
Generating parallel multilingual LFG-TAG grammars from a M etaGrammar

Lionel Cl ément
Inria-Roquencourt France

lionel.clement@inria.fr

Alexandra Kinyon
CIS Dpt - Univ. of Pennsylvania

kinyon@linc.cis.upenn.edu

Abstract

We introduce aMetaGrammar , which al-
lows us to automatically generate, from
a single and compact MetaGrammar hier-
archy, parallel Lexical Functional Gram-
mars (LFG) and Tree-Adjoining Gram-
mars (TAG) for French and for English:
the grammar writer specifies in compact
manner syntactic properties that are po-
tentially framework-, and to some extent
language-independent (such as subcatego-
rization, valency alternations and realiza-
tion of syntactic functions), from which
grammars for several frameworks and
languages are automatically generated
offline.1

1 Introduction
Expensive dedicated tools and resources (e.g. gram-
mars, parsers, lexicons, etc.) have been developed
for a variety of grammar formalisms, which all have
the same goal: model the syntactic properties of nat-
ural language, but resort to a different machinery to
achieve that goal. However, there are some core syn-
tactic phenomena on which a cross-framework (and
to some extent a cross-language) consensus exists,
such as the notions of subcategorization, valency al-
ternations, syntactic function. From a theoretical
perspective, aMetaGrammaticallevel of representa-
tion allows one to encode such consensual pieces of
syntactic knowledge and to compare different frame-
works and languages. From a practical perspective,
encoding syntactic phenomena at a metagrammati-
cal level, from which grammars for different frame-
works and languages are generated offline, has sev-
eral advantages such as portability among grammat-
ical frameworks, better parallelism, increased coher-
ence and consistency in the grammars generated and
less need for human intervention in the grammar de-
velopment process.

In section 2, we explain the notion ofMetaGram-
mar (MG), present the MG tool we use to gener-
ate TAGs, and how we extend the approach to gen-
erate LFGs. In section 3, we justify the use of a
MetaGrammar for generating LFGs and explore sev-
eral options, i.e. domains of locality, for doing so.
In sections 4 and 5, we discus the handling of va-
lency alternations without resorting to LFG lexical

1We assume the reader has a basic knowledge of TAGs and
LFGs and refer respectively to (Joshi, 1987) and (Bresnan and
Kaplan, 1982) for an introduction to these frameworks.

rules, and the treatment of long-distance dependen-
cies. In sections 6 and 7, we discuss the advantages of
a MG approach and the automatic generation of par-
allel TAG-LFG grammars for English and for French
with an explicit sharing of both cross-language and
cross-framework syntactic knowledge in the MG.

2 What is a MetaGrammar ?

The notion of MetaGrammar was originally pre-
sented in (Candito, 1996) to automatically generate
wide-coverage TAGs for French and Italian2, using
a compact higher-level layer of linguistic description
which imposes a general organization for syntactic
information in a three-dimensional hierarchy:

• Dimension 1: initial subcategorization
• Dimension 2: valency alternations and redistri-

bution of functions
• Dimension 3: surface realization of arguments.
Each terminal class in dimension 1 encodes an

initial subcategorization (i.e. transitive, ditransitive
etc...); Each terminal class in dimension 2 - a list
of ordered redistributions of functions (e.g. to add
an argument for causatives, to erase one for passive
with no agents ...); Each terminal class in dimen-
sion 3 - the surface realization of a syntactic func-
tion (e.g. declares if a direct-object is pronominal-
ized, wh-extracted, etc.). Each class in the hierar-
chy is associated to the partial description of a tree
(Rogers and Vijay-Shanker, 1994) which encodesfa-
ther, dominance, equality andprecedencerelations
between nodes. A well-formed tree is generated by
inheriting from exactly one terminal class from di-
mension 1, one terminal class from dimension 23,
andn terminal classes from dimension 3 (wheren is
the number of arguments of the elementary tree being
generated). For instance, the elementary tree for “Par
qui sera accompagnée Marie” (By whom will Mary be
accompanied) is generated by inheriting fromtran-
sitive in dimension 1, frompassive in dimension
2 andsubject-nominal-inverted for its subject and
Wh-questioned-objectfor its object in dimension 3.
This particular tool was used to develop from a com-
pact hand-coded hierarchy of a few dozen nodes, a
wide-coverage TAG for French of 5000 elementary
trees (Abeillé et al., 1999), as well as a medium-size

2A Similar MetaGrammar type of organization for TAGs was
independently presented in (Xia, 2001) for English.

