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Abstract Due to CCG’s transparent syntax-semantics inter-
face, the parser has direct and immediate access
The model used by the CCG parser i, he predicate-argument structure, which includes
of ~Hockenmaier and Steedman (2002b) 4t only local, but also long-range dependencies
would fail to capture the correct bilexical arising through coordination, extraction and con-
dependencies in a language with freer ) These dependencies can be captured by our
word order, such as Dutch. This paper  mogel in a sound manner, and our experimental re-
argues that probabilistic parsers should  gjts for English demonstrate that their inclusion im-
therefore model the dependencies in the 5 e5 parsing performance. However, since the
predicate-argument structure, as in the  yreqicate-argument structure itself depends only to
model of Clark et al. (2002), and defines 5 gegree on the grammar formalism, it is likely
a generative model for CCG derivations ¢ parsers that are based on other grammar for-
that captures these dependencies, includ-  51isms could equally benefit from such a model.
ing bounded and unbounded long-range  The conditional model used by the CCG parser of

dependencies. Clark et al. (2002) also captures dependencies in the
_ predicate-argument structure; however, their model
1 Introduction is inconsistent.

State-of-the-art  statistical parsers for Penn First, we review the dependency model proposed
Treebank-style phrase-structure grammars (CollinBy Hockenmaier and Steedman (2002b). We then
1999), (Charniak, 2000), but also for Categorialise the example of Dutch ditransitives to demon-
Grammar (Hockenmaier and Steedman, 2002W3frate its inadequacy for languages with a freer word
include models of bilexical dependencies definedrder. This leads us to define a new generative model
in terms of local trees. However, this paperf CCG derivations, which captures word-word de-
demonstrates that such models would be inadequagiendencies in the underlying predicate-argument
for languages with freer word order. We use thetructure. We show how this model can capture
example of Dutch ditransitives, but our argumentong-range dependencies, and deal with the pres-
equally applies to other languages such as Czeemce of multiple dependencies that arise through the
(see Collinsetal. (1999)). We argue that thigpresence of long-range dependencies. In our current
problem can be avoided if instead the bilexicalmplementation, the probabilities of derivations are
dependencies in the predicate-argument structucemputed during parsing, and we discuss the dif-
are captured, and propose a generative model fbculties of integrating the model into a probabilis-
these dependencies. tic chart parsing regime. Since there is no CCG
The focus of this paper is on models for Combinatreebank for other languages available, experimen-
tory Categorial Grammar (CCG, Steedman (2000)jal results are presented for English, using CCGbank



(Hockenmaier and Steedman, 2002a), a translatidit also long-range dependencies that are projected
of the Penn Treebank to CCG. These results demofrem the lexicon or through some rules such as the

strate that this model benefits greatly from the inclueoordination of functor categories. For details, see

sion of long-range dependencies. Hockenmaier (2003).

2 A model of surface dependencies 4 Word-word dependencies in Dutch

Hockenmaier and Steedman (2002b) define a sdputch has a much freer word order than English.
face dependency model (henceforth: SD)/Dep The analyses given in Steedman (2000) assume that
which captures word-word dependencies that are déis can be accounted for by an extended use of
fined in terms of the derivation tree itself. It as-composition. As indicated by the indices (which
sumes that binary trees (with parent categéty are only included to improve readability), in the
have one head child (with categaF) and one non- following examples, hij is the subject NP3) of
head child (with categoryD), and that each node geeft de politiemanthe indirect object NP;), and

has one lexical healt=(c, w). In the following tree, €en bloenthe direct object\|P;)."

P=S[dcl]\NP, H=(S[dcl][\NP) /NP, D=NP, hpy = e v Geooliceman  “owen
((S[dcl]\NP) /NP, opened, andhp=(N, doors. S/(S/NP3)  ((S/NP1)/NP>)/NP5  T\(T/NP2) _T\(T/NP,]
T\((T/NP1)/NP2) .
S[dcl)\NP S/NPs x
’, N >
(S[dd]\ll\lp)/NP NIP Een bloem geeft > hij de politieman
opened its doors S/(S/NP1)  ((S/NP1)/NP2)/NPg  T\(T/NP3) T\(T/NP2)
The model conditionsup, on its own lexical cate- (S/Npl)/N:;NP
gorycp, onhy = {cy,wy) and on the local tree S . >
in which theD is generated (represented in terms ofze/ F;;“‘em’;‘” g )Ejeeﬁ - - /h”' ; \E’e; b"’e)m
. . NP2 NP1 NP2 NP3 T\(T NPB T\(T NPl
the categoriesP, H, D)): S/NPL)/NF: B
S/NP2 )
P(wplcp, T = (P,H,D),hiy = (cm,wr)) 5 >

