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Abstract 

This paper proposes the use of uncertainty 
reduction in machine learning methods 
such as co-training and bilingual boot-
strapping, which are referred to, in a gen-
eral term, as ‘collaborative bootstrapping’. 
The paper indicates that uncertainty re-
duction is an important factor for enhanc-
ing the performance of collaborative 
bootstrapping. It proposes a new measure 
for representing the degree of uncertainty 
correlation of the two classifiers in col-
laborative bootstrapping and uses the 
measure in analysis of collaborative boot-
strapping. Furthermore, it proposes a new 
algorithm of collaborative bootstrapping 
on the basis of uncertainty reduction. Ex-
perimental results have verified the cor-
rectness of the analysis and have 
demonstrated the significance of the new 
algorithm. 

1 Introduction 

We consider here the problem of collaborative 
bootstrapping. It includes co-training (Blum and 
Mitchell, 1998; Collins and Singer, 1998; Nigam 
and Ghani, 2000) and bilingual bootstrapping (Li 
and Li, 2002).  

Collaborative bootstrapping begins with a small 
number of labelled data and a large number of 
unlabelled data. It trains two (types of) classifiers 
from the labelled data, uses the two classifiers to 
label some unlabelled data, trains again two new 
classifiers from all the labelled data, and repeats 
the above process. During the process, the two 

classifiers help each other by exchanging the la-
belled data. In co-training, the two classifiers have 
different feature structures, and in bilingual boot-
strapping, the two classifiers have different class 
structures. 

Dasgupta et al (2001) and Abney (2002) con-
ducted theoretical analyses on the performance 
(generalization error) of co-training. Their analyses, 
however, cannot be directly used in studies of co-
training in (Nigam & Ghani, 2000) and bilingual 
bootstrapping. 

In this paper, we propose the use of uncertainty 
reduction in the study of collaborative bootstrap-
ping (both co-training and bilingual bootstrapping). 
We point out that uncertainty reduction is an im-
portant factor for enhancing the performances of 
the classifiers in collaborative bootstrapping. Here, 
the uncertainty of a classifier is defined as the por-
tion of instances on which it cannot make classifi-
cation decisions. Exchanging labelled data in 
bootstrapping can help reduce the uncertainties of 
classifiers. 

Uncertainty reduction was previously used in 
active learning. We think that it is this paper which 
for the first time uses it for bootstrapping.  

We propose a new measure for representing the 
uncertainty correlation between the two classifiers 
in collaborative bootstrapping and refer to it as 
‘uncertainty correlation coefficient’ (UCC). We 
use UCC for analysis of collaborative bootstrap-
ping. We also propose a new algorithm to improve 
the performance of existing collaborative boot-
strapping algorithms. In the algorithm, one classi-
fier always asks the other classifier to label the 
most uncertain instances for it. 

Experimental results indicate that our theoreti-
cal analysis is correct. Experimental results also 
indicate that our new algorithm outperforms exist-
ing algorithms. 



2 Related Work 

2.1 Co-Training and Bilingual Bootstrapping 

Co-training, proposed by Blum and Mitchell 
(1998), conducts two bootstrapping processes in 
parallel, and makes them collaborate with each 
other. More specifically, it repeatedly trains two 
classifiers from the labelled data, labels some 
unlabelled data with the two classifiers, and ex-
changes the newly labelled data between the two 
classifiers. Blum and Mitchell assume that the two 
classifiers are based on two subsets of the entire 
feature set and the two subsets are conditionally 
independent with one another given a class. This 
assumption is called ‘view independence’. In their 
algorithm of co-training, one classifier always asks 
the other classifier to label the most certain in-
stances for the collaborator. The word sense dis-
ambiguation method proposed in Yarowsky (1995) 
can also be viewed as a kind of co-training. 

Since the assumption of view independence 
cannot always be met in practice, Collins and 
Singer (1998) proposed a co-training algorithm 
based on ‘agreement’ between the classifiers. 

