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Abstract 2 A Natural Proposal: Synchronous TSG

Often one may wish to learn a tree-to-tree mapping, training §\e make the quite natural proposal of using a syn-

on unaligned pairs of trees, or on a mixture of trees and stringEhronous tree substitution grammar (STSG). An STSG
Unlike previous statistical formalisms (limited to isomorphic. )

trees) synchronous TS@llows local distortion of the tree topol- is a collection of (ordered) pairs (_)f alignfaﬂementary
ogy. We reformulate it to permit dependency trees, and sketdh€€s These may be combined intoderived pair of
EM/Viterbi algorithms for alignment, training, and decoding. trees. Both the elementary tree pairs and the operation to

combine them will be formalized in later sections.

1 Introduction: Tree-to-Tree Mappings As an example, the tree pair shown in the introduction
might have been derived by “vertically” assembling the

Statistical machine translation systems are trained @ elementary tree pairs below. The symbol denotes
pairs of sentences that are mutual translations. For exa@trontier node of an elementary tree, which must be
ple, peaucoup d'enfants donnent un baiseBamkids  replaced by the circledbot of another elementary tree.
kiss Sam quite oftgnThis translation is somewhat free, |t two frontier nodes are linked by a dashed line labeled
as is common in naturally occurring data. The first sengith thestate X, then they must be replaced by two roots

tence is literallyLots of children give a kiss to Sam. that are also linked by a dashed line labeled with
This short paper outlines “natural” formalisms and al-

gorithms for training on pairs dfees Our methods work

on either dependency trees (as shown) or phrase-structure

trees. Note that the depicted trees are not isomorphic.
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Our main concern is to develop models that can align
and learn from these tree pairs despite the “mismatches”
in tree structure. Many “mismatches” are characteristic
of a language pair: e.g., preposition insertiof -G ¢),
multiword locutions kiss < give a kiss to; misinform  The elementary trees represent idiomatic translation
«— wrongly inform), and head-swappindldat down—  “chunks.” The frontier nodes represent unfilled roles in
descend by floating Such systematic mismatches shouldhe chunks, and the states are effectively nonterminals
be learned by the model, and used during translation. that specify the type of filler that is required. Thdsn-

It is even helpful to learn mismatches that merely tendent un baise@ (“give a kiss to”) corresponds tkiss
to arise during free translation. Knowing tHa#aucoup with the French subject matched to the English subject,
d’ is often deleted will help in aligning the rest of the treeand the French indirect object matched to the English

When would learned tree-to-tree mappings be usefulfirect object. The states could be more refined than
Obviously, in MT, when one has parsers for both theéhose shown above: the state for the subject, for exam-
source and target language. Systems for “deep” anghe, should probably be ndtP but a pair Ny, NPss).
ysis and generation might wish to learn mappings be- STSG is simply a version of synchronous tree-
tween deep and surface treesdfiBnowa et al.,, 2001) adjoining grammar or STAG (Shieber and Schabes, 1990)
or between syntax and semantics (Shieber and Schab#st lacks the adjunction operation. (It is also equivalent
1990). Systems for summarization or paraphrase coutd top-down tree transducers.) What, then, is new here?
also be trained on tree pairs (Knight and Marcu, 2000). First, we know of no previous attempt tiearn the
Non-NLP applications might include comparing student“chunk-to-chunk” mappings. That is, we do ratowat
written programs to one another or to the correct solutioriraining time how the tree pair of section 1 was derived,

Our methods can naturally extend to train on pairs obr even what it was derived from. Our approach is to
forests(including packed forests obtained by chart parsreconstructall possible derivationsusing dynamic pro-
ing). The correct tree is presumed to be an element gramming to decompose the tree pair into aligned pairs
the forest. This makes it possible to train even when thef elementary trees in all possible ways. This produces
correct parse is not fully known, or not known at all. a packed forest of derivations, some more probable than




others. We use an efficient inside-outside algorithm t8 Past Work
do Expectation-Maximization, reestimating the model b){\/l . .
ost statistical MT derives from IBM-style models

training on all derivations in proportion to their probabil- L
&Brown et al., 1993), which ignore syntax and allow ar-

ities. The runtime is quite low when the training trees are- :
fully specified and elementary trees are bounded in’sizeP!trary word-to-word translation. Hence they are able to

Second,it is nota priori obvious that one can reason-allgn any sentence pair, however mismatched. However,
L}pey have a tendency to translate long sentences into word

