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Abstract 
This paper presents a Chinese word segmen-
tation system that uses improved source- 
channel models of Chinese sentence genera-
tion. Chinese words are defined as one of the 
following four types: lexicon words, mor-
phologically derived words, factoids, and 
named entities. Our system provides a unified 
approach to the four fundamental features of 
word-level Chinese language processing: (1) 
word segmentation, (2) morphological analy-
sis, (3) factoid detection, and (4) named entity 
recognition. The performance of the system is 
evaluated on a manually annotated test set, 
and is also compared with several state-of- 
the-art systems, taking into account the fact 
that the definition of Chinese words often 
varies from system to system. 

1 Introduction 

Chinese word segmentation is the initial step of 
many Chinese language processing tasks, and has 
attracted a lot of attention in the research commu-
nity. It is a challenging problem due to the fact that 
there is no standard definition of Chinese words.  

In this paper, we define Chinese words as one of 
the following four types: entries in a lexicon, mor-
phologically derived words, factoids, and named 
entities. We then present a Chinese word segmen-
tation system which provides a solution to the four 
fundamental problems of word-level Chinese lan-
guage processing: word segmentation, morpho-
logical analysis, factoid detection, and named entity 
recognition (NER). 

There are no word boundaries in written Chinese 
text. Therefore, unlike English, it may not be de-
sirable to separate the solution to word segmenta-
tion from the solutions to the other three problems. 

Ideally, we would like to propose a unified ap-
proach to all the four problems. The unified ap-
proach we used in our system is based on the im-
proved source-channel models of Chinese sentence 
generation, with two components: a source model 
and a set of channel models. The source model is 
used to estimate the generative probability of a 
word sequence, in which each word belongs to one 
word type. For each word type, a channel model is 
used to estimate the generative probability of a 
character string given the word type. So there are 
multiple channel models. We shall show in this 
paper that our models provide a statistical frame-
work to corporate a wide variety linguistic knowl-
edge and statistical models in a unified way.  

We evaluate the performance of our system us-
ing an annotated test set. We also compare our 
system with several state-of-the-art systems, taking 
into account the fact that the definition of Chinese 
words often varies from system to system. 

In the rest of this paper: Section 2 discusses 
previous work. Section 3 gives the detailed defini-
tion of Chinese words. Sections 4 to 6 describe in 
detail the improved source-channel models. Section 
8 describes the evaluation results. Section 9 pre-
sents our conclusion.  

2 Previous Work 

Many methods of Chinese word segmentation have 
been proposed: reviews include (Wu and Tseng, 
1993; Sproat and Shih, 2001). These methods can 
be roughly classified into dictionary-based methods 
and statistical-based methods, while many state-of- 
the-art systems use hybrid approaches. 

In dictionary-based methods (e.g. Cheng et al., 
1999), given an input character string, only words 
that are stored in the dictionary can be identified. 
The performance of these methods thus depends to 



a large degree upon the coverage of the dictionary, 
which unfortunately may never be complete be-
cause new words appear constantly. Therefore, in 
addition to the dictionary, many systems also con-
tain special components for unknown word identi-
fication. In particular, statistical methods have been 
widely applied because they utilize a probabilistic 
or cost-based scoring mechanism, instead of the 
dictionary, to segment the text. These methods 
however, suffer from three drawbacks. First, some 
of these methods (e.g. Lin et al., 1993) identify 
unknown words without identifying their types. For 
instance, one would identify a string as a unit, but 
not identify whether it is a person name. This is not 
always sufficient. Second, the probabilistic models 
used in these methods (e.g. Teahan et al., 2000) are 
trained on a segmented corpus which is not always 
available. Third, the identified unknown words are 
likely to be linguistically implausible (e.g. Dai et al., 
1999), and additional manual checking is needed 
for some subsequent tasks such as parsing. 