As for theoretical analysis, Dasgupta et al. 
(2001) gave a bound on the generalization error of 
co-training within the framework of PAC learning. 
The generalization error is a function of ‘dis-
agreement’ between the two classifiers. Dasgupta 
et al’s result is based on the view independence 
assumption, which is strict in practice. 

Abney (2002) refined Dasgupta et al’s result by 
relaxing the view independence assumption with a 
new constraint. He also proposed a new co-training 
algorithm on the basis of the constraint. 

Nigam and Ghani (2000) empirically demon-
strated that bootstrapping with a random feature 
split (i.e. co-training), even violating the view in-
dependence assumption, can still work better than 
bootstrapping without a feature split (i.e., boot-
strapping with a single classifier). 

For other work on co-training, see (Muslea et al 
200; Pierce and Cardie 2001). 

Li and Li (2002) proposed an algorithm for 
word sense disambiguation in translation between 
two languages, which they called ‘bilingual boot-
strapping’. Instead of making an assumption on the 
features, bilingual bootstrapping makes an assump-
tion on the classes. Specifically, it assumes that the 
classes of the classifiers in bootstrapping do not 

overlap. Thus, bilingual bootstrapping is different 
from co-training. 

Because the notion of agreement is not involved 
in bootstrapping in (Nigam & Ghani 2000) and 
bilingual bootstrapping, Dasgupta et al and 
Abney’s analyses cannot be directly used on them. 

2.2 Active Learning 

Active leaning is a learning paradigm. Instead of 
passively using all the given labelled instances for 
training as in supervised learning, active learning 
repeatedly asks a supervisor to label what it con-
siders as the most critical instances and performs 
training with the labelled instances. Thus, active 
learning can eventually create a reliable classifier 
with fewer labelled instances than supervised 
learning. One of the strategies to select critical in-
stances is called ‘uncertain reduction’ (e.g., Lewis 
and Gale, 1994). Under the strategy, the most un-
certain instances to the current classifier are se-
lected and asked to be labelled by a supervisor. 

The notion of uncertainty reduction was not 
used for bootstrapping, to the best of our knowl-
edge. 

3 Collaborative Bootstrapping and Un-
certainty Reduction 

We consider the collaborative bootstrapping prob-
lem.  

Let � denote a set of instances (feature vectors) 
and let� denote a set of labels (classes). Given a 
number of labelled instances, we are to construct a 
function �� →:h . We also refer to it as a classi-
fier.  

In collaborative bootstrapping, we consider the 
use of two partial functions 1h  and 2h , which either 
output a class label or a special symbol ⊥ denoting 
‘no decision’.  

Co-training and bilingual bootstrapping are two 
examples of collaborative bootstrapping.  

In co-training, the two collaborating classifiers 
are assumed to be based on two different views, 
namely two different subsets of the entire feature 
set. Formally, the two views are respectively inter-
preted as two functions )(1 xX and )x(X2 , �∈x . 

Thus, the two collaborating classifiers 1h  and 2h  in 
co-training can be respectively represented as 

))(( 11 xXh  and ))(( 22 xXh . 



In bilingual bootstrapping, a number of classifi-
ers are created in the two languages. The classes of 
the classifiers correspond to word senses and do 
not overlap, as shown in Figure 1. For example, the 
classifier )E|x(h 11  in language 1 takes sense 2 
and sense 3 as classes. The classifier )C|x(h 12  in 
language 2 takes sense 1 and sense 2 as classes, 
and the classifier )C|x(h 22  takes sense 3 and 
sense 4 as classes. Here we use 211 ,, CCE to de-
note different words in the two languages. Collabo-
rative bootstrapping is performed between the 
classifiers )(h ∗1  in language 1 and the classifiers 

)(h ∗2  in language 2. (See Li and Li 2002 for de-
tails). 

For the classifier )E|x(h 11 in language 1, we 
assume that there is a pseudo classifier 

)C,C|x(h 212 in language 2, which functions as a 
collaborator of )E|x(h 11 . The pseudo classifier 

)C,C|x(h 212  is based on )C|x(h 12  and 
)C|x(h 22 , and takes sense 2 and sense 3 as classes. 