STAG. TSG can be parsed as fast as CFG. But witho&fﬁlad' Their alignment and translation accuracy improves

an adjunction operatiof),one cannot break the training \t/_vhen they ?retfolrlceg_to tra:_nslat_? srgllﬁwtphlraiggéi S con-
trees into linguistically minimal units. An elementary |g;ous, plo ential yhl |orEa Ic ury 3( C. € a ) R
tree pairA = (elle est finalement partie, finally she left) everal researchers have tried putting “more syntax

cannot be further decomposed inio— (elle est partie into translation models: like us, they use statistical ver-
she leftandC' = (finalement, finally) This appears to sions of synchronous grammars, which generate source

miss a generalization. Our perspective is that the gene"‘rlpd target sentences In parallel and so describe their cor-
alization should be picked up by the statistical model th {aspondencé.lThls %ppl>r9ach offers fou'r featrtljres allj)senctj
defines the probability of elementary tree pajrsd) can rom IIB_M—styZe models. b(l) a(tj:ecurswe P rzs:le- gseh
be defined using mainly the same parameters that defiﬂé‘nS ation, (2) a syntax-based language model, (3) the

p(B) andp(C), with the result thap(A) ~ p(B) - p(C). ility to condition a word’s translation on the translation

The balance between the STSG and the statistical mooqsrl ;yntact_ically related words_, and (.4) polynomial-time
is summarized in the last paragraph of this paper. optimal alignment and decoding (Knight, 1999).

Third, our version of the STSG formalism is more Previous work in statistical synchronous grammars

flexible than previous versions. We carefully address thg?S been U\T'teldgég_f%mhs Of. si/nThrgggg.s\(cont%xt—freg
case of empty trees, which are needed to handle fregtammar( U » Alshawl et al, » ramada an

translation “mismatches.” In the example, an STSG caan.'ght’ 2001). This means that a sentence and its trans-
not replacebeaucoup d'(“lots of”) in the NP by quite ation must have isomorphic syntax trees, although they

oftenin the VP; instead it must delete the former and in-"Y have different numbers of surface words if null

sert the latter. Thus we have the alignmefitsaucoup wordse are allowed in one or both languages. This rigid-

d’, €) and(e, quite often) These require innovations. The |ty_|(_jhoes not fully d(_escr_lbehreal daf' DOP h
tree-internal deletion ofbeaucoup d’is handled by an € one exception Is the synchronous approac

empty elementary tree in which the root is itself a fron-Of (I?outgma, 20(_)0.)’ which pbtains an STSG by decom-
tier node. (The subject frontier node kiksis replaced posmgallgnedtralnlng trees in a.”.pOSSI.ble ways (and us-
with this frontier node, which is then replaced witids) ng “nalve".count—ba.sed probability est|mate§). However,
Thetree-peripheral insertion ofquite oftenrequires an we would like to estimate a model from unaligned data.

English frontier node that is paired with a Frenafil. A .
We also formulate STSGs flexibly enough that they ca# A Probabilistic TSG Formalism
handle both phrase-structure trees and dependency treRgr expository reasons (and to fill a gap in the literature),
The latter are small and simple (Alshawi et al., 2000)first we formally presemonsynchronous TSG. L&D be
tree nodes are words, and there need be no other structgreet ofstates Let L be a set ofabelsthat may decorate
to recover or align. Selectional preferences and other ifrodes or edges. Node labels might be words or nontermi-
teractions can be accommodated by enriching the stategals. Edge labels might include grammatical roles such
Any STSG has a weakly equivalent SCFG that genasSubject. In many trees, each node’s children have an
erates the same string pairs. So STSG (unlike STAG)rder, recorded in labels on the node’s outgoing edges.
has no real advantage for modelistring pairs® But An elementary treeis a a tuple(V,V* E. /,q,s)
STSGs can generate a wider varietytife pairs, €.9., whereV is a set ohodes V¢ C V is the set ofnternal
non-isomorphic ones. So when actual trees are providegdes and we writel’f = VV — V' for the set ofrontier
for training, STSG can be more flexible in aligning themnodes £ C V? x V is a set ofdirected edgeg(thus all
— N _ _ frontier nodes are leaves). The graff) E) must be con-
Goodman (2002) presents efficient TSG parsing with Unpected and acyclic, and there must be exactly one node
bounded elementary trees. Unfortunately, that clever method

does not permit arbitrary models of elementary tree probabili7: € V (theroot) that has no incoming edges. The func-

ties, nor does it appear to generalize to our synchronous cadin ¢ : (V' U E) — L labels each internal node or edge;
(It would need exponentially many nonterminals to keep track € @ is theroot state, ands : V/ — @ assigns dron-
of an matching of unboundedly many frontier nodes.) tier state to each frontier node (perhaps includirly

20r a sister-adjunction operation, for dependency trees.