We believe that the identification of unknown 
words should not be defined as a separate problem 
from word segmentation. These two problems are 
better solved simultaneously in a unified approach. 
One example of such approaches is Sproat et al. 
(1996), which is based on weighted finite-state 
transducers (FSTs). Our approach is motivated by 
the same inspiration, but is based on a different 
mechanism: the improved source-channel models. 
As we shall see, these models provide a more 
flexible framework to incorporate various kinds of 
lexical and statistical information. Some types of 
unknown words that are not discussed in Sproat’s 
system are dealt with in our system. 

3 Chinese Words 

There is no standard definition of Chinese words – 
linguists may define words from many aspects (e.g. 
Packard, 2000), but none of these definitions will 
completely line up with any other. Fortunately, this 
may not matter in practice because the definition 
that is most useful will depend to a large degree 
upon how one uses and processes these words. 

We define Chinese words in this paper as one of 
the following four types: (1) entries in a lexicon 
(lexicon words below), (2) morphologically derived 
words, (3) factoids, and (4) named entities, because 
these four types of words have different function-
alities in Chinese language processing, and are 

processed in different ways in our system. For 
example, the plausible word segmentation for the 
sentence in Figure 1(a) is as shown. Figure 1(b) is 
the output of our system, where words of different 
types are processed in different ways: 

(a) 朋友们/十二点三十分/高高兴兴/到/李俊生/教授/家/
吃饭 (Friends happily go to professor Li Junsheng’s 
home for lunch at twelve thirty.) 

(b) [朋友+们 MA_S] [十二点三十分 12:30 TIME] [高兴
MR_AABB] [到] [李俊生 PN] [教授] [家] [吃饭] 

Figure 1: (a) A Chinese sentence. Slashes indicate word 
boundaries. (b) An output of our word segmentation system. 
Square brackets indicate word boundaries. + indicates a 
morpheme boundary. 

•  For lexicon words, word boundaries are de-
tected. 

•  For morphologically derived words, their 
morphological patterns are detected, e.g. 朋友
们 ‘friend+s’ is derived by affixation of the 
plural affix 们 to the noun 朋友 (MA_S in-
dicates a suffixation pattern), and 高高兴兴 
‘happily’ is a reduplication of 高兴 ‘happy’ 
(MR_AABB indicates an AABB reduplica-
tion pattern). 

•  For factoids, their types and normalized 
forms are detected, e.g. 12:30 is the normal-
ized form of the time expression 十二点三十
分 (TIME indicates a time expression). 

•  For named entities, their types are detected, 
e.g. 李俊生 ‘Li Junsheng’ is a person name 
(PN indicates a person name). 

In our system, we use a unified approach to de-
tecting and processing the above four types of 
words. This approach is based on the improved 
source-channel models described below. 

4 Improved Source-Channel Models 

Let S be a Chinese sentence, which is a character 
string. For all possible word segmentations W, we 
will choose the most likely one W* which achieves 
the highest conditional probability P(W|S): W* = 
argmaxw P(W|S). According to Bayes’ decision rule 
and dropping the constant denominator, we can 
equivalently perform the following maximization: 

)|()(maxarg* WSPWPW
W

= . 
(1) 

Following the Chinese word definition in Section 3, 
we define word class C as follows: (1) Each lexicon 



Word class Class model Linguistic Constraints 

Lexicon word (LW) P(S|LW)=1 if S forms a word lexicon 
entry, 0 otherwise.  

Word lexicon 

Morphologically derived word 
(MW) 

P(S|MW)=1 if S forms a morph lexicon 
entry, 0 otherwise.  

Morph-lexicon 

Person name (PN) Character bigram  family name list, Chinese PN patterns 

Location name (LN) Character bigram  LN keyword list, LN lexicon, LN abbr. list 

Organization name (ON) Word class bigram ON keyword list, ON abbr. list 

Transliteration names (FN) Character bigram transliterated name character list 

Factoid2 (FT) P(S|FT)=1 if S can be parsed using a 
factoid grammar G, 0 otherwise 

Factoid rules (presented by FSTs). 