Formally, the two collaborating classifiers (one 
real classifier and one pseudo classifier) in bilin-
gual bootstrapping are respectively represented as 

)|(1 Exh  and )|(2 Cxh , �∈x . 
Next, we introduce the notion of uncertainty re-

duction in collaborative bootstrapping. 
Definition 1 The uncertainty )(hU of a classi-

fier h is defined as: 
}),)(|({)( �∈=⊥= xxhxPhU   (1) 

In practice, we define )(hU  as  
}),  ,))((|({)( �� ∈∈∀<== xyyxhCxPhU θ  (2) 

where θ  denotes a predetermined threshold and 
)(∗C denotes the confidence score of the classifier 

h. 
Definition 2 The conditional uncer-

tainty )|( yhU of a classifier h given a class y is 
defined as: 

)|},)(|({)|( yYxxhxPyhU =∈=⊥= �  (3) 

We note that the uncertainty (or conditional un-
certainty) of a classifier (a partial function) is an 
indicator of the accuracy of the classifier. Let us 
consider an ideal case in which the classifier 
achieves 100% accuracy when it can make a classi-
fication decision and achieves 50% accuracy when 
it cannot (assume that there are only two classes). 
Thus, the total accuracy on the entire data space is 

)(5.01 hU×− . 

Definition 3 Given the two classifiers 1h and 2h  
in collaborative bootstrapping, the uncertainty re-
duction of 1h  with respect to 2h   (denoted as 

)\( 21 hhUR ), is defined as 
}),)(,)(|({)\( 2121 �∈≠⊥=⊥= xxhxhxPhhUR  (4) 

Similarly, we have 

}),)(,)(|({)\( 2112 �∈=⊥≠⊥= xxhxhxPhhUR   

Uncertainty reduction is an important factor for 
determining the performance of collaborative boot-
strapping. In collaborative bootstrapping, the more 
the uncertainty of one classifier can be reduced by 
the other classifier, the higher the performance can 
be achieved by the classifier (the more effective 
the collaboration is). 

4 Uncertainty Correlation Coefficient 
Measure 

4.1 Measure 

We introduce the measure of uncertainty correla-
tion coefficient (UCC) to collaborative bootstrap-
ping. 

Definition 4 Given the two classifiers 1h and 2h , 
the conditional uncertainty correlation coefficient 
(CUCC) between 1h and 2h given a class y (denoted 
as yhhr

21
), is defined as 

)|)(()|)((
)|)(,)((

21 21

21

yYxhPyYxhP
yYxhxhP

yhhr ==⊥==⊥
==⊥=⊥=

 
(5) 

Definition 5 The uncertainty correlation coeffi-
cient (UCC) between 1h and 2h  (denoted as 

21hhR ), 

is defined as 

�=
y

yhhhh r)y(PR
2121

 (6) 

UCC represents the degree to which the uncer-

 
Figure 1:  Bilingual Bootstrapping  



tainties of the two classifiers are related. If UCC is 
high, then there are a large portion of instances 
which are uncertain for both of the classifiers. Note 
that UCC is a symmetric measure from both classi-
fiers’ perspectives, while UR is an asymmetric 
measure from one classifier’s perspective (ei-
ther )\( 21 hhUR or )\( 12 hhUR ). 

4.2 Theoretical Analysis 

Theorem 1 reveals the relationship between the 
CUCC (UCC) measure and uncertainty reduction.  

Assume that the classifier 1h can collaborate 
with either of the two classifiers 2h and 2'h . The 

two classifiers 2h and 2h′ have equal conditional 

uncertainties. The CUCC values between 1h and 

2h′ are smaller than the CUCC values between 1h  

and 2h . Then, according to Theorem 1, 1h should 
collaborate with 2h′ , because 2h ′ can help reduce its 
uncertainty more, thus, improve its accuracy more. 

