . . . qk (for k ≥ 0) is
analogous to a CFG ruleq → t q1 . . . qk. (By includingt
as a terminal symbol in this rule, we ensure that distinct
elementary treest with the same states correspond to dis-
tinct rules.) Indeed, an equivalent definition of the gener-
ation process first generates aderivation tree from this
derivation CFG, and then combines its terminal nodest
(which are elementary trees) into the derived treeT .

5 Tree Parsing Algorithms for TSG
Given a a grammarG and a derived treeT , we may be in-
terested in constructing the forest ofT ’s possible deriva-
tion trees (as defined above). We call thistree parsing,
as it finds ways of decomposingT into elementary trees.

Given a nodec ∈ T.v, we would like to find all the
potential elementary subtreest of T whose roott.r could
have contributedc during the derivation ofT . Such an
elementary tree is said tofit c, in the sense that it is iso-
morphic to some subgraph ofT rooted atc.

The following procedure finds an elementary treet that
fits c. Freely choose a connected subgraphU of T such
thatU is rooted atc (or is empty). Lett.V i be the vertex
set ofU . Let t.E be the set of outgoing edges from nodes
in t.V i to their children, that is,t.E = T.E ∩ (t.V i ×
T.V ). Let t.` be the restriction ofT.` to t.V i ∪ t.E, that
is, t.` = T.` ∩ ((t.V i ∪ t.E) × L). Let t.V be the set
of nodes mentioned int.E, or put t.V = {c} if t.V i =
t.E = ∅. Finally, chooset.q freely fromQ, and choose
s : t.V f → Q to associate states with the frontier nodes
of t; the free choice is because the nodes of the derived
treeT do not specify the states used during the derivation.

How many elementary trees can we find that fitc? Let
us impose an upper boundk on |t.V i| and hence on|U |.

Then in anm-ary treeT , the above procedure considers at
most mk−1

m−1 connected subgraphsU of order≤ k rooted
at c. For dependency grammars, limiting tom ≤ 6 and
k = 3 is quite reasonable, leaving at most 43 subgraphs
U rooted at each nodec, of which the biggest contain
only c, a childc′ of c, and a child or sibling ofc′. These
will constitute the internal nodes oft, and their remaining
children will bet’s frontier nodes.

However, for each of these 43 subgraphs, we must
jointly hypothesize states for all frontier nodes and the
root node. For|Q| > 1, there are exponentially many
ways to do this. To avoid having exponentially many hy-
potheses, one may restrict the form of possible elemen-
tary trees so that the possible states of each node oft
can be determined somehow from the labels on the corre-
sponding nodes inT . As a simple but useful example, a
node labeledNPmight be required to have stateNP. Rich
labels on the derived tree essentially provide supervision
as to what the states must have been during the derivation.

The tree parsing algorithm resembles bottom-up chart
parsing under the derivation CFG. But the input is a tree
rather than a string, and the chart is indexed by nodes of
the input tree rather than spans of the input string:5

1. for each nodec of T , in bottom-up order
2. for eachq ∈ Q, let βc(q) = 0
3. for each elementary treet that fitsc
4. incrementβc(t.q) by p(t | t.q) ·

∏
d∈t.V f βd(t.s(d))

Theβ values are inside probabilities. After running the
algorithm, ifr is the root ofT , thenβr(Start) is the prob-
ability that the grammar generatesT .

p(t | q) in line 4 may be found by hash lookup if the
grammar is stored explicitly, or else by some probabilistic
model that analyzes the structure, labels, and states of the
elementary treet to compute its probability.

One can mechanically transform this algorithm to
compute outside probabilities, the Viterbi parse, the parse
forest, and other quantities (Goodman, 1999). One can
also apply agenda-based parsing strategies.

For a fixed grammar, the runtime and space are only
O(n) for a tree ofn nodes. The grammar constant is the
number of possible fits to a nodec of a fixed tree. As
noted above, there usually not many of these (unless the
states are uncertain) and they are simple to enumerate.

As discussed above, an inside-outside algorithm may
be used to compute the expected number of times each
elementary treet appeared in the derivation ofT . That is
the E step of the EM algorithm. In the M step, these ex-
pected counts (collected over a corpus of trees) are used
to reestimate the parameters~θ of p(t | q). One alternates
E and M steps tillp(corpus| ~θ) ·p(~θ) converges to a local
maximum. The priorp(~θ) can discourage overfitting.

5We gloss over the standard difficulty that the derivation
CFG may contain a unary rule cycle. For us, such a cycle is
a problem only when it arises solely from single-node trees.