Figure 2. Class models 

                                                   
2 In our system, we define ten types of factoid: date, time (TIME), percentage, money, number (NUM), measure, e-mail, phone 
number, and WWW. 

word is defined as a class; (2) each morphologically 
derived word is defined as a class; (3) each type of 
factoids is defined as a class, e.g. all time expres-
sions belong to a class TIME; and (4) each type of 
named entities is defined as a class, e.g. all person 
names belong to a class PN. We therefore convert 
the word segmentation W into a word class se-
quence C. Eq. 1 can then be rewritten as: 

)|()(maxarg* CSPCPC
C

= . (2) 

Eq. 2 is the basic form of the source-channel models 
for Chinese word segmentation. The models assume 
that a Chinese sentence S is generated as follows: 
First, a person chooses a sequence of concepts (i.e., 
word classes C) to output, according to the prob-
ability distribution P(C); then the person attempts to 
express each concept by choosing a sequence of 
characters, according to the probability distribution 
P(S|C).  

The source-channel models can be interpreted in 
another way as follows: P(C) is a stochastic model 
estimating the probability of word class sequence. It 
indicates, given a context, how likely a word class 
occurs. For example, person names are more likely 
to occur before a title such as 教授 ‘professor’. So 
P(C) is also referred to as context model afterwards. 
P(S|C) is a generative model estimating how likely 
a character string is generated given a word class. 
For example, the character string 李俊生 is more 
likely to be a person name than 里俊生 ‘Li Jun-
sheng’ because 李 is a common family name in 
China while 里 is not. So P(S|C) is also referred to 
as class model afterwards. In our system, we use the 

improved source-channel models, which contains 
one context model (i.e., a trigram language model in 
our case) and a set of class models of different types, 
each of which is for one class of words, as shown in 
Figure 2. 

Although Eq. 2 suggests that class model prob-
ability and context model probability can be com-
bined through simple multiplication, in practice 
some weighting is desirable. There are two reasons. 
First, some class models are poorly estimated, 
owing to the sub-optimal assumptions we make for 
simplicity and the insufficiency of the training 
corpus. Combining the context model probability 
with poorly estimated class model probabilities 
according to Eq. 2 would give the context model too 
little weight. Second, as seen in Figure 2, the class 
models of different word classes are constructed in 
different ways (e.g. name entity models are n-gram 
models trained on corpora, and factoid models are 
compiled using linguistic knowledge). Therefore, 
the quantities of class model probabilities are likely 
to have vastly different dynamic ranges among 
different word classes. One way to balance these 
probability quantities is to add several class model 
weight CW, each for one word class, to adjust the 
class model probability P(S|C) to P(S|C)CW. In our 
experiments, these class model weights are deter-
mined empirically to optimize the word segmenta-
tion performance on a development set. 

Given the source-channel models, the procedure 
of word segmentation in our system involves two 
steps: First, given an input string S, all word can-
didates are generated (and stored in a lattice). Each 
candidate is tagged with its word class and the class 



model probability P(S’|C), where S’ is any substring 
of S. Second, Viterbi search is used to select (from 
the lattice) the most probable word segmentation 
(i.e. word class sequence C*) according to Eq. (2). 

5 Class Model Probabilities 

Given an input string S, all class models in Figure 2 
are applied simultaneously to generate word class 
candidates whose class model probabilities are 
assigned using the corresponding class models: 

•  Lexicon words: For any substring S’ ⊆ S, we 
assume P(S’|C) = 1 and tagged the class as 
lexicon word if S’ forms an entry in the word 
lexicon, P(S’|C) = 0 otherwise. 

•  Morphologically derived words: Similar to 
lexicon words, but a morph-lexicon is used 
instead of the word lexicon (see Section 5.1). 