3This terminal class may be the result of the crossing of sev-
eral super-classes, to handle complex phenomena such asPas-
sive+Causative.

TAG for Italian (Candito, 1999). The compactness
of the hierarchy is due to the fact that nodes are de-
fined only forsimple syntactic phenomena: classes
for complex syntactic phenomena (e.g. Topicalized-
object+Pronominalized) are generated by automatic
crossings of classes for simple phenomena. In ad-
dition to proposing a compact representation of syn-
tactic knowledge, (Candito, 1999) explored whether
some components of the hierarchy could be re-used
across similar languages (French and Italian). How-
ever, she developed two distinct hierarchies to gen-
erate grammars for these two languages and gener-
ated only TAG grammars. We extend the use of the
MetaGrammar to generate LFGs and also push fur-
ther its cross-language and cross-framework potential
by generating parallel TAGs and LFGs for English
and French from one single hierarchy4.

2.1 HyperTags
The grammar rules we generate are sorted by syn-
tactic phenomena, thanks to the notion ofHyperTag,
introduced in (Kinyon, 2000). The main idea behind
HyperTags is to keep track, when trees (i.e. grammar
rules) are generated from a MetaGrammar hierarchy,
of which terminal classes were used for generating
the tree. This allows one to obtain a framework-
independent feature structure containing the salient
syntactic characteristics of each grammar rule5. For
instance, the verbgive in A book was given to Mary
could be assigned the HyperTag:















Subcat Ditransitive
Valency alternations Passive no Agent

Argument Realization





Subject: Canonical NP
Object: Not realized
By-Phrase: Canonical PP



















Although we retain the linguistic insights pre-
sented in (Candito, 1996), that is the three dimen-
sions to model syntax, (subcategorization, valency
alternation, realization of syntactic arguments), we
slightly alter it, and add sub-dimensions for the real-
ization of predicates as well as modifiers. Moreover,
we use a different MetaGrammar tool which is less
framework-dependent and supports the notion of Hy-
perTag.

2.2 The LORIA MetaGrammar tool
To generate TAGs and LFGs, we use the MG com-
piler presented in (Gaiffe et al., 2002)6. Each class in
the MG hierarchy encodes:

• Its SuperClasse(s)
• A HyperTag which captures the salient linguis-

tic characteristics of that class.
4We also generate Range Concatenation Grammars (Boullier,

1998), but do not develop this point here.
5The notion of HyperTag was inspired by that of supertags

(Srinivas, 1997), which consists in assigning a TAG elementary
tree to lexical items, hence enriching traditional POS tagging.
However, HyperTags are framework-independent.

6This compiler is freely available on
http://www.loria.fr/equipes/led/outils/mgc/mgc.html

• What the class needs and provides.
• A set of quasi-nodes (i.e. variables)
• Topological relations between these nodes (fa-

ther, dominates, precedes, equals)7

• A function for each quasi-nodes to decorate the
tree (e.g. traditional agreement features and/or
LFG functional equations).

The MG tool automatically crosses the nodes in
the hierarchy, looking to create “balanced” classes,
that is classes that do not need nor provide any re-
source8. Then for each balanced terminal class, the
HyperTags are unified, and the structural constraints
between quasi-nodes are unified; If the unification
succeeds, one or more<HyperTag, tree> pairs are
generated. When generating a TAG,tree is inter-
preted as a TAG elementary tree (i.e. a grammar
rule). When generating an LFG,tree is a tree deco-
rated with traditional LFG functional annotations (in
a way which is similar to constituent trees decorated
with functional annotation e.g. by (Frank, 2000)),
and is in a second step broken down into one or more
LFG rules. Figure 1 illustrates how a simple dec-
orated tree is generated with the MG compiler, and
how the decorated tree corresponds to one TAG el-
ementary tree and to two LFG rewriting rules for
a canonical transitive construction. In addition, to
facilitate the grammar-lexicon interface, each deco-
rated tree yields an LFG lexical template (here, Sub-
jObj:V (↑Pred=‘x<(↑Subj)(↑Obj)>’).
3 Why use a MetaGrammar for LFGs

