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Abstract We distinguish the sublanguages BIRS nets

and normal dominance netsand show that they
Minimal Recursion Semantics (MRS) is can be intertranslated. This translation answers the
the standard formalism used in large-scale  first question: existing constraint solvers for normal
HPSG grammars to model underspecified  dominance constraints can be used to enumerate the
semantics. We present the first provably  readings of MRS nets in low polynomial time.

efficient algorithm to enumerate the read- The translation also answers the second ques-
ings of MRS structures, by translating  tjon restricted to pure scope underspecification. It
them into normal dominance constraints. shows the equivalence of a large fragment of MRSs
and a corresponding fragment of normal dominance

1 Introduction constraints, which in turn is equivalent to a large

fragment of Hole Semantics (Bos, 1996) as proven
In the past few years there has been consideralle (koller et al., 2003). Additional underspecified
activity in the development of formalisms fam-  yeatments of ellipsis or reinterpretation, however,
derspecified semanti¢alshawi and Crouch, 1992; gre available for extensions of dominance constraint

Reyle, 1993; Bos, 1996; Copestake et al., 1999; Egghly (CLLS, the constraint language for lambda

meration of all readings for as long as possible. In- &+ results are subject to a new proof tech-
stead, they work with a compashderspecified rep- piq e which reduces reasoning about MRS struc-
resentation readings are enumerated from this repg a5 to reasoning abouteaklynormal dominance

resentation by need. constraints (Bodirsky et al., 2003). The previous

Minimal Recursion Semantics (MRS) (Copesy oo techniques for normal dominance constraints
take et al., 1999) is the standard formalism for seqqer et al., 2003) do not apply.

mantic underspecification used in large-scale HPS
grammars (Pollard and Sag, 1994; Copestake a@d
Flickinger, ). Despite this clear relevance, the most
obvious questions about MRS are still open: We define a simplified version of Minimal Recur-
1. Is it possible to enumerate the readings afion Semantics and discuss differences to the origi-
MRS structures efficiently? No algorithm hasnal definitions presented in (Copestake et al., 1999).
been published so far. Existing implementa- MRS is a description language for formulas of
tions seem to be practical, even though théirst order object languages with generalized quanti-
problem whether an MRS has a reading is NPfiers. Underspecified representations in MRS consist
complete (Althaus et al., 2003, Theorem 10.1)of elementary predicationand handle constraints
2. What is the precise relationship to other unRoughly, elementary predications are object lan-
derspecification formalism? Are all of them theguage formulas with “holes” into which other for-
same, or else, what are the differences? mulas can be plugged; handle constraints restrict the

Minimal Recursion Semantics



way these formulas can be plugged into each other. every, somg
More formally, MRSs are formulas over the follow-
ing vocabulary: /\ /\

1. Variables. An infinite set of variables ranged stugien; boBIg,
H \
over byh. Variables are also calldthndles read,,
2. ConstantsAn infinite set of constants ranged

over byx,y,z Constants are thiedividual vari-  {h; :every(hy, hs), hs: studentx), hs : somg(hg, hg),
ablesof the object language. h7:book(y), hg:readx,y),hy < hs,hg < h7}

3. Function symbols.

] ) Figure 1: MRS for “Every student reads a book”.
(a) A set of function symbols written &%

(b) A set of quantifier symbols ranged over

by Q (such aseveryandsomg. PairsQy An example MRS for the scopally ambiguous
are further function symbols (theariable sentence “Every student reads a book” is given in
bindersof x in the object language). Fig. 1. We often represent MRSs by directed graphs

whose nodes are the handles of the MRS. Elemen-

tary predications are represented by solid edges and
Formulas of MRS have three kinds of literals, thehandle constraints by dotted lines. Note that we

first two are calledelementary predication$EPs) make the relation between bound variables and their

4. The symboK for the outscopes relation.

and the thirchandle constraints binders explicit by dotted lines (as from everty
1. h:P(x4,...,%n,h1, ..., hy) wheren,m> 0 ready); redundant “binding-edges” that are sub-
2. h:Qy(hy, hy) sumed by sequences of other edges are omitted how-
3. hy<h ever (from everyto student for instance).