6 Extending to Synchronous TSG

We are now prepared to discuss the synchronous case.
A synchronous TSG consists of a set ofelementary tree
pairs. An elementary tree pairt is a tuple〈t1, t2, q,m, s〉.
Here t1 and t2 are elementary treeswithout state la-
bels: we writetj = 〈Vj , V

i
j , Ej , `j〉. q ∈ Q is the

root state as before.m ⊆ V f
1 × V f

2 is a matching
betweent1’s and t2’s frontier nodes,6. Let m̄ denote
m ∪ {(d1, null) : d1 is unmatched inm} ∪ {(null, d2) :
d2 is unmatched inm}. Finally, s : m̄ → Q assigns a
state to each frontier node pair or unpaired frontier node.

In the figure of section 2,donnent un baiser̀a has 2
frontier nodes andkisshas 3, yielding 13 possible match-
ings. Note that least one English node must remain un-
matched; it still generates a full subtree, aligned withnull.

As before, a derived tree pairT has the same form as
an elementary tree pair. The generation process is similar
to before. As long asT.m̄ 6= ∅, the process expands some
node pair(d1, d2) ∈ T.m̄. It chooses an elementary tree
pairt such thatt.q = T.s(d1, d2). Then for eachj = 1, 2,
it substitutestj at dj if non-null. (If dj is null, thent.q
must guarantee thattj is the specialnull tree.)

In the probabilistic case, we have a distributionp(t | q)
just as before, but this timet is an elementary treepair.

Several natural algorithms are now available to us:

• Training. Given an unaligned tree pair(T1, T2), we
can again find the forest of all possible derivations, with
expected inside-outside counts of the elementary tree
pairs. This allows EM training of thep(t | q) model.

The algorithm is almost as before. The outer loop iter-
ates bottom-up over nodesc1 of T1; an inner loop iter-
ates bottom-up overc2 of T2. Inside probabilities (for
example) now have the formβc1,c2(q). Although this
brings the complexity up toO(n2), the real complica-
tion is that there can be many fits to(c1, c2). There are
still not too many elementary treest1 andt2 rooted atc1

andc2; but each(t1, t2) pair may be used in many ele-
mentary tree pairst, since there are exponentially many
matchings of their frontier nodes. Fortunately, most
pairs of frontier nodes have lowβ values that indicate
that their subtrees cannot be aligned well; pairing such
nodes in a matching would result in poor global proba-
bility. This observation can be used to prune the space
of matchings greatly.
• 1-best Alignment (if desired). This is just like train-
ing, except that we use the Viterbi algorithm to find the
singlebestderivation of the input tree pair. This deriva-
tion can be regarded as the optimal syntactic alignment.7

6A matching betweenA andB is a 1-to-1 correspondence
between a subset ofA and a subset ofB.

7As free-translation post-processing, one could try to match
pairs of stray subtrees that could have aligned well, according to
the chart, but were forced to align withnull for global reasons.

• Decoding.We create a forest of possible synchronous
derivations (cf. (Langkilde, 2000)). We chart-parseT1

as much as in section 5, but fitting the left side of an
elementary treepair to each node. Roughly speaking:

1. for c1 = null and thenc1 ∈ T1.V , in bottom-up order
2. for eachq ∈ Q, let βc1(q) = −∞
3. for each probablet = (t1, t2, q, m, s) whoset1 fits c1

4. maxp(t | q) ·
∏

(d1,d2)∈m̄
βd1(s(d1, d2)) into βc1(q)

We then extract the max-probability synchronous
derivation and return theT2 that it derives. This algo-
rithm is essentially alignment to anunknowntree T2;
we do not loop over its nodesc2, but chooset2 freely.

7 Status of the Implementation
We have sketched an EM algorithm to learn the probabil-
ities of elementary tree pairs by training on pairs of full
trees, and a Viterbi decoder to find optimal translations.

We developed and implemented these methods at the
2002 CLSP Summer Workshop at Johns Hopkins Univer-
sity, as part of a team effort (led by Jan Hajič) to translate
dependency trees from surface Czech, to deep Czech, to
deep English, to surface English. For the within-language
translations, it sufficed to use a simplistic, fixed model of
p(t | q) that relied entirely on morpheme identity.

Team members are now developing real, trainable
models ofp(t | q), such as log-linear models on meaning-
ful features of the tree pairt. Cross-language translation
results await the plugging-in of these interesting models.
The algorithms we have presented serve only to “shrink”
the modeling, training and decoding problems from full
trees to bounded, but still complex, elementary trees.
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