A SD model estimated from a corpus containing
these three sentences would not be able to capture
Like Clark etal. (2002), we define predicate-the correct dependencies. Unless we assume that

argument structure for CCG in terms of the deperfhe above indices are given as a feature onNRe

dencies that hold between words with lexical funccategories, the model could not distinguish between

tor categories and their arguments. We assume tHi€ dependency relations éfij and geeftin the

a lexical head is a paifc, w), consisting of a word first sentenceploemand geeftin the second sen-

w and its lexical category. Each constituent has tence angolitiemanandgeeftin the third sentence.

at least one lexical head (more if it is a coordinaté&ven with the indices, either the dependency be-

construction). The arguments of functor categoriedveen politemanand geeftor betweenbloemand

are numbered from 1 to, starting at the innermost 9eeftin the first sentence could not be captured by a

argument, where: is the arity of the functor, eg. Model that assumes that each local tree has exactly

(S[dcl]\NP1)/NP5, (NP\NP;)/(S[dcl]/NP),. De- ©one head. Furthermore, if one of these sentences oc-

pendencies hold between lexical heads whose c&urred in the training data, all of the dependencies in

egory is a functor category and the lexical headthe other variants of this sentence would be unseen

of their arguments. Such dependencies can be € the model. However, in terms of the predicate-

pressed as 3-tuplddc, w), i, (¢, w')), wherec is a argument structure, all three examples express the

functor category with arity> 7, and(c’,w') is a lex- Same relations. The model we propose here would

ical head of theth argument of-. therefore be able to generalize from one example to
The predicate-argument structure that corrdhe word-word dependencies in the other examples.

sponds to a derivation contains not only local, *The variablesT are uninstantiated for reasons of space.

3 Predicate-argument structure in CCG



The cross-serial dependencies of Dutch are omveords of arguments (such &mith) are generated
of the syntactic constructions that led people tin the following manner:
believe that more than context-free power is re-
quired for natural language analysis. Here is an
example together with the CCG derivation fromThe head word of modifiers (such gesterday are

P(wa|ca, ((Ch7wh>7 i, (Ca7 wa)))

Steedman (2000): generated differently:
(a1 Cedia Snchorses & eed) P(wnlem, ({emywm), &, (cnwn))
NPio NP2 NPo (GWPLWP2VP VPIRPs Like Collins (1999) and Charniak (2000), the SD
((S\NP1)\NP2)\NP3 .
B\NP,)\NP; model assumes that word-word dependencies can be
S\NP; defined at the maximal projection of a constituent.
S However, as the Dutch examples show, the argument

Again, a local dependency model would systemaslot: can only be determined if the head constituent
ically model the wrong dependencies in this casés fully expanded. For instance, $[dcl] expands
since it would assume that all noun phrases are at a non-heads/(S/NP) and to a hea&[dcl]/NP,
guments of the same verb. it is necessary to know how tHgdcl]/NP expands

However, since there is no Dutch corpus that iso determine which argument is filled by the non-
annotated with CCG derivations, we restrict our athead, even if we already know that the lexical cate-
tention to English in the remainder of this paper.  gory of the head word d§[dcl]/NP is a ditransitive

_ ((S[dcl]/NP)/NP)/NP. Therefore, we assume that
5 A model of predicate-argument the non-head child of a node is only expanded after
structure the head child has been fully expanded.

We fI.I‘St explain how word-word dependencies in t_ht%_2 Modelling long-range dependencies
predicate-argument structure can be captured in a _
generative model, and then describe how these prob’€ Predicate-argument structure that corresponds

abilities are estimated in the current implementatiorf© @ derivation contains not only local, but also long-
range dependencies that are projected from the lex-