A solution for an underspecified MRS is called a

Label positionsare to the left of colons ‘.’ andrgu- configuration or scope-resolved MRS

ment positiongo the right. LetM be a set of literals. T ] ) )

The label setlab(M) contains those handles o ~ Definition 2 (Configuration). An MRSM is acon-
that occur in label but not in argument position. Thdigurationif it satisfies the following conditions.
argument handlsetarg(M) contains the handles of C1 The graph oM is a tree of solid edges: handles
M that occur in argument but not in label position. don’t properly outscope themselves or occur in
Definition 1 (MRS). An MRS is finite setM of different argument positions and all handles are
MRS-literals such that: pairwise connected by elementary predications.
_ C2 If two EPsh:P(...,x,...) and hy:Qx(hs,hy)

M1 Every handle occurs at most once in label and belong toM, thenh outscopes in M (so that

at most once in argument positionfh the binding edge frorhg to his redundant).

M2 Handle constraintsy < hy in M always relate e ¢4)1\ a configuration foranother MRSV if
argument handles, to labelsh, of M. there exists some substitution arg(M’) — lab(M’)

M3 For every constant (individual variablejn ar-  \yhich states how to identify argument handle$/f
gument position iMM there is a unique literal of \yith |abels ofM'. so that:

the formh: Qu(ha, hy) in M. c3 M = {o(E) | Eis EP inM'}, and
We call an MRScompactf it additionally satisfies: 4 o(hy) outscopedt in M, for all hy < hp € M.

The valueo(E) is obtained by substituting all ar-
gument handles ik, leaving all others unchanged.

We say that a handle immediately outscopes The MRS in Fig. 1 has precisely two configura-
handlel’ in an MRSM iff there is an EFE in M such tions displayed in Fig. 2 which correspond to the two
thath occurs in label and’ in argument position of readings of the sentence. In this paper, we present
E. Theoutscopes relatiotis the reflexive, transitive an algorithm that enumerates the configurations of
closure of the immediate outscopes relation. MRSs efficiently.

M4 Every handle ofM occurs exactly once in an
elementary predication &fl.



every, somg Dominance constraints are interpreted over finite
constructor trees, i.e. ground terms constructed from
Py the function symbols ix. We identify ground terms
book, ready studen} ready with trees that are rooted, ranked, edge-ordered and
labeled. A solution for a dominance constraint con-
sists of a treer and a variable assignment that
maps variables to nodes péuch that all constraints
Differences to Standard MRS. Our version de- are satisfied: alabeling literl: f (Xg,...,X) is sat-
parts from standard MRS in some respects. Firggfied iff the nodea(X) is labeled withf and has
we assume that different EPs must be labeled withaughtersa(Xy),...,a(X,) in this order; a domi-
different handles, and that labels cannot be identirance literaX<*Y is satisfied iffa(X) is an ancestor
fied. In standard MRS, however, conjunctions arefa(Y) in t; and an inequality literaX # Y is satis-
encoded by labeling different EPs with the saméed iff a(X) anda(Y) are distinct nodes.

handle. These EP-conjunctions can be replaced inNote that solutions may contain additional mate-
a preprocessing step introducing additional EPs theial. The treef(a,b), for instance, satisfies the con-
make conjunctions explicit. straintY :anZ:b.

Second, our outscope constraints are slightly less . .
restrictive than the oF;iginaI “qeq-constrai%ts.?’/ A%'2 Normality and Weak Normality
handleh is geq to a handl& in an MRSM, h=4h/, The satisfiability problem of arbitrary dominance
if either h = I or a quantifierh: Qx(hy,hy) occurs constraints is NP-complete (Koller et al., 2001) in
in M and hy is geq toh’ in M. Thus,h =q K im- general. However, Althaus et al. (2003) identify a
pliesh <, but not the other way round. We believenatural fragment of so calledormal dominance
that the additional strength of geg-constraints is ngtonstraints which have a polynomial time satisfia-
needed in practice for modeling scope. Recent wotkility problem. Bodirsky et al. (2003) generalize this
in semantic construction for HPSG (Copestake dtotion toweakly normal dominance constraints
al., 2001) supports our conjecture: the examples dis- We call a variable &oleof ¢ if it occurs in argu-
cussed there are compatible with our simplificationment position inp and aroot of ¢ otherwise.

Third, we depart in some minor details: weDefinition 3. A dominance constrain is normal
use sets instead of multi-sets and omit top-handlgand compact) if it satisfies the following conditions.
which are useful only during semantics construction. (a) each variable af occurs at most once in the
labeling literals ofp.