•  Factoids: For each type of factoid, we compile 
a set of finite-state grammars G, represented as 
FSTs. For all S’ ⊆ S, if it can be parsed using G, 
we assume P(S’|FT) = 1, and tagged S’ as a 
factoid candidate. As the example in Figure 1 
shows, 十二点三十分 is a factoid (time) can-
didate with the class model probability P(十二
点三十分|TIME) =1, and 十二 and 三十 are 
also factoid (number) candidates, with P(十二
|NUM) = P(三十|NUM) =1 

•  Named entities: For each type of named enti-
ties, we use a set of grammars and statistical 
models to generate candidates as described in 
Section 5.2. 

5.1 Morphologically derived words 

In our system, the morphologically derived words 
are generated using five morphological patterns: (1) 
affixation: 朋友们 (friend - plural) ‘friends’; (2) 
reduplication: 高兴 ‘happy’ ! 高高兴兴 ‘happily’; 
(3) merging: 上班 ‘on duty’ + 下班 ‘off duty’ !上
下班 ‘on-off duty’; (4) head particle (i.e. expres-
sions that are verb + comp): 走 ‘walk’ + 出去 ‘out’ 
! 走出去 ‘walk out’; and (5) split (i.e. a set of 
expressions that are separate words at the syntactic 
level but single words at the semantic level): 吃了饭 
‘already ate’, where the bi-character word 吃饭 ‘eat’ 
is split by the particle 了 ‘already’. 

It is difficult to simply extend the well-known 
techniques for English (i.e., finite-state morphology) 
to Chinese due to two reasons. First, Chinese mor-

morphological rules are not as ‘general’ as their 
English counterparts. For example, English plural 
nouns can be in general generated using the rule 
‘noun + s ! plural noun’. But only a small subset of 
Chinese nouns can be pluralized (e.g. 朋友们) using 
its Chinese counterpart ‘noun + 们 ! plural noun’ 
whereas others (e.g. 南瓜  ‘pumpkins’) cannot. 
Second, the operations required by Chinese mor-
phological analysis such as copying in reduplication, 
merging and splitting, cannot be implemented using 
the current finite-state networks3.  

Our solution is the extended lexicalization. We 
simply collect all morphologically derived word 
forms of the above five types and incorporate them 
into the lexicon, called morph lexicon. The proce-
dure involves three steps: (1) Candidate genera-
tion. It is done by applying a set of morphological 
rules to both the word lexicon and a large corpus. 
For example, the rule ‘noun + 们 ! plural noun’ 
would generate candidates like 朋友们. (2) Statis-
tical filtering. For each candidate, we obtain a set 
of statistical features such as frequency, mutual 
information, left/right context dependency from a 
large corpus. We then use an information gain-like 
metric described in (Chien, 1997; Gao et al., 2002) 
to estimate how likely a candidate is to form a 
morphologically derived word, and remove ‘bad’ 
candidates. The basic idea behind the metric is that 
a Chinese word should appear as a stable sequence 
in the corpus. That is, the components within the 
word are strongly correlated, while the components 
at both ends should have low correlations with 
words outside the sequence. (3) Linguistic selec-
tion. We finally manually check the remaining 
candidates, and construct the morph-lexicon, where 
each entry is tagged by its morphological pattern. 

5.2 Named entities 

We consider four types of named entities: person 
names (PN), location names (LN), organization 
names (ON), and transliterations of foreign names 
(FN). Because any character strings can be in prin-
ciple named entities of one or more types, to limit 
the number of candidates for a more effective 
search, we generate named entity candidates, given 
an input string, in two steps: First, for each type, we 
use a set of constraints (which are compiled by 

                                                   
3 Sproat et al. (1996) also studied such problems (with the same 
example) and uses weighted FSTs to deal with the affixation. 



linguists and are represented as FSTs) to generate 
only those ‘most likely’ candidates. Second, each of 
the generated candidates is assigned a class model 
probability. These class models are defined as 
generative models which are respectively estimated 
on their corresponding named entity lists using 
maximum likelihood estimation (MLE), together 
with smoothing methods4. We will describe briefly 
the constraints and the class models below. 