5.1 Modelling local dependencies icon or through some rules such as the coordination

We first define the probabilities for purely local de-Of functor categories. In the following derivation,
pendencies without coordination. By excluding nonSMithis the subject ofesignedand ofleft:

local dependencies and coordination, at most one S[dcl]
dependency relation holds for each word. Consider - N
the following sentence: NIP S[dcl]\NP
e N
S[dcl] l}l S[dCI,]\NP S[dcl]/\NP\[conj]
NP g S\[dcl]\NP Smith resigned colnj S[chI]\NP
! - > and left
N S[dc]\NP (S\NP)\(S\NP) o
I [ | In order to express both dependencigmithhas
Smithresigned  yesterday to be conditioned oresignedand onleft:
This derivation expresses the following depen-
dencies: P(w=Smith N,((S[dcl]\NP, resigned, 1, (N, w)),

({S[dcI]\NP, resigned, 1, (N, Smith)) ((SII\NP, left), 1, (N, w))

((SWP)\(S\P), yesterday, 2, (S[dc]\NP, resigned) In terms of the predicate-argument structure,

We assume again that heads are generated befoesigned and left are both lexical heads of this
their modifiers or arguments, and that word-worgentence. Since neither fills an argument slot of
dependencies are expressed by conditioning modhe other, we assume that they are generated inde-
fiers or arguments on heads. Therefore, the hegeéndently. This is different from the SD model,



which conditions the head word of the secongxtraction, words cannot be generated at the max-
and subsequent conjuncts on the head word @hal projection of constituents anymore. Consider
the first conjunct. Similarly, in a sentence suchhe following examples:

asMiller and Smith resignedthe current model as- NP

sumes that the two heads of the subject noun phrase NP NP\NP

are conditioned on the verb, but not on each other. The v:;m;np dl/ - \d e,
Argument-cluster coordination constructions e )t/hat C]/S/()S\Ng[ W [dcl]\NP)/NP

such agyive a dog a bone and a policeman a flower Np saw

are another example where the dependencies in the NP I
predicate-argument structure cannot be expressed =~ T \piwp
at the level of the local trees that combine the  Thewoman e AN

individual arguments. Instead, these dependencies  (NP\NP)/(S[dcl]/NP)  S[dcl]/NP

are projected down through the category of the that S/ (Z\PNP) (Siael\P) /P
argument cluster: / \
_S\NPy __ dcl]\NP)/NP  NP/NP
((S\NP1)/NP2) /NP5 (S\NP1)\(((S\NP1)/NP2)/NPs) ([c]\ e

saw  NP/PP  PP/NP
. . . api(‘:ture olf

Lexical categories that project long-range depenn hoth cases, there is&dcl] /NP with lexical head
dencies include cases such as relative pronouns, cqBfdcl]\NP)/NP; however, in the second case, the
trol verbs, auxiliaries, modals and raising verbsNp argument is not the object of the transitive verb.
This can be eXpressed by CO'|ndeX|ng .the|r argu- Th|s problem can be Solved by genera‘[ing
ments, eg(NP\NP;)/(S[dcl]\NP;) for relative pro- words at the leaf nodes instead of at the maxi-

give

nouns. HereSmithis also the subject aksign mal projection of constituents. After expanding
S[del] _ the (S[dcl][\NP)/NP node to(S[dcl]\NP)/NP and
NP E[dd]\NP NP /NP, the NP that is co-indexed withomancan-
N (S[dcl]A\NP)/(S[bI\NP) S[b]\NP not be unified with the object acfawanymore.
Smith wil resign These examples have shown that two changes to

Again, in order to capture this dependency, we ashe generative process are necessary if word-word
sume that the entire verb phrase is generated befatependencies in the predicate-argument structure
the subject. are to be captured. First, head constituents have to
In relative clauses, there is a dependency betwede fully expanded before non-head constituents are
the verbs in the relative clause and the head of ttgenerated. Second, words have to be generated at
noun phrase that is modified by the relative clausethe leaves of the tree, not at the maximal projection

NP of constituents.
~
" - NPANP 53 Th d probabiliti
N (NP\NP)/(S[dcl]\NP) S[dcl]\NP ' € word probabriities
Smith who resigned Not all words have functor categories or fill argu-

Since the entire relative clause is an adjunct, it {§'€nt slots of other functors. For instance, punctu-
generated after the noun phraSmith Therefore, ation marks, conjunctions, and the heads of entire
we cannot capture the dependency betwSerith sentences are not conditioned on any other words.
andresignedby conditioningSmithon resigned In- Therefo_re they are only cpndltloned on thelr lexical
stead,resignedneeds to be conditioned on the fac€ategories. Therefore, this model contains the fol-
that its subject iSmith This is similar to the way 'OWing three kinds of word probabilities:

in which head words of adjuncts suchyesterday 1. Argument probabilities:

are generated. In addition to this dependency, we  P(wlc,({c/,w'},1, (¢, w)))

also assume that there is a dependency betwben The probability of generating word;, given
andresigned It follows that if we want to capture that its lexical category ig and that(c, w) is
unbounded long-range dependencies such as object head of theth argument of ¢, w').