(b) each variable af occurs at least once in the
Dominance constraints are a general framework for labeling literals of.

describing trees, and thus syntax trees of logical forN2 for distinct rootsX andY of ¢, X #Y isin ¢.
mulas. Dominance constraints are the core languagRs (a) if X <* Y occurs ind, Y is a root in.

underlying CLLS (Egg et al., 2001) which adds par- () if X <* Y occurs ing, X is a hole ing.
allelism and binding constraints.

studmm@ bomerx(

Figure 2: Graphs of Configurations.

3 Dominance Constraints

A dominance constraint iweakly normaif it satis-
3.1 Syntax and Semantics fies all above properties except fot(b) andN3(b).

We assume a possibly infinite signatieof func- The idea behind (weak) normality is that the con-

tion symbols with fixed arities and an infinite 8&tr straint graph (see below) of a dominance constraint
of variables ranged over by, Y, Z. We write f, g for consists of solid fragments which are connected
function symbols andr( f) for the arity of f. by dominance constraints; these fragments may not

A dominance constrainp is a conjunction of Properly overlap in solutions.
dominance, inequality, and labeling literals of the NOte that Definition 3 always imposes compact-
following forms wherear(f) = n: ness, meaning that the heigth of solid fragments is at

most one. As for MRS, this is not a serious restric-
b u=XY [ XAY [ X f(Xg, .., %n) [OA D tion, since more general weakly normal dominance



constraints can be compactified, provided that dom- i 2 i 2
inance links relate either roots or holes with roots. :
Dominance Graphs. We often represent domi- ii

nance constraints agaphs A dominance graplis
the directed grapfV, <* w«). The graph of a weakly

normal constraind is defined as follows: The nodes A A
of the graph ofp are the variables aj. A labeling

literal X: f(Xy,...,X,) of ¢ contributestree edges
(X,X) € « for 1 <i < nthat we draw asX—X;
we freely omit the labeF and the edge order in the
graph. A dominance litera<*Y contributes a dom-
inance edge€X,Y) € <* that we draw axX ---->Y. Lemma 1. Simple solved forms and configurations
Inequality literals ind are also omitted in the graph. correspond: Every simple solved form has exactly
For example, the constraint graphf g one configuration, and for every configuration there

Figure 3: A dominance constraint (left) with a mini-
mal solved form (right) that has no configuration.

on the right represents the dominancel | is exactly one solved form that it configures.
constraintX: f(X') AY:g(Y)AX'<"ZA  w Unfortunately, Lemma 1 does not extend to min-
Y'FZNZ:aNXAEY ANXAZNY#Z. imal as opposed to simple solved forms: there are

A dominance graph isveakly normalor awnd- minimal solved forms without configurations. The
graphif it does not contain any forbidden subgraphsconstraint on the right of Fig. 3, for instance, has no
configuration: the hole of L1 would have to be filled

twice while the right hole of L2 cannot be filled.
Dominance graphs of a weakly normal dominance

constraints are clearly weakly normal. 4 Representing MRSs

< —_—

Solved Forms and Configurations. The maindif- We next map (compact) MRSs to weakly normal

ference between MRS and dominance constraint®minance constraints so that configurations are
lies in their notion of interpretation: solutions versugreserved. Note that this translation is based on a
configurations. non-standard semantics for dominance constraints,

Every satisfiable dominance constraint has inramely configurations. We address this problem in
finitely many solutions. Algorithms for dominancethe following sections.
constraints therefore do not enumerate solutions but The translation of an MRSI to a dominance con-
solved formsWe say that a dominance constraint istraint¢y is quite trivial. The variables affy are the
in solved form iff its graph is in solved form. A wnd- handles oM and its literal set is:
graph®is in solved form iff® is a forest. Thaolved ) )
forms of ® are solved formsp’ that are more spe- P (M) [ PO, X0, Py, ) € MY
cific than®, i.e. ® and @ differ only in their dom-  U{h:Qx(N1,h2) | h: Qx(hy, hz) € M}
inance edges and the reachability relatiorfoéx- ~ U{hi<*hy | hy <h; € M}
tends the reachability sP’. A minimal solved form  U{ha*hg | h: Q(he,hp),ho: P(...,X,...) € M}
of disa solv_e_d_form ofdb that is minimal with re- U{h£H | h,K in distinct label positions o1}
spect to specificity.