Theorem 1 Given the two classifier pairs 
),( 21 hh and ),( 21 hh ′ , if �∈≥ ′ yrr yhhyhh ,

2121
and 

),|()|( 22 yhUyhU ′=  �∈y , then we have 
)\()\( 2121 hhURhhUR ′≤  

Proof: 
We can decompose the uncertainty )( 1hU of 1h  as 
follows: 

)())|},)(,)(|({                
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y
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Under the conditions, yhhyhh rr
2121 ′≥ , �∈y  and 

),|()|( 22 yhUyhU ′= �∈y , we have 
)\()\( 2121 hhURhhUR ′≤  � 

Theorem 1 states that the lower the CUCC val-
ues are, the higher the performances can be 
achieved in collaborative bootstrapping. 

Definition 6 The two classifiers in co-training 
are said to satisfy the view independence assump-
tion (Blum and Mitchell, 1998), if the following 
equations hold for any class y. 

)|(),|(

)|(),|(

221122

112211

yYxXPxXyYxXP

yYxXPxXyYxXP

======
======

 
Theorem 2 If the view independence assump-

tion holds, then 0.1
21

=yhhr holds for any class y. 

Proof: 
According to (Abney, 2002), view independence 
implies classifier independence: 

)|(),|(

)|(),|(

212

121

yYvhPuhyYvhP

yYuhPvhyYuhP

======
======

 
We can rewrite them as  

)|()|()|,,( 2121 yYvhPyYuhPyYvhuhP ========  
Thus, we have 

)|})(|({)|},)(|({

)|},)(,)(|({

21

21

yYxxhxPyYxxhxP

yYxxhxhxP

=∈=⊥=∈=⊥=
=∈=⊥=⊥

��

�  

It means  
�∈∀= yr yhh     ,0.1

21
 � 

Theorem 2 indicates that in co-training with 
view independence, the CUCC values 
( �∈∀yr yhh ,

21
) are small, since by defini-

tion ∞<< yhhr 21
0 . According to Theorem 1, it is 

easy to reduce the uncertainties of the classifiers. 
That is to say, co-training with view independence 
can perform well. 

How to conduct theoretical evaluation on the 
CUCC measure in bilingual bootstrapping is still 
an open problem. 

4.3 Experimental Results 

We conducted experiments to empirically evaluate 
the UCC values of collaborative bootstrapping. We 
also investigated the relationship between UCC 
and accuracy. The results indicate that the theoreti-
cal analysis in Section 4.2 is correct. 

In the experiments, we define accuracy as the 
percentage of instances whose assigned labels 



agree with their ‘true’ labels. Moreover, when we 
refer to UCC, we mean that it is the UCC value on 
the test data. We set the value of θ in Equation (2) 
to 0.8. 

Co-Training for Artificial Data Classification 

We used the data in (Nigam and Ghani 2000) to 
conduct co-training. We utilized the articles from 
four newsgroups (see Table 1). Each group had 
1000 texts.  

By joining together randomly selected texts 
from each of the two newsgroups in the first row as 
positive instances and joining together randomly 
selected texts from each of the two newsgroups in 
the second row as negative instances, we created a 
two-class classification data with view independ-
ence. The joining was performed under the condi-
tion that the words in the two newsgroups in the 
first column came from one vocabulary, while the 
words in the newsgroups in the second column 
came from the other vocabulary. 

We also created a set of classification data 
without view independence. To do so, we ran-
domly split all the features of the pseudo texts into 
two subsets such that each of the subsets contained 
half of the features. 

We next applied the co-training algorithm to the 
two data sets.  

We conducted the same pre-processing in the 
two experiments. We discarded the header of each 
text, removed stop words from each text, and made 
each text have the same length, as did in (Nigam 
and Ghani, 2000). We discarded 18 texts from the 
entire 2000 texts, because their main contents were 
binary codes, encoding errors, etc. 