2. Functor probabilities: The probability of a functoww, given that itsith ar-

P(wlc,({c,w),i, (", w'))) gument is instantiated by a constituent whose lexical
The probability of generating word,, given headisc’,w') can be estimated in a similar manner:
that its lexical category is and that(c’, w') is P(w|c, ({¢,w), i, (¢, w'))) =

head of theth argument of ¢, w). C({{c,w), i, (', w')))

” C s " , '7 17 /
3. Other word probabilitiesP (w|c) H th ({fe wb> ' <i 1_”») bt
If a word does not fill any dependency relation, ere \?ve COUF“ t € num Zr o tm,]es,t eargdu_-
it is only conditioned on its lexical category. et O (e, w) is instantiated with(c', w'), and di-
vide this by the number of times thé&t', w') is the

5.4 The structural probabilities ith argument of any lexical head with categary
Like the SD model, we assume an underlying proFor instance, in order to compute the probability
cess which generates CCG derivation trees startirj yesterdaymodifying resignedas in the previous
from the root node. Each node in a derivation tre&ection, we count the number of times the transitive
has a category, a list of lexical heads and a (possierbresignedwas modified by the advenesterday

bly empty) list of dependency relations to be filledand divide this by the number of timessignedwas

by its lexical heads. As discussed in the previougiodified by any adverb of the same category.
section, head words cannot in general be generatedWe have seen that functor probabilities are not
at the maximal projection if unbounded long-range&nly necessary for adjuncts, but also for certain
dependencies are to be captured. This is not the cdyges of long-range dependencies such as the rela-
for lexical categories. We therefore assume that #on between the noun modified by a relative clause
node’s lexical head category is generated at its magnd the verb in the relative clause. In the case of zero
imal projection, whereas head words are generatéd reduced relative clauses, some of these dependen-
at the leaf nodes. Since lexical categories are gefies are also captured by the SD model. However, in
erated at the maximal projection, our model has thé&at model, only counts from the same type of con-
same structural probabilities as thexCat model of ~ struction could be used, whereas in our model, the

Hockenmaier and Steedman (2002b). functor probability for a verb in a zero or reduced
o . relative clause can be estimated from all occurrences
5.5 Estimating word probabilities of the head noun. In particular, all instances of the

This model generates words in three differenhoun and verb occurring together in the training data
ways—as arguments of functors that are alreadivith the same predicate-argument relation between
generated, as functors which have already one (trem, but not necessarily with the same surface con-
more) arguments instantiated, or independent of tHi&guration) are taken into account by the new model.
surrounding context. The last case is simple, as this To obtain the model probabilities, the relative fre-
probability can be estimated directly, by countingquency estimates of the functor and argument prob-
the number of times is the lexical category ofy in  abilities are both interpolated with the word proba-
the training corpus, and dividing this by the numbebilities P(w|c).
of t|me§c occurs as a lexical category in the tralnlng,:_’_6 Conditioning events on multiple heads
corpus: Blule) - Clw,c) _

=00 In the presence of long-range dependencies and co-

In order to estimate the probability of an argumen?rdination’ the new model requires the conditioning

w. We count the number of times it occurs with lex2f certain events on multiple heads. Since it is un-

ical categorye and is theith argument of the lexical likely that such probabilities can be estimated d_i-
functor (!, w') in question, divided by the numberrectly from data, they have to be approximated in

of times theith argument of(¢’, w') is instantiated solrfne mannetr. hat all d denci hat hold
with a constituent whose lexical head category:is we assume that a _epen enciap; that (.)
Pluwle, (¢, w'), i, (¢, w))) = for a word are equally likely, we can approximate

U w'), i, (e, w))) P(wlc,depy, ..., dep,,) as the average of the individ-
S O w0, () ual dependency probabilities:




The fact that constituents can have more than one
n lexical head causes similar problems for dynamic
P(wlc,depy, ..., dep,,) = %ZP(MC, dep;) programming and the beam search.