5.2.1 Chinese person names 

There are two main constraints. (1) PN patterns: We 
assume that a Chinese PN consists of a family name 
F and a given name G, and is of the pattern F+G. 
Both F and G are of one or two characters long. (2) 
Family name list: We only consider PN candidates 
that begin with an F stored in the family name list 
(which contains 373 entries in our system). 

Given a PN candidate, which is a character 
string S’, the class model probability P(S’|PN) is 
computed by a character bigram model as follows: 
(1) Generate the family name sub-string SF, with the 
probability P(SF|F); (2) Generate the given name 
sub-string SG, with the probability P(SG|G) (or 
P(SG1|G1)); and (3) Generate the second given name, 
with the probability P(SG2|SG1,G2). For example, the 
generative probability of the string 李俊生 given 
that it is a PN would be estimated as P(李俊生|PN) 
= P(李|F)P(俊|G1)P(生|俊,G2). 

5.2.2 Location names 

Unlike PNs, there are no patterns for LNs. We 
assume that a LN candidate is generated given S’ 
(which is less than 10 characters long), if one of the 
following conditions is satisfied: (1) S’ is an entry in 
the LN list (which contains 30,000 LNs); (2) S’ ends 
in a keyword in a 120-entry LN keyword list such as 
市 ‘city’5. The probability P(S’|LN) is computed by 
a character bigram model.  

Consider a string 乌苏里江 ‘Wusuli river’. It is a 
LN candidate because it ends in a LN keyword 江 
‘river’. The generative probability of the string 
given it is a LN would be estimated as P(乌苏里江
|LN) = P(乌 |<LN>) P(苏|乌) P(里 |苏) P(江 |里) 

                                                   
4 The detailed description of these models are in Sun et al. 
(2002), which also describes the use of cache model and the 
way the abbreviations of LN and ON are handled. 
5 For a better understanding, the constraint is a simplified 
version of that used in our system. 

P(</LN>|江), where <LN> and </LN> are symbols 
denoting the beginning and the end of a LN, re-
spectively. 

5.2.3 Organization names 

ONs are more difficult to identify than PNs and LNs 
because ONs are usually nested named entities. 
Consider an ON 中国国际航空公司  ‘Air China 
Corporation’; it contains an LN 中国 ‘China’. 

Like the identification of LNs, an ON candidate 
is only generated given a character string S’ (less 
than 15 characters long), if it ends in a keyword in a 
1,355-entry ON keyword list such as 公司 ‘corpo-
ration’. To estimate the generative probability of a 
nested ON, we introduce word class segmentations 
of S’, C, as hidden variables. In principle, the ON 
class model recovers P(S’|ON) over all possible C: 
P(S’|ON) = ∑CP(S’,C|ON) = ∑CP(C|ON)P(S’|C, 
ON). Since P(S’|C,ON) = P(S’|C), we have P(S’|ON) 
= ∑CP(C|ON) P(S’|C). We then assume that the 
sum is approximated by a single pair of terms 
P(C*|ON)P(S’|C*), where C* is the most probable 
word class segmentation discovered by Eq. 2. That 
is, we also use our system to find C*, but the source- 
channel models are estimated on the ON list. 

Consider the earlier example. Assuming that C* 
= LN/国际/航空/公司, where 中国 is tagged as a LN, 
the probability P(S’|ON) would be estimated using a 
word class bigram model as: P(中国国际航空公司
|ON) ≈ P(LN/国际/航空/公司|ON) P(中国|LN) =  
P(LN|<ON>)P(国际|LN)P(航空|国际)P(公司|航空) 
P(</ON>|公司)P(中国|LN), where P(中国|LN) is 
the class model probability of 中国 given that it is a 
LN, <ON> and </ON> are symbols denoting the 
beginning and the end of a ON, respectively.  