3.1 Redundancies in LFG
Because TAGs are a tree rewriting system, there are
intrinsic redundancies in the rules of a TAG. E.g., all
the rules for verbs with a canonical NP subject and
a canonical realization of the verb will have a redun-
dant piece of structure(S NP0↓ (VP (V⋄))) . This piece
of structure will be present not only for each new sub-
categorization frame (intransitive, transitive, ditransi-
tive...), but also for all related non-canonical syntactic
constructions such as in each grammar rule encoding
a Wh-extracted object. This redundancy justifies the
use of a MetaGrammar for TAGs. Since LFG rules
rely on a context free backbone, it is generally admit-
ted that there is less redundancy in LFG than in TAG.
However, there are still redundancies, at the level of
rewriting rules, at the level of functional equations,
and at the level of lexical entries. To illustrate such
redundancies, we take the example of French ditran-
sitives with the insertion of one or more modifiers.
The direct object is realized as an NP, the second ob-
ject as a PP. Both ordersNP PPandPP NPare ac-
ceptable. On top of that, one or more modifiers may
be inserted before, after or between the two argu-
ments, and can be of almost any category (PP, ADVP,

7We have augmented the tool to support free variables for
nodes, optional resources, as well as additional relationssuch as
sister and c-command. We do not detail these technical points
for sake of brevity.

8Another way to see this is by analogy to a resource allocation
graph.

Figure 1: A simple hierarchy which yields one decorated tree, corresponding to one TAG rule and two LFG
rules (→ stands for father,< for precedes in the MG hierarchy.⋄ ↓ resp. stand for “anchor” and substitution nodes in TAGs.↓ and
↑ stand for standard LFGs functional equations.

NP etc.). Here is a non exhaustive list of acceptable
word-order variations:

- Jean donne une pomme à Marie (lit: J. gives an apple to M.)
- Jean donne à Marie une pomme (lit: J. gives to M. an apple)
- Jean aujourd’hui donne à Marie une pomme (lit: J. today gives

to M. an apple)
- Jean donne à Marie chaque matin une pomme avant le départ

du train (lit: J gives to M. every morning an apple before the
departure of the train)

- Jean donne chaque matin à Marie une pomme (lit: J. gives each
morning to M. an apple)

- Aujourd’hui Jean donne à Marie une pomme (lit: Today J. gives
to M. an apple)

A first rule for VP expansion, accounting for the
free order between the first and second object without
modifiers, is shown below:

VP→ V (NP) PP (NP)
↑=↓ (↑Obj)=↓ (↑SecondObj)=↓ (↑Obj)=↓

This VP rule is redundant: the NP is mentioned
twice, with its associated functional equation. The
NPs are both marked optional because at least one of
them has to be not realized, else no well-formed F-
structure could be built since the uniqueness condi-
tion would be violated by the presence of two direct-
objects: for a sentence such as “*Jean donne une

pomme à Mary une pomme”/J. gives an apple to
M. an apple, a C-structure would be built but, as
expected, no corresponding well-formed F-structure.
Let us now enrich the rule to account for modifier in-
sertion. This yields the VP expansion shown in 2(a).