The notion of configurations from MRS appliesCompact MRS#M are clearly translated into (com-
to dominance constraints as well. Hereganfigu- pact) weakly normal dominance constraints. Labels
ration is a dominance constraint whose graph is af M become roots iy while argument handles
tree without dominance edges. A configuration of decome holes. Weak root-to-root dominance literals
constraintd is a configuration that solves in the are needed to encode variable binding conditian
obvious senseSimple solved formare tree-shaped of MRS. It could be formulated equivalently through
solved forms where every hole has exactly one outambda binding constraints of CLLS (but this is not
going dominance edge. necessary here in the absence of parallelism).



Proposition 1. The translation of a compact MRS F2 no distinct childreriY andY’ of X in ® that are
M into a weakly normal dominance constraipy linked toX by immediate dominance edges are
preserves configurations. weakly connected in the remaind@fy (x; -

This weak correctness property follows straight}hJ 3 Algorithm

forwardly from the analogy in the definitions. _ _ .
The algorithm for enumerating the minimal solved

5 Constraint Solving forms of a wnd-graph (or equivalently constraint) is
given in Fig. 4. We illustrate the algorithm for the

We recall an algorithm from (Bodirsky et al., 2003)problematic wnd-grapkb in Fig. 3. The graph of

that efﬁCientIy enumerates all minimal solved formﬁs Weak|y Connected, so that we can call SW¢

of wnd-graphs or constraints. All results of this secThjs procedure guesses topmost fragments in solved

tion are proved there. forms of® (which always exist by Prop. 2).

The algorithm can be used to enumerate config- The only candidates arel or L2 sincel3 and
urations for a large subclass of MRSs, as we will4 have incoming dominance edges, which violates
see in Section 6. But equally importantly, this algor1. Let us choose the fragmehg to be topmost.
rithm provides a powerful proof method for reason-The graph which remains when removingis still
ing about solved forms and configurations on whickyeakly connected. It has a single minimal solved
all our results rely. form computed by a recursive call of the solver,
whereL1 dominated 3 andL4. The solved form of
the restricted graph is then put below the left hole of
Two nodesX andY of a wnd-graph® = (V,E) are L2, since it is connected to this hole. As a result, we
weakly connected there is an undirected path from obtain the solved form on the right of Fig. 3.

XtoYin (V,E). We call® weakly connected if all Theorem 1. The function solved-fort) com-

its nodes are weakly connected. Aweakly connecteq ioq 41| minimal solved forms of a weakly normal
component (wec) ofP is a maximal weakly con- dominance graplp; it runs in quadratic time per
nected subgraph @b. The wces ofd = (V,E) form solved form

proper partitions o/ andE.

Proposition 2. The graph of a solved form of a 6 Full Translation
weakly connected wnd-graph is a tree.

5.1 Weak Connectedness

Next, we explain how to encode a large class of
MRSs into wnd-constraints such that configurations

_ _ _ ~ correspond precisely to minimal solved forms. The
The enumeration algorithm is based on the notion gyt of the translation will indeed be normal.
freeness

5.2 Freeness

Definition 4. A nodeX of a wnd-graph is called 6-1 Problemsand Examples

freein @ if there exists a solved form @b whose The naive representation of MRSs as weakly nor-
graph is a tree with rooX. mal dominance constraints is only correct in a weak
A weakly connected wnd-graph without freeSense. The encoding fails in that some MRSs which

nodes is unsolvable. Otherwise, it has a solved forf}@Ve No configurations are mapped to solvable wnd-
whose graph is a tree (Prop. 2) and the root of thiconstraints. For instance, this holds for the MRS on
tree is free ind. the right in Fig 3.

Given a set of nodeg’ C V, we write®|y: for the We cannot even hope to translate arbitrary MRSs
restriction of® to nodes i_r\/”and edges iV’ x V/ correctly into wnd-constraints: the configurability

The following lemma characterizes freeness: problem of MRSs is NP-complete, while satisfia-
_ _ bility of wnd-constraints can be solved in polyno-
Lemma 2. A wnd-graph® with free nodeX satis- mjg| time. Instead, we introduce the sublanguages

fies the freeness conditions: of MRS-netand equivalentvnd-netsand show that
F1 nodeX has indegree zero in gragh and they can be intertranslated in quadratic time.



solved-form(®) =
Let®dy,..., Py be the wees ofp = (V,E)
Let (Vi, Ej) be the result of solve;)
return (V,UK_ E))
solvg®) =
precond: ® = (V,<aw<*) is weakly connected
choose a nodeX satisfying £1) and €2) in @ else fail
LetYi,...,Yy be all nodes s.iX <Y,
Let®y,..., P be the weakly connected componentshdf_x v, ... v,1
Let (Wj,E;) be the result of solV&; ), andX; € W, its root
return  (V,UX_;EjU<U <} U<3) where
<G ={Y, X)) | X" (Y, X)) e FAX e W},
<G ={(X, X)) | 23X (Y, X)) e <FAX €W}