5.2.4 Transliterations of foreign names 

As described in Sproat et al. (1996): FNs are usually 
transliterated using Chinese character strings whose 
sequential pronunciation mimics the source lan-
guage pronunciation of the name. Since FNs can be 
of any length and their original pronunciation is 
effectively unlimited, the recognition of such names 
is tricky. Fortunately, there are only a few hundred 
Chinese characters that are particularly common in 
transliterations. 

Therefore, an FN candidate would be generated 
given S’, if it contains only characters stored in a 
transliterated name character list (which contains 



618 Chinese characters). The probability P(S’|FN) 
is estimated using a character bigram model. Notice 
that in our system a FN can be a PN, a LN, or an ON, 
depending on the context. Then, given a FN can-
didate, three named entity candidates, each for one 
category, are generated in the lattice, with the class 
probabilities P(S’|PN)=P(S’|LN)=P(S’|ON)= 
P(S’|FN). In other words, we delay the determina-
tion of its type until decoding where the context 
model is used. 

6 Context Model Estimation  

This section describes the way the class model 
probability P(C) (i.e. trigram probability) in Eq. 2 is 
estimated. Ideally, given an annotated corpus, 
where each sentence is segmented into words which 
are tagged by their classes, the trigram word class 
probabilities can be calculated using MLE, together 
with a backoff schema (Katz, 1987) to deal with the 
sparse data problem. Unfortunately, building such 
annotated training corpora is very expensive. 

Our basic solution is the bootstrapping approach 
described in Gao et al. (2002). It consists of three 
steps: (1) Initially, we use a greedy word segmen-
tor6 to annotate the corpus, and obtain an initial 
context model based on the initial annotated corpus; 
(2) we re-annotate the corpus using the obtained 
models; and (3) re-train the context model using the 
re-annotated corpus. Steps 2 and 3 are iterated until 
the performance of the system converges. 

In the above approach, the quality of the context 
model depends to a large degree upon the quality of 
the initial annotated corpus, which is however not 
satisfied due to two problems. First, the greedy 
segmentor cannot deal with the segmentation am-
biguities, and even after iterations, these ambigui-
ties can only be partially resolved. Second, many 
factoids and named entities cannot be identified 
using the greedy word segmentor which is based on 
the dictionary. 

To solve the first problem, we use two methods 
to resolve segmentation ambiguities in the initial 
segmented training data. We classify word seg-
mentation ambiguities into two classes: overlap 
ambiguity (OA), and combination ambiguity (CA). 
Consider a character string ABC, if it can be seg-

                                                   
6 The greedy word segmentor is based on a forward maximum 
matching (FMM) algorithm: It processes through the sentence 
from left to right, taking the longest match with the lexicon 
entry at each point. 

mented into two words either as AB/C or A/BC 
depending on different context, ABC is called an 
overlap ambiguity string (OAS). If a character 
string AB can be segmented either into two words, 
A/B, or as one word depending on different context. 
AB is called a combination ambiguity string (CAS). 
To resolve OA, we identify all OASs in the training 
data and replace them with a single token <OAS>. 
By doing so, we actually remove the portion of 
training data that are likely to contain OA errors. To 
resolve CA, we select 70 high-frequent two-char-
acter CAS (e.g. 才能 ‘talent’ and 才/能 ‘just able’). 
For each CAS, we train a binary classifier (which is 
based on vector space models) using sentences that 
contains the CAS segmented manually. Then for 
each occurrence of a CAS in the initial segmented 
training data, the corresponding classifier is used to 
determine whether or not the CAS should be seg-
mented. 