The rule for VP expansion is now highly redun-
dant, although the syntactic phenomena handled by
this rule are very simple ones: the NP for the di-
rect object is repeated twice, along with its functional
equation, the disjunction (ADVP|NP|PP) is repeated
5 times, again with its functional equation. This gives
us grounds to support a MetaGrammar type of orga-
nization for LFG. In practice, as described in (Ka-
plan and Maxwell, 1996), additional LFG notation
is available such as operators like “insert or ignore”,
”shuffle” ”ID/LP”, ”Macros” etc. However, these op-
erators, which are motivated from a formal perspec-
tive, but not so much from a linguistic perspective,
yield two major problems: first, not all LFG parsers
support those additional operators. Second, the pro-
liferation of operators allows for a same rule to be
expressed in many different ways, which is helpful
for grammar writing purpose, but not so desirable
for maintenance purpose9. Although nothing pre-

9This can be compared to computer programs written in Perl,
which are easy to develop, but hard to read and maintain. A

(a) VP → (ADVP|NP|PP)* V (ADVP|NP|PP)* (NP) (ADVP|NP|PP)* PP (ADVP|NP|PP)* (NP) (ADVP|NP|PP)*
(↑Modif) ∋↓ ↑=↓ (↑Modif)∋↓ (↑Obj)=↓ (↑Modif)∋↓ (↑SecObj)=↓(↑Modif)∋↓ (↑Obj)=↓ (↑Modif)∋↓

(b) VP → (ADVP|NP|PP)* V (ADVP|NP|PP)* NP (ADVP|NP|PP)* PP (ADVP|NP|PP)*
(↑Modif) ∋↓ ↑=↓ (↑Modif)∋↓ (↑Obj)=↓ (↑Modif)∋↓ (↑SecObj)=↓(↑Modif)∋↓

(c) VP → (ADVP|NP|PP)* V (ADVP|NP|PP)* PP (ADVP|NP|PP)* NP (ADVP|NP|PP)*
(↑Modif) ∋↓ ↑=↓ (↑Modif)∋↓ (↑SecObj)=↓(↑Modif)∋↓ (↑Obj)=↓ (↑Modif)∋↓

Figure 2: VP expansion

vents the MG generator to create rules with opera-
tors such as “ignore or insert”, we chose not to do
so. Instead of generating rules with operators or rules
like (2a), we generate two rules (2b) and (2c) in order
to have uniqueness, completeness and coherence not
only at the F-structure level but also at the C-structure
level.10. Moreover, for lexical organization, practical
LFGs resort to the notion of lexical template but from
a linguistic perspective, the lexicon is not cleanly or-
ganized in LFG11.

3.2 Exploring different domains of locality

We have seen in section 2.2 that the MG tool we use
outputs<HyperTag, tree> pairs, wheretree is dec-
orated with functional equations and corresponds to
one or more LFG rewriting rules (Figure 1).

VP

V
(↑Family)=SubjObjPrepObj

↑Pred=’x<(↑Subj)(↑Obj)(↑de-Obj)>’

NP
(↑Obj)=↓

PP
(↑(↓pcase)Obj)=↓

VP → V PP N2
↑=↓ (↑(↓ pcase)Obj)=↓ (↑ object)=↓

SubjObjectPrepObject:V
(↑ pred = ‘x <(↑ Subj) (↑ Obj) (↑ de-Obj)>’

Figure 3: LFG Rule and a lexical entry

In order to generate LFG rules with a MG, we have
two options. The first option consists in generating
“standard” LFG rules, that is trees of depth 1 deco-
rated with functional equations. Figure 3 illustrates

detailed discussion of the (Kaplan and Maxwell, 1996) operators
is found in (Clément and Kinyon, 2003).

10Thus the grammars we generate exhibit redundancies for
modifiers, but, since the MG hierarchy has relatively few redun-
dancies, and since these grammars are automatically generated,
the problem is minor.

11As opposed for instance to lexical organization not only in
TAGs and TAG related framework (e.g. DATR (Evans et al.,
2000)), but in HPSG (Flickinger, 1987).

such as decorated tree, which yields one LFG rewrit-
ing rule, and one lexical entry for French verbs such
as “éloigner” (take away from), which take an NP
object and a PP object introduced by “de”. (Ex: “Pe-
ter éloigne son enfant de la fenêtre”/P. takes his child
away from the window). The second option, which is
the one we have opted for, consists in generating con-
stituent trees which may be of depth superior to one,
decorated with feature equations. It has the following
advantages:

• It allows for a more natural parallelism between
the TAG and LFG grammars generated

• It allows for a more natural encoding of syntax
at the MetaGrammar level

• It allows us to generate LFGs without Lexical
Rules

• It allows us to easily handle long-distance de-
pendencies.