3However, thevinary-branchingSCFGs used by Wu (1997) “The joint probability model can be formulated, if desired,
and Alshawi et al. (2000) are strictly less powerful than STSGas a language model times a channel model.



A TSG is a set of elementary trees. The generatiofihen in ann-ary treeT’, the above procedure considers at
process builds upderived tree T that has the same form most 2 *1 connected subgraplis of order< k rooted
as an elementary tree, and for whigH = 0. Initially,  ate. For dependency grammars, limiting#te < 6 and
T'is chosen to be any elementary tree whose root state= 3 is quite reasonable, leaving at most 43 subgraphs
T.q = Start. As long asT" has any frontier node,.V/, U rooted at each node of which the biggest contain
the process expands each frontier nddeT'.V/ by sub-  only ¢, a child¢’ of ¢, and a child or sibling of’. These
stituting atd an elementary treewhose root statel,.q,  will constitute the internal nodes 6fand their remaining
equalsd’s frontier stateT'.s(d). This operation replaces children will bet’s frontier nodes.
Twith(T.V UtV —{d}, T.V'Ut.V' T.E'Ut.E, T LU However, for each of these 43 subgraphs, we must
t£,T.q,T.s Ut.s — {d,t.q}). Note that a function is re- jointly hypothesize states for all frontier nodes and the
garded here as a set @hput outpu} pairs. 7.E" is a  root node. ForQ| > 1, there are exponentially many
version of 7./ in which d has been been replaced®y.  ways to do this. To avoid having exponentially many hy-

A probabilistic TSG also includes a functiop(t | ¢),  potheses, one may restrict the form of possible elemen-
which, for each state, gives a conditional probability tary trees so that the possible states of each node of
distribution over the elementary treewiith root stateg.  can be determined somehow from the labels on the corre-
The generation process uses this distribution to randomgonding nodes iff’. As a simple but useful example, a
choose which tree to substitute at a frontier node @f  node labeledP might be required to have staf#. Rich
having statey. The initial value ofl" is chosen fronp(t | |abels on the derived tree essentially provide supervision
Start). Thus, the probability of a given derivation is aas to what the states must have been during the derivation.
product ofp(t | ) terms, one per chosen elementary tree. The tree parsing algorithm resembles bottom-up chart

There is a natural analogy between (probabilisticharsing under the derivation CFG. But the input is a tree
TSGs and (probabilistic) CFGs. An elementary tree rather than a string, and the chart is indexed by nodes of
with root statey and frontier stateg; ... g5 (for k > 0)is  the input tree rather than spans of the input stfing:

analogous to a CFG rule— ¢ ¢ . .. qx. (By includingt . for each node of T, in bottom-up order
as a terminal symbol in this rule, we ensure that distinct oy eachq € Q, let Be(q) =0

elementary treeswith the same states correspond to diss.  for each elementary treethat fitsc

tinct rules.) Indeed, an equivalent definition of the gener increment3. (t.q) by p(t | t.q) - [[,c, ¢ Bal(t-s(d))
ation process first generateslarivation tree from this
derivation CFG, and then combines its terminal nodes
(which are elementary trees) into the derived ffee

The 3 values are inside probabilities. After running the
algorithm, ifr is the root ofT’, thengy(Start) is the prob-
ability that the grammar generaté&s

5 Tree Parsing Algorithms for TSG p(t | q) in line 4 may be found by hash lookup if the
grammar is stored explicitly, or else by some probabilistic
model that analyzes the structure, labels, and states of the
elementary treéto compute its probability.

One can mechanically transform this algorithm to
compute outside probabilities, the Viterbi parse, the parse
forest, and other quantities (Goodman, 1999). One can
also apply agenda-based parsing strategies.

For a fixed grammar, the runtime and space are only
O(n) for a tree ofn nodes. The grammar constant is the
number of possible fits to a nodeof a fixed tree. As
noted above, there usually not many of these (unless the
states are uncertain) and they are simple to enumerate.