For the second problem, though we can simply 
use the finite-state machines described in Section 5 
(extended by using the longest-matching constraint 
for disambiguation) to detect factoids in the initial 
segmented corpus, our method of NER in the initial 
step (i.e. step 1) is a little more complicated. First, 
we manually annotate named entities on a small 
subset (call seed set) of the training data. Then, we 
obtain a context model on the seed set (called seed 
model). We thus improve the context model which 
is trained on the initial annotated training corpus by 
interpolating it with the seed model. Finally, we use 
the improved context model in steps 2 and 3 of the 
bootstrapping. Our experiments show that a rela-
tively small seed set (e.g., 10 million characters, 
which takes approximately three weeks for 4 per-
sons to annotate the NE tags) is enough to get a 
good improved context model for initialization. 

7 Evaluation 

To conduct a reliable evaluation, a manually anno-
tated test set was developed. The text corpus con-
tains approximately half million Chinese characters 
that have been proofread and balanced in terms of 
domain, styles, and times. Before we annotate the 
corpus, several questions have to be answered: (1) 
Does the segmentation depend on a particular 
lexicon? (2) Should we assume a single correct 
segmentation for a sentence? (3) What are the 
evaluation criteria? (4) How to perform a fair 
comparison across different systems? 



Word  
segmentation 

Factoid PN LN ON 
 

System 
P% R% P% R% P% R% P% R% P% R% 

1 FMM 83.7 92.7         
2 Baseline 84.4 93.8         
3 2 + Factoid 89.9 95.5 84.4 80.0       
4 3 + PN 94.1 96.7 84.5 80.0 81.0 90.0     
5 4 + LN 94.7 97.0 84.5 80.0 86.4 90.0 79.4 86.0   
6 5 + ON 96.3 97.4 85.2 80.0 87.5 90.0 89.2 85.4 81.4 65.6 

Table 1: system results 

As described earlier, it is more useful to define 
words depending on how the words are used in real 
applications. In our system, a lexicon (containing 
98,668 lexicon words and 59,285 morphologically 
derived words) has been constructed for several 
applications, such as Asian language input and web 
search. Therefore, we annotate the text corpus based 
on the lexicon. That is, we segment each sentence as 
much as possible into words that are stored in our 
lexicon, and tag only the new words, which other-
wise would be segmented into strings of one 
-character words. When there are multiple seg-
mentations for a sentence, we keep only one that 
contains the least number of words. The annotated 
test set contains in total 247,039 tokens (including 
205,162 lexicon/morph-lexicon words, 4,347 PNs, 
5,311 LNs, 3,850 ONs, and 6,630 factoids, etc.) 

Our system is measured through multiple preci-
sion-recall (P/R) pairs, and F-measures (Fβ=1, which 
is defined as 2PR/(P+R)) for each word class. Since 
the annotated test set is based on a particular lexicon, 
some of the evaluation measures are meaningless 
when we compare our system to other systems that 
use different lexicons. So in comparison with dif-
ferent systems, we consider only the preci-
sion-recall of NER and the number of OAS errors 
(i.e. crossing brackets) because these measures are 
lexicon independent and there is always a single 
unambiguous answer. 

The training corpus for context model contains 
approximately 80 million Chinese characters from 
various domains of text such as newspapers, novels, 
magazines etc. The training corpora for class mod-
els are described in Section 5. 

7.1 System results 

Our system is designed in the way that components 
such as factoid detector and NER can be ‘switched 
on or off’, so that we can investigate the relative 
contribution of each component to the overall word 
segmentation performance.  