Figure 4: Enumerating the minimal solved-forms of a wndsgira

connected by a hypernormal path in the graph of the
restricted constrain®), _x,}, and there exists ng

/i such thaX <* Z in ®.
i i f i The requirement of hypernormal connections in
islands replaces the notion of chain-connectedness
vy in (Koller et al., 2003), which fails to apply to dom-
oo Vo ! inance constraints with weak dominance edges.
For ease of presentation, we restrict ourselves to
a simple version of island fragments. In general, we
should allow for island fragments witih> 1.

(a) strong (b) weak (c) island

Figure 5: Fragment Schemas of Nets

6.3 Normalizing Dominance Nets
6.2 Dominance and MRS-Nets . .

Dominance nets are wnd-constraints. We next trans-
A hypernormal path (Althaus et al., 2003) in a wnd4ate dominance net® to normal dominance con-
graph is a sequence of adjacent edges that doggaints®’ so thatd has a configuration if’ is sat-
not traverse two outgoing dominance edges of somé&fiable. The trick is to normalize weak dominance
hole X in sequence, i.e. a wnd-graph without situagdges. The normalizatiarorm (®) of a weakly nor-
tionsYy<---- X - >Y. mal dominance constraii is obtained by convert-

A dominance netP is a weakly normal domi- ing all root-to-root dominance literak <* Y as fol-
nance constraint whose fragments all satisfy one @ys:

the three schemas in Fig. 5. MRS-nets can be de- X <Y = X, 'Y

fined analogously. This means that all rootshodire o
labeled in®, and that all fragmentx : f (X, ..., Xq) if X roots a fragment ofp that satisfies schema

of ® satisfy one of the following three conditions: Weak of net fragments. Ifb is a dominance net then

strong. n> 0 and for allY € {Xy,..., X} there ex- norm(®) is indeed a normal dominance net.

ists a uniqué& such thaly <* Zin @, and there exists Theorem 2. The configurations of a weakly con-
no Z such thatX <* Z in ®. nected dominance ne® correspond bijectively

weak. n> 1 and for allY € {Xy,...,X,_1,X} there t0 the minimal solved forms of its normalization
exists a unique such thaty <* Z in ®, and there norm(®).

exists noZ such thatX, <t* Z in &. For illustration, consider the problematic wnd-
island. n=1 and all variables i{Y | X3 <* Y} are constraint® on the left of Fig. 3® has two minimal



solved forms with top-most fragments andL2 re-
spectively. The former can be configured, in contrast
to the later which is drawn on the right of Fig. 3.

Normalizing @ has an interesting consequence:
norm(®) has (in contrast taP) a single minimal
solved form withL1 on top. Indeedporm(®) cannot
be satisfied while placing2 topmaost. Our algorithm
detects this correctly: the normalization of fragment
L2 is not free innorm(®) since it violates property Figure 6: Traversals through fragments of free roots
F2.

The proof of Theorem 2 captures the rest of this ) ] ) ]
section. We show in a first step (Prop. 3) that the cortfoNg: sinceX does not have incoming dominance
figurations are preserved when normalizing Weaklﬁdges’ there IS only a single non-trival kind of travgr—
connected and satisfiable nets. In the second stait» drawnin Fig. 6(a). But such traversals contradict
we show that minimal solved forms of normalized'® fréeness ok according te=2.

nets, and thus aform (@), can always be configured Weak: there is one other way of traversing weak
(Prop. 4). fragments, shown in Fig. 6(b). Let <* Y be the
Corollary 1. Configurability of weakly connected weak dominance edge. The traversal proves Yhat
MRS-nets can be decided in polynomial time: Conpelongs to the weakly connected components of one

figurations of weakly connected MRS-nets can bgf the X;, so the® A X, <" Y is unsatisfiable. This

. L . . shows that the holX,, cannot be identified with any
enumerated in quadratic time per configuration. . . L
root, i.e.® does not have any configuration in con-
6.4 Correctness Proof trast to our assumption.
nets can be recursively decomisland: free island fragments permit one single non-
drivial form of traversals, depicted in Fig. 6(c). But
such traversals are not hypernormal. O

v Voo v

(a) strong (b) weak (c)island

Most importantly,
posed into nets as long as they have configuration
Lemma 3. If adominance ne® has a configuration

whose top-most fragment &: f(Xy,...,Xn), then  Proposition 3. A configuration of a weakly con-
the restriction®y _x x,....x,} iS @ dominance net.  nected dominance nétconfigures its normalization