The trees decorated with LFG functional annota-
tions are then decomposed into standard LFG rewrit-
ing rules and lexical entries12. The grammar we ob-
tain is then interfaced with a parser13. Concerning
the first point (TAG-LFG parallelism), the trees dec-
orated with functional equations and TAG elemen-
tary trees are very similar, as was first discussed in
(Kameyama, 1986). Concerning the second point
(more natural encoding of the MetaGrammar level),
the “resource model” of the MetaGrammar, based on
“needs” and “provides”, allows for a natural encod-
ing and enforcement of LFG coherence, complete-
ness and uniqueness principles: A transitive verb
needs exactly one resource “Subject” and one re-
source “Object”. Violations result in invalid classes
which do not yield any rules. So from that perspec-
tive, it makes little sense, apart from practical rea-
sons such as interfacing the grammar with an existing
parser, to force the rules generated to be trees of depth
one. Moreover, classical completeness/coherence

12Non terminal symbols symbols are renamed and, in a second
phase, rules which differ only by the name of their non terminals
are merged, in a manner similar to that used in (Hepple and van
Genabith, 2000). For space reasons, we do not detail the algo-
rithm here.

13We use the freely available XLFG parser described in
(Clément and Kinyon, 2001) and have also experimented with
the Xerox parser (Kaplan and Maxwell, 1996).

conditions have received a similar resource-sensitive
re-interpretation in LFG to compute semantic struc-
tures using linear logic (Dalrymple et al., 1995). We
devote the next two sections to the third (lexical rules)
and fourth (wh) points.

4 Lexical rules

Figure 4:An alternative to lexical rules

Traditional LFGs encode phrase structure realiza-
tions of syntactic functions such as the wh-extraction
or pronominalization of an object in phrase structure
rules. In the MetaGrammar, these are encoded in the
“Argument Realization” dimension (dimension 3 in
Candito’s terminology). For valency alternations, i.e.
when initial syntactic functions are modified, LFG re-
sorts to the additional machinery of lexical rules14.
However, these valency alternations are encoded di-
rectly in the MetaGrammar in the “valency alterna-
tion” dimension (dimension 2 in Candito’s terminol-
ogy). Hence, when a rule is generated for a canonical
transitive verb, rules are generated not only for all
possible argument realization for the subject and di-
rect object (wh-questioned, relativized, cliticized for
French etc.), but also for all the valency alternations
allowed for the subcategory frame concerned (here,
passive with/without agent, causative etc). Therefore,
there is no need to generate usual LFG lexical rules,
and the absence of lexical rules has no effect on inter-
facing the grammars we generate with existing LFG
parsers. Fig. 4 illustrates the generation of a deco-
rated tree for passive-with-no-agent.

5 Long distance dependencies

When generating TAGs and LFGs from a single MG
hierarchy, we must make sure that long-distance phe-
nomena are correctly handled. The only difference
between TAG and LFG is that for TAG, we must
make sure that bridge verbs are auxiliary trees, i.e.
have a foot node, whereas for LFG we must make
sure that extraction rules have a node decorated with
a functional uncertainty equation. In TAGs, long

14Or, alternatively, some notion of lexical mapping, which we
do not discuss here.

Sy

NPo

(What)
S2

Aux
(did)

NPx

(Mary)
V Px

Vx

(say)
Sbarx

Compl
(that)

Sx

NPs

(John)
V Py

Vy

(ate)



















Pred ’say(Subj,Comp)’

Topic
[

Pred What 1
]

Subj
[

Pred ’Mary’
]

Comp







Pred ’ate(Subj,Obj)’
Subj

[

Pred John
]

Obj 1

























Figure 6: Long distance dependencies in LFG:
C and F structures forWhat did M. say that J. ate