The main results are shown in Table 1. For 
comparison, we also include in the table (Row 1) 
the results of using the greedy segmentor (FMM) 
described in Section 6. Row 2 shows the baseline 
results of our system, where only the lexicon is used. 
It is interesting to find, in Rows 1 and 2, that the 
dictionary-based methods already achieve quite 
good recall, but the precisions are not very good 
because they cannot identify correctly unknown 
words that are not in the lexicon such factoids and 
named entities. We also find that even using the 
same lexicon, our approach that is based on the 
improved source-channel models outperforms the 
greedy approach (with a slight but statistically 
significant different i.e., P < 0.01 according to the t 
test) because the use of context model resolves 
more ambiguities in segmentation. The most 
promising property of our approach is that the 
source-channel models provide a flexible frame-
work where a wide variety of linguistic knowledge 
and statistical models can be combined in a unified 
way. As shown in Rows 3 to 6, when components 
are switched on in turn by activating corresponding 
class models, the overall word segmentation per-
formance increases consistently. 

We also conduct an error analysis, showing that 
86.2% of errors come from NER and factoid detec-
tion, although the tokens of these word types consist 
of only 8.7% of all that are in the test set. 

7.2 Comparison with other systems 

We compare our system – henceforth SCM, with 
other two Chinese word segmentation systems7: 

 

                                                   
7 Although the two systems are widely accessible in mainland 
China, to our knowledge no standard evaluations on Chinese 
word segmentation of the two systems have been published by 
press time. More comprehensive comparisons (with other well- 
known systems) and detailed error analysis form one area of 
our future work.  



LN PN ON System # OAS 
Errors P % R % Fβ=1 P % R % Fβ=1 P % R % Fβ=1 

MSWS 63 93.5 44.2 60.0 90.7 74.4 81.8 64.2 46.9 60.0 

LCWS 49 85.4 72.0 78.2 94.5 78.1 85.6 71.3 13.1 22.2 

SCM 7 87.6 86.4 87.0 83.0 89.7 86.2 79.9 61.7 69.6 

Table 2. Comparison results 

1. The MSWS system is one of the best available 
products. It is released by Microsoft® (as a set 
of Windows APIs). MSWS first conducts the 
word breaking using MM (augmented by heu-
ristic rules for disambiguation), then conducts 
factoid detection and NER using rules. 

2. The LCWS system is one of the best research 
systems in mainland China. It is released by 
Beijing Language University. The system 
works similarly to MSWS, but has a larger 
dictionary containing more PNs and LNs. 

As mentioned above, to achieve a fair comparison, 
we compare the above three systems only in terms 
of NER precision-recall and the number of OAS 
errors. However, we find that due to the different 
annotation specifications used by these systems, it 
is still very difficult to compare their results auto-
matically. For example, 北京市政府 ‘Beijing city 
government’ has been segmented inconsistently as 
北京市/政府 ‘Beijing city’ + ‘government’ or 北京/
市政府 ‘Beijing’ + ‘city government’ even in the 
same system. Even worse, some LNs tagged in one 
system are tagged as ONs in another system. 
Therefore, we have to manually check the results. 
We picked 933 sentences at random containing 
22,833 words (including 329 PNs, 617 LNs, and 
435 ONs) for testing. We also did not differentiate 
LNs and ONs in evaluation. That is, we only 
checked the word boundaries of LNs and ONs and 
treated both tags exchangeable. The results are 
shown in Table 2. We can see that in this small test 
set SCM achieves the best overall performance of 
NER and the best performance of resolving OAS. 

8 Conclusion 

The contributions of this paper are three-fold. First, 
we formulate the Chinese word segmentation 
problem as a set of correlated problems, which are 
better solved simultaneously, including word 
breaking, morphological analysis, factoid detection 
and NER. Second, we present a unified approach to 
these problems using the improved source-channel 

models. The models provide a simple statistical 
framework to incorporate a wide variety of linguis-
tic knowledge and statistical models in a unified 
way. Third, we evaluate the system’s performance 
on an annotated test set, showing very promising 
results. We also compare our system with several 
state-of-the-art systems, taking into account the fact 
that the definition of Chinese words varies from 
system to system. Given the comparison results, we 
can say with confidence that our system achieves at 
least the performance of state-of-the-art word seg-
mentation systems. 
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