As discussed above, an inside-outside algorithm may
e used to compute the expected number of times each
elementary tree appeared in the derivation @f. That is
the E step of the EM algorithm. In the M step, these ex-
of nodes mentioned iNE, or putt.V = {c} if £.Vi = pected counts (collected over a corpus of trees) are used

t.E — 0. Finally, choosé.q freely fromQ, and choose to reestimate the paramet@rsfp(t | ¢). One alternates
t.V¥ — Q to associate states with the frontier node§ @nd M steps tilp(corpus| ¢ ) p(6) converges to a local

oft the free choice is because the nodes of the derivéBiaximum. The priop(d) can discourage overfitting.

treeT" do not specify the states used during the derivation. s, gloss over the standard difficulty that the derivation

How many elementary trees can we find that#itLet  cFG may contain a unary rule cycle. For us, such a cycle is
us impose an upper bouridon |¢.V?| and hence ofl/|.  a problem only when it arises solely from single-node trees.

Given a a grammat and a derived tre®, we may be in-
terested in constructing the forest’ Bk possible deriva-
tion trees (as defined above). We call ttrise parsing,
as it finds ways of decomposifginto elementary trees.

Given a nodec € T.v, we would like to find all the
potential elementary subtreesf T' whose root.r could
have contributed during the derivation of/’. Such an
elementary tree is said fa ¢, in the sense that it is iso-
morphic to some subgraph @frooted atc.

The following procedure finds an elementary tréleat
fits c. Freely choose a connected subgréplbf 7" such
thatU is rooted at (or is empty). Let.V? be the vertex
set ofU. Lett.E be the set of outgoing edges from nodesb
in +.V% to their children, thatist.E = T.E N (t.V? x
T.V). Lett.£ be the restriction of.¢ to .V U t E, that
is, t.0 = TN ((t.VIUt.E) x L). Lett.V be the set



6 Extending to Synchronous TSG ¢ Decoding. We create a forest of possible synchronous
derivations (cf. (Langkilde, 2000)). We chart-pafse

's much as in section 5, but fitting the left side of an
elementary trepair to each node. Roughly speaking:

for ¢1 = null and there; € 731.V, in bottom-up order
for eachg € Q, let B¢, (q) = —©

We are now prepared to discuss the synchronous cas
A synchronous TSG consists of a seietémentary tree
pairs. An elementary tree patris a tuple(t, t2, ¢, m, s).
Here t; and t, are elementary treewithout state la-
bels: we writet; = (Vj,‘/}i,Ej,Ej). q € Q@ is the for each probable = (t1, t2, g, m, s) whoset; fits c1
root state as beforen C V/ x VJ is a matching maxp(t | ) - [1(a, a,)em Bar (s(d1, d2)) into Se, (q)
betweent;’s and ty’s frontier nodes$. Let m denote We then extract the max-probability synchronous
m U {(dy,null) : dy isunmatched imn} U {(null,d2) :  derivation and return th&, that it derives. This algo-
dy is unmatched imn}. Finally, s : m — @ assigns a rithm is essentially alignment to amknowntree 75;
state to each frontier node pair or unpaired frontier node we do not loop over its nodes, but choose, freely.

In the figure of section 2¢onnent un baisea has 2 .
frontier nodes andisshas 3, yielding 13 possible match- 7 Status of the Implementation
ings. Note that least one English node must remain uiWe have sketched an EM algorithm to learn the probabil-
matched; it still generates a full subtree, aligned with.  ities of elementary tree pairs by training on pairs of full

As before, a derived tree pdlt has the same form as trees, and a Viterbi decoder to find optimal translations.
an elementary tree pair. The generation process is similarWe developed and implemented these methods at the
to before. As long a&./m # (), the process expands some2002 CLSP Summer Workshop at Johns Hopkins Univer-
node pair(d;,ds) € T.m. It chooses an elementary treesity, as part of a team effort (led by Jan Hjjio translate
pairt such that.qg = T'.s(dy,dz). Thenforeach = 1,2, dependency trees from surface Czech, to deep Czech, to
it substitutest; atd; if non-null. (If d; is null, thent.q  deep English, to surface English. For the within-language

LA -

must guarantee thaj is the speciahull tree.) translations, it sufficed to use a simplistic, fixed model of
In the probabilistic case, we have a distributign | q)  p(t | ¢) that relied entirely on morpheme identity.
just as before, but this timieis an elementary tregair. Team members are now developing real, trainable

Several natural algorithms are now available to us: models ofp(¢ | ¢), such as log-linear models on meaning-
ful features of the tree pair Cross-language translation
e Training. Given an unaligned tree pafi},7>), We  results await the plugging-in of these interesting models.
can again find the forest of all possible derivations, withrpe algorithms we have presented serve only to “shrink”
expected inside-outside counts of the elementary treRe modeling, training and decoding problems from full
pairs. This allows EM training of the(t | ¢) model. trees to bounded, but still complex, elementary trees.

The algorithm is almost as before. The outer loop iter:
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