Figure 7: Tree decorated with f. uncertainty

distance dependencies are handled through the do-
main of locality of elementary trees, the argument-
predicate co-occurrence principle and the adjunction
operation (Joshi and Vijay-Shanker, 1989). Figure 5
illustrates the TAG analysis ofWhat did Mary say
that John ate: the extracted element is in the same
grammar rule as its predicate “ate”15 and the tree an-
chored by the bridge verb is inserted in the “ate” tree
thanks to the adjunction operation. More trees can
adjoin in to analyzeWhat does P. think that M. said
... that John ateusing the same mechanism, which we
retain in the TAGs we generate by generating auxil-
iary tree for bridge verbs (i.e. trees with a foot node).
In LFG, long-distance dependencies are handled by
functional uncertainty (Kaplan and Zaenen, 1989).
Here is a small LFG grammar to analyzeWhat did
M. say that John ate.

15Although a trace is present in rule for “ate”, following the
convention of the Xtag project, it is not compulsory and not
needed from a formal point of view.

Adjunction

Adjunction

Substitution

Substitution

Substitution

Figure 5: Long distance dependencies in TAGs (What did M. say that J. ate)

1- Sx → Aux NPx VPx

(↑Subj)=↓ ↑=↓
2- VPx → Vx Sbarx

↑=↓ (↑Comp)=↓
3- Sbarx → Compl Sx

↑=↓
4- Sy → NPo S2

(↑topic)=↓ ↑=↓
(↑topic)=(↑Comp*.Obj)

5- S2 → NPs VPy

(↑Subj)=↓ ↑=↓
6- VPy → Vy

↑=↓

The extracted element (node NPo in rule 4) is asso-
ciated to a function path (in bold characters), which is
unknown since an arbitrary number of clauses can ap-
pear between “NPo” and its regent (Vy in rule 6). The
result of the LFG analysis forWhat did M. say that
J. ate, using this standard LFG grammar is shown in
Figure 6. A constituent structure is built using the the
rewriting rules. The functional equations associated
to nodes compute an F-structure which ensures that
each predicate of the sentence (i.e. “say” and “ate”)
have their arguments realized. The need for func-
tional uncertainty results from the fact that in LFG,
contrary to TAGs, the extracted element (NPo) and its
governor (Vy) are located in different grammar rules.
Hence, when generating LFGs, we must make sure
that the decorated tree bears a functional uncertainty
equation at the site of the extraction. 7 illustrates the
generation of such a decorated tree (identical to the
TAG tree for ”ate” modulo the functional equations),
which will be decomposed into rules 4, 5 and 6.16

16Because the MG does not impose a restricted domain of lo-
cality, (Kinyon, 2003) proposes an alternative to functional un-
certainty, which we do not present here for space reasons.

6 Advantages of a MetaGrammatical level

A first advantage of using a MetaGrammar, dis-
cussed in (Kinyon and Prolo, 2002), is that the
syntactic phenomena covered are quite system-
atic: if rules are generated for “transitive-passive-
whExtractedByPhrase” (e.g. By whom was the
mouse eaten), and if the hierarchy includes ditran-
sitive verbs, then the automatic crossing of phe-
nomena ensures that sentences will be generated for
“ditransitive-passive-whExtractedByPhrase” (i.e.By
whom was Peter given a present). All rules for word
order variations are automatically generated by un-
derspecifying relations between quasi-nodes in the
MG hierarchy (e.g. precedence relation between first
and second object for ditransitives in French). A sec-
ond advantage of the MG is to minimize the need
for human intervention in the grammar development
process. Humans encode the linguistic knowledge in
a compact manner i.e. the MG hierarchy, and then
verify the validity of the rules generated. If some
grammar rules are missing or incorrect, then changes
are made directly in the MG hierarchy and never in
the generated rules17. This ensures a homogeneity
not necessarily present with traditional hand-crafted
grammars. A third and essential advantage is that it
is straightforward to obtain from a single hierarchy
parallel multi-lingual grammars similar to the paral-
lel LFG grammars presented in (Butt et al., 1999)
and (Butt et al., 2002), but with an explicit sharing

