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Abstract 

In this paper we propose a competition 
learning approach to coreference resolu-
tion. Traditionally, supervised machine 
learning approaches adopt the single-
candidate model. Nevertheless the prefer-
ence relationship between the antecedent 
candidates cannot be determined accu-
rately in this model. By contrast, our ap-
proach adopts a twin-candidate learning 
model. Such a model can present the 
competition criterion for antecedent can-
didates reliably, and ensure that the most 
preferred candidate is selected. Further-
more, our approach applies a candidate 
filter to reduce the computational cost and 
data noises during training and resolution. 
The experimental results on MUC-6 and 
MUC-7 data set show that our approach 
can outperform those based on the single-
candidate model.  

1 Introduction 

Coreference resolution is the process of linking 
together multiple expressions of a given entity. The 
key to solve this problem is to determine the ante-
cedent for each referring expression in a document.  

In coreference resolution, it is common that two 
or more candidates compete to be the antecedent of 
an anaphor (Mitkov, 1999). Whether a candidate is 
coreferential to an anaphor is often determined by 
the competition among all the candidates. So far, 
various algorithms have been proposed to deter-
mine the preference relationship between two can-
didates. Mitkov’s knowledge-poor pronoun 
resolution method (Mitkov, 1998), for example, 
uses the scores from a set of antecedent indicators 

to rank the candidates. And centering algorithms 
(Brennan et al., 1987; Strube, 1998; Tetreault, 
2001), sort the antecedent candidates based on the 
ranking of the forward-looking or backward-
looking centers. 

In recent years, supervised machine learning 
approaches have been widely used in coreference 
resolution (Aone and Bennett, 1995; McCarthy, 
1996; Soon et al., 2001; Ng and Cardie, 2002a), 
and have achieved significant success. Normally, 
these approaches adopt a single-candidate model in 
which the classifier judges whether an antecedent 
candidate is coreferential to an anaphor with a con-
fidence value. The confidence values are generally 
used as the competition criterion for the antecedent 
candidates. For example, the “Best-First” selection 
algorithms (Aone and Bennett, 1995; Ng and 
Cardie, 2002a) link the anaphor to the candidate 
with the maximal confidence value (above 0.5). 

One problem of the single-candidate model, 
however, is that it only takes into account the rela-
tionships between an anaphor and one individual 
candidate at a time, and overlooks the preference 
relationship between candidates. Consequently, the 
confidence values cannot accurately represent the 
true competition criterion for the candidates. 

In this paper, we present a competition learning 
approach to coreference resolution. Motivated by 
the research work by Connolly et al. (1997), our 
approach adopts a twin-candidate model to directly 
learn the competition criterion for the antecedent 
candidates. In such a model, a classifier is trained 
based on the instances formed by an anaphor and a 
pair of its antecedent candidates. The classifier is 
then used to determine the preference between any 
two candidates of an anaphor encountered in a new 
document. The candidate that wins the most com-
parisons is selected as the antecedent. In order to 
reduce the computational cost and data noises, our 



approach also employs a candidate filter to elimi-
nate the invalid or irrelevant candidates.  

The layout of this paper is as follows. Section 2 
briefly describes the single-candidate model and 
analyzes its limitation. Section 3 proposes in de-
tails the twin-candidate model and Section 4 pre-
sents our coreference resolution approach based on 
this model. Section 5 reports and discusses the ex-
perimental results. Section 6 describes related re-
search work. Finally, conclusion is given in 
Section 7. 

2 The Single-Candidate Model 

The main idea of the single-candidate model for 
coreference resolution is to recast the resolution as 
a binary classification problem. 

During training, a set of training instances is 
generated for each anaphor in an annotated text. 
An instance is formed by the anaphor and one of 
its antecedent candidates. It is labeled as positive 
or negative based on whether or not the candidate 
is tagged in the same coreferential chain of the 
anaphor. 

After training, a classifier is ready to resolve the 
NPs1 encountered in a new document. For each NP 
under consideration, every one of its antecedent 
candidates is paired with it to form a test instance. 
The classifier returns a number between 0 and 1 
that indicates the likelihood that the candidate is 
coreferential to the NP. 

The returned confidence value is commonly 
used as the competition criterion to rank the candi-
date. Normally, the candidates with confidences 
less than a selection threshold (e.g. 0.5) are dis-
carded. Then some algorithms are applied to 
choose one of the remaining candidates, if any, as 
the antecedent. For example, “Closest-First” (Soon 
et al., 2001) selects the candidate closest to the 
anaphor, while “Best-First” (Aone and Bennett, 
1995; Ng and Cardie, 2002a) selects the candidate 
with the maximal confidence value.  