Note that the restriction of the problematic et norm(®), and vice versa of course.

by L2 on the left in Fig. 3 is not a net. This does no
contradict the lemma, abB does not have a configu-
ration with top-most fragmeni2.

tProof. Let C be a configuration ofb. We show that
it also configuresnorm(®). Let S be the simple
solved form of® that is configured b (Lemma 1),
Proof. First note that aX is free in® it cannot have andS be a minimal solved form o which is more
incoming edges (conditioR1). This means that the general thars.
restriction deletes only dominance edges that departLet X: f(Y1,...,Y,) be the top-most fragment of
from nodes in{X, Xy, ..., Xy}. Other fragments thus the treeS. This fragment must also be the top-most
only lose ingoing dominance edges by normalitfragment ofS, which is a tree sinc@ is assumed to
condition N3. Such deletions preserve the validitybe weakly connected (Prop. &.is constructed by
of the schemaweak andstrong. our algorithm (Theorem 1), so that the evaluation of
Theisland schema is more problematic. We havesolvg @) must choos& as free root ir.
to show that the hypernormal connections in this Since® is a net, some litera: f (Y, ...,Yy) must
schema can never be cut. So supposeXhétY;)is belong tod. Letd' = D ix.vi....v,) b€ the restriction
an island fragment with outgoing dominance edgesf ® to the lower fragments. The weakly connected
Y1 <* Z1 andY; <* Zp, so thatZ; andZ, are con- components of alYy, ..., Y,_1 must be pairwise dis-
nected by some hypernormal path traversing thieint by F2 (which holds by Lemma 2 sincg is free
deleted fragmeni: f(Xy,...,Xn). We distinguish in ®). The X-fragment of netb must satisfy one of
the three possible schemata for this fragment: three possible schemata of net fragments:



weak fragments: there exists a unique weak domithe large grammar resources of MRS. This requires
nance edg& <* Zin @ and a unique holg, without  further work in order to deal with unrestricted ver-
outgoing dominance edges. The variablmust be a sions of MRS used in practice. Conversely, one can
root in @ and thus be labeled. ¥ is equal toX then now lift the additional modeling power of CLLS to
@ is unsatisfiable by normality conditiaw2, which MRS.
is impossible. HenceZ occurs in the restrictiod’
but not in the weakly connected components of an
Y1, ..., Yo_1. Otherwise, the minimal solved for@
could not be configured since the hdjecould not  H. Alshawi and R. Crouch. 1992. Monotonic semantic
be identified with any root. Furthermore, the root of interpretation. IrProc. 30th ACL pages 32-39.
the Z-component must be identified with in any E. Althaus, D. Duchier, A. Koller, K. Mehlhorn,
configuration of® with root X. Hence,C satisfies J. Niehren, and S. Thiel. 2003. An efficient graph
Yn <* Z which is add by normalization. algorithm for dominance constraintdournal of Algo-
The restriction® must be a dominance net by 'thms Inpress.
Lemma 3, and hence, all its weakly connected conManuel Bodirsky, Denys Duchier, Joachim Niehren, and
ponents are nets. For alldi < n— 1, the compo- Sebastian Miele. 2003. An efficient algorithm for
nent ofY; in @ is configured by the subtree 6fat weakly no_rmal dominance constraints. Available at
. . WWW. ps. uni - sbh. de/ Paper s.
nodeY;, while the subtree df at nodeY, configures
the component oZ in @'. The induction hypothesis Johan Bos. 1996. Predicate logic unpluggedAinster-
yields that the normalizations of all these compo- dam Colloquiumpages 133-143.
nents are configured by the respective subconfiguras,, Copestake and Dan Flickinger. An open-
tions ofC. Hence norm(®) is configured byC. source grammar development environment and broad-
strong or island fragments are not altered by nor- coverage English grammar using HPSG. Qonfer-
malization, so we can recurse to the lower fragments €"C€ On Language Resources and Evaluation

(if there exist any). L  Ann Copestake, Dan Flickinger, lvan Sag, and Carl Pol-
lard. 1999. Minimal Recursion Semantics: An Intro-
duction. Manuscript, Stanford University.
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