17Exceptionality is handled in the MG hierarchy as well. We
do not have much to say about it: only that the MG does not
impose any additional burden to handle syntactic “exceptions”
compared to hand-crafted grammars.

of classes18 in the MetaGrammar hierarchy plus a
cross-framework application.19

7 Cross-language and -framework
generation

So far, we have implemented a non trivial hierarchy
which consists of 189 classes. A fragment of the hi-
erarchy is shown in Figure 8. From this hierarchy,
we generate 550 decorated trees, which correspond to
approx. 550 TAG trees and 140 LFG rules. We cover
the following syntactic phenomena: 50 verb subcate-
gorization frames (including auxiliaries, modals, sen-
tential and infinitival complements), dative-shift for
English, clitics (and their placement) for French, pas-
sives with and without agent, long distance depen-
dencies (relatives, wh-questions, clefts) and a few
idiomatic expressions. A more detailed presenta-
tion of the LFG grammar is presented in (Clément
and Kinyon, 2003). A more detailed discussion of
the cross-language aspects with a comparison to re-
lated work such as the LFG ParGram project, or
HPSG matrix grammars (Bender et al., 2002) may
be found in (Kinyon and Rambow, 2003a)20. The
cross-language and cross-framework parallelism is
insured by the HyperTags: Most classes in the hi-
erarchy are shared for French and for English. Lan-
guage specific classes are marked using the binary
features “English” and “French” in their HyperTag.
So for instance, classes encoding clitic placement are
marked [French=+;English=-] and classes pertain-
ing to dative-shift are marked [French=-;English=+].
This prevents the crossing of incompatible classes
and hence the generation of incorrect rules (such
as “Dative-shift-withCliticizedObject”). Similarly,
most classes in the hierarchy are shared for TAGs
and LFGs. Classes specific to TAGs are marked
[TAG=+;LFG=-] (and conversely for LFGs)21

8 Conclusion
We have presented a MetaGrammar tool which al-
lows us to automatically generate parallel TAG and
LFG grammars for English and French. We have
discussed the handling of long-distance dependen-
cies. We keep enriching our hierarchy in order to

18To the best of our knowledge, (Butt et al., 2002) apply sim-
ilar linguistic choices for grammars in different languages when
possible, but do not explicitly resort to rule-sharing.

19(Kinyon and Rambow, 2003b) have used the tool to gener-
ate from a single hierarchy cross-framework and cross-language
annotated test-suites, including English and German sentences
annotated for F-structure, as well as for constituent and depen-
dency structure

20The main difference with HPSG approaches such as Matrix
is that HPSG type-hierarchies are an inherent part of the gram-
mar, and deal only with one framework:HPSG, whereas our MG
hierarchy is not an inherent part of the grammar, since it is used
to generate cross-framework grammars offline.

21We use binary features in order to add more languages and
frameworks to the hierarchy. E.g. when adding German, some
classes are shared for English and German, but not French and
are marked [English=+;German=+;French=-]. This would notbe
possible if we had a non binary feature [Language=X]. The same
reasoning applies for generating additional frameworks.

increase the coverage of our grammars, are adding
new languages (German) and exploring the extension
of the domain of locality to sentence level (Kinyon
and Rambow, 2003a). The ultimate goal of this
work is twofold: first, to maximize cross-language
rule-sharing at the metagrammatical level; Second,
to automatic extract MetaGrammars from a tree-
bank (Kinyon, 2003), and then automatically gener-
ate grammars for different frameworks.

References
A. Abeillé, M. Candito, and A. Kinyon. 1999. FTAG: current

status and parsing scheme. InProc. Vextal-99, Venice.

E. Bender, D. Flickinger, and S. Oepen. 2002. The Gram-
mar Matrix: an open-source starter-kit for the rapid devel-
opment of cross-linguistically consistent broad-coverage pre-
cision grammars. InProc. GEE-COLING, Taipei.

P. Boullier. 1998. Proposal for a natural language processing
syntactic backbone. Technical report, Inria. France.

J. Bresnan and R. Kaplan. 1982. Introduction: grammars as
mental representations of language. InThe Mental Represen-
tation of Grammatical Relations, pages xvii–lii. MIT Press,
Cambridge, MA.