_ o =t ~In order to be able to parse efficiently with our
This approximation is has the advantage that it i§,qdel, we use the following approximations for dy-
easy to compute, but might not give a good estimatgig mic programming and the beam search: Two con-
since it averages over all individual distributions. it ,ents with the same span and the same category
h are considered equivalent if they delay the evalua-

tion of the probabilities of the same words and if
This section describes how this model is integratethey have the same number of lexical heads, and if
into a CKY chart parser. Dynamic programming andhe first two elements of their lists of lexical heads
effective beam search strategies are essential to guare identical (the same words and lexical categories).
antee efficient parsing in the face of the high ambiThis is only an approximation to true equivalence,
guity of wide-coverage grammars. Both use the insince we do not check the entire list of lexical heads.
side probability of constituents. In lexicalized mod-Furthermore, if a cell contains more than 100 con-
els where each constituent has exactly one lexicatituents, we iteratively narrow the beam (by halv-
head, and where this lexical head can only deperidg it in size¥ until the beam search has no further
on the lexical head of one other constituent, the ireffect or the cell contains less than 100 constituents.
side probability of a constituent is the probabilityThis is a very aggressive strategy, and it is likely to
that a node with the label and lexical head of thisdversely affect parsing accuracy. However, more
constituent expands to the tree below this node. THenient strategies were found to require too much
probability of generating a node with this label andspace for the chart to be held in memory. A better
lexical head is given by the outside probability of thevay of dealing with the space requirements of our
constituent. model would be to implement a packed shared parse

In the model defined here, the lexical head oforest, but we leave this to future work.
a constituent can depend on more than one other
word. As explained in section 5.2, there are inY An experiment

stances where the categorial functor is conditioned

on its arguments — the example given above showéﬁ’e use sections 02-21 of CCGbank for training, sec-

that verbs in relative clauses are conditioned on thtéOn 00 for development, and section 23 for test-

lexical head of the noun which is modified by the"9: The input is POS-tagged using the tagger of

relative clause. Therefore, the inside probability Oﬁatnaparkhl (1996). However, since parsing with

a constituent cannot include the probability of an;she hew model is less efficient, only sentensed0

lexical head whose argument slots are not all fiIIed.tOkenS only are used to test the model. A fre-

This means that the equivalence relation definegluegcy c;:ofi OTS. 20 dels ushe_dhto deter:mned rafteh
by the probability model needs to take into accoun ords in the fraining data, which are replaced wi

not only the head of the constituent itself, but als(s elr :DOS-taIgs. dUt?kr':r?V\'m I;Ng;dts n th_?_hteSt djt?
all other lexical heads within this constituent which®'© &S0 replaced by their -lags. € Models

i ed according to their Parseval scores and
have at least one unfilled argument slot. As a consé-© evaluat g

quence, dynamic programming becomes less offel® the recovery of dependencies in the predicate-

tive. There is a related problem for the beam searcg.r gument structure. Like Clark etal. (2002), we

in our model, the inside probabilities of constituent ? hot taket theollexmflal category of th,e olleplendent
within the same cell cannot be directly compared'© @ccount, and eva uatge, w), 1, (-, w')) for la-

, -
anymore. Instead, the number of unfilled lexica elled, and((, ), -, {-, ")) for unlabelled recov
heads needs to be taken into account. If a lexic&l” Undirectional recovery (UdirP/UdirR) evalu-

head(c,w) is unfilled, the evaluation of the proba- ates only whether there is a dependency between

, : ) ]
bility of w is delayed. This creates a problem for th@ndw - Unlike unlabelled recovery, this does not pe
beam search strategy. ?Beam search is as in Hockenmaier and Steedman (2002b).