We randomly separated the data and performed 
co-training with random feature split and co-
training with natural feature split in five times. The 
results obtained (cf., Table 2), thus, were averaged 
over five trials. In each trial, we used 3 texts for 
each class as labelled training instances, 976 texts 
as testing instances, and the remaining 1000 texts 
as unlabelled training instances. 

From Table 2, we see that the UCC value of the 
natural split (in which view independence holds) is 
lower than that of the random split (in which view 

independence does not hold). That is to say, in 
natural split, there are fewer instances which are 
uncertain for both of the classifiers. The accuracy 
of the natural split is higher than that of the random 
split. Theorem 1 states that the lower the CUCC 
values are, the higher the performances can be 
achieved. The results in Table 2 agree with the 
claim of Theorem 1. (Note that it is easier to use 
CUCC for theoretical analysis, but it is easier to 
use UCC for empirical analysis). 

Table 2: Results with Artificial Data 
Feature Accuracy  UCC  

Natural Split  0.928 1.006 
Random Split 0.712 2.399 

We also see that the UCC value of the natural 
split (view independence) is about 1.0. The result 
agrees with Theorem 2. 

Co-Training for Web Page Classification  

We used the same data in (Blum and Mitchell, 
1998) to perform co-training for web page classifi-
cation. 

The web page data consisted of 1051 web pages 
collected from the computer science departments 
of four universities. The goal of classification was 
to determine whether a web page was concerned 
with an academic course. 22% of the pages were 
actually related to academic courses. The features 
for each page were possible to be separated into 
two independent parts. One part consisted of words 
occurring in the current page and the other part 
consisted of words occurring in the anchor texts 
pointed to the current page.  

We randomly split the data into three subsets: 
labelled training set, unlabeled training set, and test 
set. The labelled training set had 3 course pages 
and 9 non-course pages. The test set had 25% of 
the pages. The unlabelled training set had the re-
maining data.  

Table 3: Results with Web Page Data and Bilin-
gual Bootstrapping Data 

Data Accuracy UCC 
Web Page 0.943 1.147 

bass 0.925 2.648 
drug 0.868 0.986 
duty 0.751 0.840 
palm 0.924 1.174 
plant 0.959 1.226 
space 0.878 1.007 

Word Sense Dis-
ambiguation 

tank 0.844 1.177 
We used the data to perform co-training and 

web page classification. The setting for the  

Table 1: Artificial Data for Co-Training 
Class Feature Set A Feature Set B 
Pos comp.os.ms-windows.misc talk.politics.misc 
Neg comp.sys.ibm.pc.hardware talk.politics.guns 



experiment was almost the same as that of Nigam 
and Ghani’s. One exception was that we did not 
conduct feature selection, because we were not 
able to follow their method from their paper. 

We repeated the experiment five times and 
evaluated the results in terms of UCC and accuracy. 
Table 3 shows the average accuracy and UCC 
value over the five trials. 

Bilingual Bootstrapping 

We also used the same data in (Li and Li, 2002) to 
conduct bilingual bootstrapping and word sense 
disambiguation. 

The sense disambiguation data were related to 
seven ambiguous English words, each having two 
Chinese translations. The goal was to determine 
the correct Chinese translations of the ambiguous 
English words, given English sentences containing 
the ambiguous words.  

For each word, there were two seed words used 
as labelled instances for training, a large number of 
unlabeled instances (sentences) in both English and 
Chinese for training, and about 200 labelled in-
stances (sentences) for testing. Details on data are 
shown in Table 4. 

We used the data to perform bilingual boot-
strapping and word sense disambiguation. The set-
ting for the experiment was exactly the same as 
that of Li and Li’s. Table 3 shows the accuracy and 
UCC value for each word. 

From Table 3 we see that both co-training and 
bilingual bootstrapping have low UCC values 
(around 1.0). With lower UCC (CUCC) values, 
higher performances can be achieved, according to 
Theorem 1. The accuracies of them are indeed high. 

Note that since the features and classes for each 
word in bilingual bootstrapping and those for web 
page classification in co-training are different, it is 
not meaningful to directly compare the UCC val-
ues of them. 