M. Butt, S. Dipper, A. Frank, and T. Holloway-King. 1999.
Writing large-scale parallel grammars for English, French,
and German. InProc. LFG-99.

M. Butt, H. Dyvik, T.H. King, H. Masuichi, and C. Rohrer. 2002.
The parallel grammar project. Inproc. GEE-COLING, Taipei.

M.H. Candito. 1996. A principle-based hierarchical representa-
tion of LTAGs. InProc. COLING-96, Copenhagen.

M.H. Candito. 1999.Représentation modulaire et paramétrable
de grammaires électroniques lexicalisées. Ph.D. thesis, Univ.
Paris 7.

L. Clément and A. Kinyon. 2003. Generating LFGs with a
MetaGrammar. InProc. LFG-03, Saratoga Springs.

L. Clément and A. Kinyon. 2001. XLFG: an LFG parsing
scheme for french. InProc LFG-01, Hong-Kong.

M. Dalrymple, J. Lamping, F. Pereira, and V. Saraswat. 1995.
Linear logic for meaning assembly. InProc. CLNLP, Edin-
burgh.

R. Evans, G. Gazdar, and D. Weir. 2000. Lexical rules are
just lexical rules. In Abeille Rambow, editor,Tree Adjoining
Grammars, CSLI.

D. Flickinger. 1987. Lexical rules in the hierarchical lexicon.
Ph.D. thesis, Stanford.

A. Frank. 2000. Automatic F-Structure annotation of treebank
trees. InProc. LFG-00, Berkeley.

B. Gaiffe, B. Crabbé, and A. Roussanaly. 2002. A new meta-
grammar compiler. InProc. TAG+6, Venice.

M. Hepple and J. van Genabith. 2000. Experiments in struc-
ture preserving grammar compaction. InProc. 1st meeting
on Speech Technology Transfer, Sevilla.

Figure 8: Screen capture of a fragment of our MetaGrammar hierarchy

A. K. Joshi and K. Vijay-Shanker. 1989. Treatment of long dis-
tance dependencies in LFG and TAG: Functional uncertainty
in LFG is a corollary in TAG. InProc. ACL-89, Vancouver.

A.K. Joshi. 1987. An introduction to tree adjoining gram-
mars. InMathematics of language, John Benjamins Publish-
ing Company.

M. Kameyama. 1986. Characterising LFG in terms of TAG. In
Unpublished Manuscript, Univ. of Pennsylvania.

R. Kaplan and J. Maxwell. 1996. LFG grammar writer’s work-
bench. Technical Report version 3.1, Xerox corporation.

R Kaplan and A. Zaenen. 1989. Long distance dependencies,
constituent structure and functional uncertainty. InAlterna-
tives conceptions of phrase-structure, Univ. of Chicago press.

A. Kinyon and C. Prolo. 2002. A classification of grammar
development strategies. InProc. GEE-COLING, Taipei.

A. Kinyon and O. Rambow. 2003a. Using the metagrammar
for parallel multilingual grammar development and genera-
tion. In Proc. ESSLLI workshop on multilingual grammar
engineering, Vienna.

A. Kinyon and O. Rambow. 2003b. Using the MetaGrammar to
generate cross-language and cross-framework annotated test-
suites. InProc. LINC-EACL, Budapest.

A. Kinyon. 2000. Hypertags. InProc. COLING-00, Sar-
rebrucken.

A. Kinyon. 2003.MetaGrammars for efficient development, ex-
traction and generation of parallel grammars. Ph.D. thesis,
Proposal. Univ. of Pennsylvania.

J. Rogers and K. Vijay-Shanker. 1994. Obtaining trees from
their description: an application to TAGS. InComputational
Intelligence 10:4.

B. Srinivas. 1997. Complexity of lexical descriptions and its
relevance for partial parsing. Ph.D. thesis, Univ. of Pennsyl-
vania.

F. Xia. 2001.Automatic grammar generation from two perspec-
tives. Ph.D. thesis, Univ. of Pennsylvania.