One limitation of this model, however, is that it 
only considers the relationships between a NP en-
countered and one of its candidates at a time dur-
ing its training and testing procedures. The 
confidence value reflects the probability that the 
candidate is coreferential to the NP in the overall 

                                                           
1 In this paper a NP corresponds to a Markable in MUC 
coreference resolution tasks. 

distribution 2 , but not the conditional probability 
when the candidate is concurrent with other com-
petitors. Consequently, the confidence values are 
unreliable to represent the true competition crite-
rion for the candidates.  

To illustrate this problem, just suppose a data 
set where an instance could be described with four 
exclusive features: F1, F2, F3 and F4. The ranking 
of candidates obeys the following rule: 

CSF1 >> CSF2 >> CSF3 >> CSF4 
Here CSFi ( 41 ≤≤ i ) is the set of antecedent can-
didates with the feature Fi on. The mark of “>>” 
denotes the preference relationship, that is, the 
candidates in CSF1 is preferred to those in CSF2, and 
to those in CSF3 and CSF4.  

Let CF2 and CF3 denote the class value of a leaf 
node “F2 = 1” and “F3 = 1”, respectively. It is pos-
sible that CF2 < CF3, if the anaphors whose candi-
dates all belong to CSF3 or CSF4 take the majority in 
the training data set.  In this case, a candidate in 
CSF3 would be assigned a larger confidence value 
than a candidate in CSF2. This nevertheless contra-
dicts the ranking rules. If during resolution, the 
candidates of an anaphor all come from CSF2 or 
CSF3, the anaphor may be wrongly linked to a can-
didate in CSF3 rather than in CSF2. 

3 The Twin-Candidate Model 

Different from the single-candidate model, the 
twin-candidate model aims to learn the competition 
criterion for candidates. In this section, we will 
introduce the structure of the model in details. 

3.1 Training Instances Creation 

Consider an anaphor ana and its candidate set can-
didate_set, {C1, C2, …, Ck}, where Cj is closer to 
ana than Ci if j > i. Suppose positive_set is the set 
of candidates that occur in the coreferential chain 
of ana, and negative_set is the set of candidates not 
in the chain, that is, negative_set = candidate_set  
- positive_set. The set of training instances based 
on ana, inst_set, is defined as follows:  

                                                           
2 Suppose we use C4.5 algorithm and the class value takes the 

smoothed ration, 
2
1

+
+

t
p , where p is the number of positive 

instances and t is the total number of instances contained in 
the corresponding leaf node. 
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From the above definition, an instance is 

formed by an anaphor, one positive candidate and 
one negative candidate. For each instance, 

)ana,cj,ci(inst , the candidate at the first position, Ci, 
is closer to the anaphor than the candidate at the 
second position, Cj.  

A training instance )ana,cj,ci(inst is labeled as 
positive if Ci ∈  positive-set and Cj ∈  negative-set; 
or negative if Ci ∈  negative-set and Cj ∈  positive-
set.  

See the following example:  
 
Any design to link China's accession to the WTO 

with the missile tests1 was doomed to failure.  
 “If some countries2 try to block China TO acces-

sion, that will not be popular and will fail to win the 
support of other countries3” she said.  

Although no governments4 have suggested formal 
sanctions5 on China over the missile tests6, the United 
States has called them7 “provocative and reckless” and 
other countries said they could threaten Asian stability.  

 
In the above text segment, the antecedent can-

didate set of the pronoun “them7” consists of six 
candidates highlighted in Italics. Among the can-
didates, Candidate 1 and 6 are in the coreferential 
chain of “them7”, while Candidate 2, 3, 4, 5 are not. 
Thus, eight instances are formed for “them7”:  

 
(2,1,7)  (3,1,7)  (4,1,7)  (5,1,7) 
(6,5,7)  (6,4,7)  (6,3,7)  (6,2,7) 
 

Here the instances in the first line are negative, 
while those in the second line are all positive.  

3.2 Features Definition 

A feature vector is specified for each training or 
testing instance. Similar to those in the single-
candidate model, the features may describe the 
lexical, syntactic, semantic and positional relation-
ships of an anaphor and any one of its candidates. 
Besides, the feature set may also contain inter-
candidate features characterizing the relationships 
between the pair of candidates, e.g. the distance 
between the candidates in the number distances or 
paragraphs. 