5 Uncertainty Reduction Algorithm 

5.1 Algorithm 

We propose a new algorithm for collaborative 
bootstrapping (both co-training and bilingual boot-
strapping). 

In the algorithm, the collaboration between the 
classifiers is driven by uncertainty reduction. Spe-
cifically, one classifier always selects the most un-
certain unlabelled instances for it and asks the 
other classifier to label.  Thus, the two classifiers 
can help each other more effectively. 

There exists, therefore, a similarity between our 
algorithm and active learning. In active learning 
the learner always asks the supervisor to label the 

Table 4: Data for Bilingual Bootstrapping 
Unlabelled instances 

Word 
English Chinese 

Seed words Test instances 

bass 142 8811 fish / music 200 
drug 3053 5398 treatment / smuggler 197 
duty 1428 4338 discharge / export 197 
palm 366 465 tree / hand 197 
plant 7542 24977 industry / life 197 
Space 3897 14178 volume / outer 197 
tank 417 1400 combat / fuel 199 
Total 16845 59567 - 1384 

Input: A set of labeled instances and a set of unla-
belled instances. 
Loop while there exist unlabelled instances{ 

Create classifier 1h using the labeled instances; 

Create classifier 2h using the labeled instances; 
For each class ( yY = ){ 

Pick up yb  unlabelled instances whose labels 

( yY = ) are most certain for 1h and are most 

uncertain for 2h , label them with 1h and add 
them into the set of labeled instances; 

      
Pick up yb  unlabelled instances whose labels 

( yY = ) are most certain for 2h and are most 

uncertain for 1h , label them with 2h  and add 
them into the set of labeled instances; 

} 
} 

Output: Two classifiers 1h and 2h  

Figure 2: Uncertainty Reduction Algorithm 



most uncertain examples for it, while in our algo-
rithm one classifier always asks the other classifier 
to label the most uncertain examples for it. 

Figure 2 shows the algorithm. Actually, our 
new algorithm is different from the previous algo-
rithm only in one point. Figure 2 highlights the 
point in italic fonts. In the previous algorithm, 
when a classifier labels unlabeled instances, it la-
bels those instances whose labels are most certain 
for the classifier. In contrast, in our new algorithm, 
when a classifier labels unlabeled instances, it la-
bels those instances whose labels are most certain 
for the classifier, but at the same time most uncer-
tain for the other classifier. 

As one implementation, for each class y, 1h first 

selects its most certain ya instances, 2h  next se-

lects from them its most uncertain yb  instances 

( yy ba ≥ ), and finally 1h labels the yb instances 

with label y (Collaboration from the opposite di-
rection is performed similarly.). We use this im-
plementation in our experiments described below. 

5.2 Experimental Results 

We conducted experiments to test the effectiveness 
of our new algorithm. Experimental results indi-
cate that the new algorithm performs better than 
the previous algorithm. We refer to them as ‘new’ 
and ‘old’ respectively. 

Co-Training for Artificial Data Classification 

We used the artificial data in Section 4.3 and con-
ducted co-training with both the old and new algo-
rithms. Table 5 shows the results.  

We see that in co-training the new algorithm 
performs as well as the old algorithm when UCC is 
low (view independence holds), and the new algo-
rithm performs significantly better than the old al-
gorithm when UCC is high (view independence 
does not hold). 

Co-Training for Web Page Classification 

We used the web page classification data in Sec-
tion 4.3 and conducted co-training using both the 
old and new algorithms. Table 6 shows the results. 

We see that the new algorithm performs as well as 
the old algorithm for this data set. Note that here 
UCC is low. 

Table 6: Accuracies with Web Page Data 
Accuracy Data 

Old New 
UCC 

Web Page 0.943 0.943 1.147 

Bilingual Bootstrapping 

We used the word sense disambiguation data in 
Section 4.3 and conducted bilingual bootstrapping 
using both the old and new algorithms. Table 7 
shows the results. We see that the performance of 
the new algorithm is slightly better than that of the 
old algorithm. Note that here the UCC values are 
also low. 