6 Dynamic programming and beam searc



nalize the parser if it mistakes a complement for ap LexCat Local LeftArgs Al
. . Lex. cats: 88.2 89.9 90.1 90.1
adjunct or vice versa. Parseval
In order to determine the impact of capturing dif{ LP: 76.3 784 785 7875
ferent kinds of long-range dependencies, four differ- LR 759 785 79.0 78
: . . . UP: 82.0 834 83.6 83.2
ent models were investigated: The baseline model|ig): 816 836 83.8 834
like the LexCat model of (2002b), since the struc- Predicate-argument structure (all)
tural probabilities of our model are like those of LP: 773 808 81.6 81.3
.| LR: 78.2  80.6 815 814
that model. Local only takes local dependencies| p. 86.4 883 889 887
into account. LeftArgs only takes long-range de-| UR: 874 881 88.8 88.4
pendencies that are projected through left argumer t%jﬂ:igi gg-g gg-g gg-i gg-g
(\X) into account. This includes for instance long ~—Non-long-range dependencies
range dependencies projected by subjects, subjedtP: 78.9 825 830 829
; : : LR: 795 823 82.7 82.6
and object control verbs, subject extraction and left Op- 875 897 899 8o
node raising. All takes all long-range dependen{ yR: 881 894 89.6 894
cies into account, in particular it extenteftArgs Alllong-range dependencies
by capturing also the unbounded dependencies arjs=": 608  62.6 67.1 66.3
: . . : . |'LR: 64.4  63.0 68.5 68.8
ing through right-node-raising and object extraction. yp- 753 74.2 78.9 781
Local, LeftArgs andAll are all tested with the ag- | UR: 80.2  74.9 80.5 80.9
gressive beam strategy described above. - BO””degéogg'raggzdepe“dgg‘ges 55
In all cases, the CCG derivation includes all longt | g: 659 641 702 704
range dependencies. However, with the models thatP: 798 77.1 814 814
exclude certain kinds of dependencies, it is possib UR: 824 767 826 828
. . . Unbounded long-range dependencies
that a word is conditioned on no dependencies. Infp: 260 50.4 56 524
these cases, the word is generated At |c). LR: 54.7  55.8 58.7 61.2
Table 1 gives the performance of all four mod up: 541 58.2 63.8 611
: . ], UR: 66.5  63.7 66.8 69.9
els on section 23 in terms of the accuracy of lexicat

categories, Parseval scores, and in terms of the re- Table 1: Evaluation (sec. 23; 40 words).
covery of word-word dependencies in the predicate-
argument structure. Here, results are further brdure. By including long-range dependencies on left
ken up into the recovery of local, all long-range @rguments (such as subject&eftArgs), a further
bounded long-range and unbounded long-range d@provement of 0.7% on the recovery of predicate-
pendencies. argument structure is obtained. This model captures
LexCat does not capture any word-word de-the dependency betwesharesandbought In con-
pendencies. Its performance on the recovery dfast to the SD model, it can use all instances of
predicate-argument structure can be improved bgharesas the subject of a passive verb in the train-
3% by capturing only local word-word dependenjng data to estimate this probability. Therefore, even
cies (ocal). This excludes certain kinds of depen-f sharesandboughtdo not co-occur in this partic-
dencies that were captured by the SD model. For indar construction in the training data, the event that
stance, the dependency between the head of a nd§dnodelled by our dependency model might not be
phrase and the head of a reduced relative claige (Unseen, since it could have occurred in another syn-
shares bought by Johis captured by the SD model, tactic context.
sincesharesandboughtare both heads of the local Our results indicate that in order to perform well
trees that are combined to form the complex nouan long-range dependencies, they have to be in-
phrase. However, in the SD model the probability o€luded in the model, sinceocal, the model that
this dependency can only be estimated from occucaptures only local dependencies performs worse on
rences of the same construction, since dependenlong-range dependencies thaexCat, the model
relations are defined in terms of local trees and nahat captures no word-word dependencies. How-
in terms of the underlying predicate-argument strucever, with more than 5% difference on labelled pre-



cision and recall on long-range dependencies, thgrobabilities of multiple dependencies, and more so-
model which captures long-range dependencies qisticated techniques should be investigated.

left arguments performs significantly better on re- We have argued that a model of the kind proposed
covering long-range dependencies thacal. The in this paper is essential for parsing languages with
greatest difference in performance between the motteer word order, such as Dutch or Czech, where the
els which do capture long-range dependencies amdodel of Hockenmaier and Steedman (2002b) (and
the models which do not is on long-range dependemther models of surface dependencies) would sys-
cies. This indicates that, at least in the kind of moddkmatically capture the wrong dependencies, even if
considered here, it is very important to model nobnly local dependencies are taken into account. For
just local, but also long-range dependencies. Itis nd&nglish, our experimental results demonstrate that
clear whyAll, the model that includes all dependen-our model benefits greatly from modelling not only
cies, performs slightly worse than the model whichocal, but also long-range dependencies, which are
includes only long-range dependencies on subjectbeyond the scope of surface dependency models.
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