3.3 Classifier Generation 

Based on the feature vectors generated for each 
anaphor encountered in the training data set, a 
classifier can be trained using a certain machine 
learning algorithm, such as C4.5, RIPPER, etc. 
Given the feature vector of a test instance 

)ana,cj,ci(inst  (i > j), the classifier returns the posi-
tive class indicating that Ci is preferred to Cj as the 
antecedent of ana; or negative indicating that Cj is 
preferred.  

3.4 Antecedent Identification 

Let CR( )ana,cj,ci(inst ) denote the classification re-
sult for an instance )ana,cj,ci(inst . The antecedent of 
an anaphor is identified using the algorithm shown 
in Figure 1.  

 
Algorithm ANTE-SEL 
Input: ana: the anaphor under consideration  

candidate_set: the set of antecedent can-
didates of ana, {C1, C2,…,Ck} 
 
for i = 1 to K do 
   Score[ i ] = 0; 
for  i = K downto 2 do 

for j = i – 1 downto 1 do 
  if  CR( )ana,cj,ci(inst ) = = positive then  

Score[ i ]++; 
else  

Score[ j ] ++; 
  endif 

SelectedIdx= ][maxarg
_

iScore
setcandidateCii ∈

 

return CselectedIdx; 
Figure 1:The antecedent identification algorithm

 
Algorithm ANTE-SEL takes as input an ana-

phor and its candidate set candidate_set, and re-
turns one candidate as its antecedent. In the 
algorithm, each candidate is compared against any 
other candidate. The classifier acts as a judge dur-
ing each comparison. The score of each candidate 
increases by one every time when it wins. In this 
way, the final score of a candidate records the total 
times it wins. The candidate with the maximal 
score is singled out as the antecedent.  

If two or more candidates have the same maxi-
mal score, the one closest to the anaphor would be 
selected. 



3.5 Single-Candidate Model: A Special Case 
of Twin-Candidate Model? 

While the realization and the structure of the twin-
candidate model are significantly different from 
the single-candidate model, the single-candidate 
model in fact can be regarded as a special case of 
the twin-candidate model.  

To illustrate this, just consider a virtual “blank” 
candidate C0 such that we could convert an in-
stance )ana,ci(inst in the single-candidate model to 
an instance )ana,c,ci( 0inst in the twin-candidate 
model. Let )ana,c,ci( 0inst have the same class label 
as )ana,ci(inst , that is, )ana,c,ci( 0inst is positive if Ci is 
the antecedent of ana; or negative if not.  

Apparently, the classifier trained on the in-
stance set { )ana,ci(inst }, T1, is equivalent to that 
trained on { )ana,c,ci( 0inst }, T2.  T1 and T2 would 
assign the same class label for the test instances 

)ana,ci(inst  and )ana,c,ci( 0inst , respectively. That is to 
say, determining whether Ci is coreferential to ana 
by T1 in the single-candidate model equals to 
determining whether Ci is better than C0 w.r.t ana 
by T2 in the twin-candidate model. Here we could 
take C0 as a “standard candidate”. 

While the classification in the single-candidate 
model can find its interpretation in the twin-
candidate model, it is not true vice versa. Conse-
quently, we can safely draw the conclusion that the 
twin-candidate model is more powerful than the 
single-candidate model in characterizing the rela-
tionships among an anaphor and its candidates. 

4 The Competition Learning Approach 

Our competition learning approach adopts the 
twin-candidate model introduced in the Section 3. 
The main process of the approach is as follows: 
1. The raw input documents are preprocessed to 

obtain most, if not all, of the possible NPs.  
2. During training, for each anaphoric NP, we 

create a set of candidates, and then generate 
the training instances as described in Section 3.  

3. Based on the training instances, we make use 
of the C5.0 learning algorithm (Quinlan, 1993) 
to train a classifier. 

4. During resolution, for each NP encountered, 
we also construct a candidate set. If the set is 
empty, we left this NP unresolved; otherwise 
we apply the antecedent identification algo-

rithm to choose the antecedent and then link 
the NP to it.  