We conclude that for both co-training and bi-
lingual bootstrapping, the new algorithm performs 
significantly better than the old algorithm when 
UCC is high, and performs as well as the old algo-
rithm when UCC is low. Recall that when UCC is 
high, there are more instances which are uncertain 
for both classifiers and when UCC is low, there are 
fewer instances which are uncertain for both classi-
fiers. 

Note that in practice it is difficult to find a 
situation in which UCC is completely low (e.g., the 
view independence assumption completely holds), 
and thus the new algorithm will be more useful 
than the old algorithm in practice. To verify this, 
we conducted an additional experiment. 

Again, since the features and classes for each 
word in bilingual bootstrapping and those for web 
page classification in co-training are different, it is 
not meaningful to directly compare the UCC val-
ues of them. 

Co-Training for News Article Classification 

In the additional experiment, we used the data 

Table 5: Accuracies with Artificial Data 
Accuracy Feature 

Old New 
UCC 

Natural Split 0.928 0.924 1.006 
Random Split 0.712 0.775 2.399 

Table 7: Accuracies with Bilingual Bootstrapping 
Data 

Accuracy Word 
Old New 

UCC 

bass 0.925 0.955 2.648 
drug 0.868 0.863 0.986 
duty 0.751 0. 797 0.840 
palm 0.924 0.914 1.174 
plant 0.959 0.944 1.226 
space 0.878 0.888 1.007 
tank 0.844 0.854 1.177 

Average 0.878 0.888 - 



from two newsgroups (comp.graphics and 
comp.os.ms-windows.misc) in the dataset of 
(Joachims, 1997) to construct co-training and text 
classification. 

There were 1000 texts for each group. We 
viewed the former group as positive class and the 
latter group as negative class. We applied the new 
and old algorithms. We conducted 20 trials in the 
experimentation. In each trial we randomly split 
the data into labelled training, unlabeled training 
and test data sets. We used 3 texts per class as la-
belled instances for training, 994 texts for testing, 
and the remaining 1000 texts as unlabelled in-
stances for training. We performed the same pre-
processing as that in (Nigam and Ghani 2000). 

Table 8 shows the results with the 20 trials. The 
accuracies are averaged over each 5 trials. From 
the table, we see that co-training with the new al-
gorithm significantly outperforms that using the 
old algorithm and also ‘single bootstrapping’. Here, 
‘single bootstrapping’ refers to the conventional 
bootstrapping method in which a single classifier 
repeatedly boosts its performances with all the fea-
tures. 

The above experimental results indicate that our 
new algorithm for collaborative bootstrapping per-
forms significantly better than the old algorithm 
when the collaboration is difficult. It performs as 
well as the old algorithm when the collaboration is 
easy. Therefore, it is better to always employ the 
new algorithm. 

Another conclusion from the results is that we 
can apply our new algorithm into any single boot-
strapping problem. More specifically, we can ran-
domly split the feature set and use our algorithm to 
perform co-training with the split subsets. 

6 Conclusion 

This paper has theoretically and empirically dem-
onstrated that uncertainty reduction is the essence 
of collaborative bootstrapping, which includes 

both co-training and bilingual bootstrapping. 
The paper has conducted a new theoretical 

analysis of collaborative bootstrapping, and has 
proposed a new algorithm for collaborative boot-
strapping, both on the basis of uncertainty reduc-
tion. Experimental results have verified the 
correctness of the analysis and have indicated that 
the new algorithm performs better than the existing 
algorithms. 
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Table 8:  Accuracies with News Data 
Collaborative Boot-

strapping Average 
Accuracy 

Single Boot-
strapping 

Old  New  
Trial 1-5 0.725 0.737 0.768 

Trial 6-10 0.708 0.702 0.793 
Trial 11-15 0.679 0.647 0.769 
Trial 16-20 0.699 0.689 0.767 

All 0.703 0.694 0.774 