4.1 Preprocessing 

To determine the boundary of the noun phrases, a 
pipeline of Nature Language Processing compo-
nents are applied to an input raw text: 
z Tokenization and sentence segmentation 
z Named entity recognition 
z Part-of-speech tagging 
z Noun phrase chunking 

Among them, named entity recognition, part-of-
speech tagging and text chunking apply the same 
Hidden Markov Model (HMM) based engine with 
error-driven learning capability (Zhou and Su, 
2000 & 2002). The named entity recognition 
component recognizes various types of MUC-style 
named entities, i.e., organization, location, person, 
date, time, money and percentage.  

4.2 Features Selection 

For our study, in this paper we only select those 
features that can be obtained with low annotation 
cost and high reliability. All features are listed in 
Table 1 together with their respective possible val-
ues.  

4.3 Candidates Filtering 

For a NP under consideration, all of its preceding 
NPs could be the antecedent candidates. Neverthe-
less, since in the twin-candidate model the number 
of instances for a given anaphor is about the square 
of the number of its antecedent candidates, the 
computational cost would be prohibitively large if 
we include all the NPs in the candidate set. More-
over, many of the preceding NPs are irrelevant or 
even invalid with regard to the anaphor. These data 
noises may hamper the training of a good-
performanced classifier, and also damage the accu-
racy of the antecedent selection: too many com-
parisons are made between incorrect candidates. 
Therefore, in order to reduce the computational 
cost and data noises, an effective candidate filter-
ing strategy must be applied in our approach. 

During training, we create the candidate set for 
each anaphor with the following filtering algorithm: 
1. If the anaphor is a pronoun,  

(a) Add to the initial candidate set all the pre-
ceding NPs in the current and the previous 
two sentences. 



(b) Remove from the candidate set those that 
disagree in number, gender, and person. 

(c) If the candidate set is empty, add the NPs in 
an earlier sentence and go to 1(b). 

2. If the anaphor is a non-pronoun, 
(a) Add all the non-pronominal antecedents to 

the initial candidate set. 
(b) For each candidate added in 2(a), add the 

non-pronouns in the current, the previous 
and the next sentences into the candidate set. 

During resolution, we filter the candidates for 
each encountered pronoun in the same way as dur-
ing training. That is, we only consider the NPs in 
the current and the preceding 2 sentences. Such a 
context window is reasonable as the distance be-
tween a pronominal anaphor and its antecedent is 
generally short. In the MUC-6 data set, for exam-
ple, the immediate antecedents of 95% pronominal 
anaphors can be found within the above distance. 

Comparatively, candidate filtering for non-
pronouns during resolution is complicated. A po-
tential problem is that for each non-pronoun under 
consideration, the twin-candidate model always 
chooses a candidate as the antecedent, even though 
all of the candidates are “low-qualified”, that is, 
unlikely to be coreferential to the non-pronoun un-
der consideration.  

In fact, the twin-candidate model in itself can 
identify the qualification of a candidate. We can 
compare every candidate with a virtual “standard 
candidate”, C0. Only those better than C0 are 
deemed qualified and allowed to enter the “round 
robin”, whereas the losers are eliminated. As we 
have discussed in Section 3.5, the classifier on the 
pairs of a candidate and C0 is just a single-
candidate classifier. Thus, we can safely adopt the 
single-candidate classifier as our candidate filter.  

The candidate filtering algorithm during resolu-
tion is as follows:  

Features describing the candidate: 
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10 

ante_DefNp_1(2) 
ante_IndefNP_1(2) 
ante_Pron_1(2) 
ante_ProperNP_1(2) 
ante_M_ProperNP_1(2) 
ante_ProperNP_APPOS_1(2) 
ante_Appositive_1(2) 
ante_NearestNP_1(2) 
ante_Embeded_1(2) 
ante_Title_1(2) 

1 if Ci (Cj) is a definite NP; else 0 
1 if Ci (Cj) is an indefinite NP; else 0 
1 if Ci (Cj) is a pronoun; else 0 
1 if Ci (Cj) is a proper NP; else 0  
1 if Ci (Cj) is a mentioned proper NP; else 0 
1 if Ci (Cj) is a proper NP modified by an appositive; else 0 
1 if Ci (Cj) is in a apposition structure; else 0 
1 if Ci (Cj) is the nearest candidate to the anaphor; else 0 
1 if Ci (Cj) is in an embedded NP; else 0 
1 if Ci (Cj) is in a title; else 0 

Features describing the anaphor: 
11. 
12. 
13. 
14. 
15. 
 
16. 

ana_DefNP 
ana_IndefNP 
ana_Pron 
ana_ProperNP 
ana_PronType 
 
ana_FlexiblePron 

1 if ana is a definite NP; else 0 
1 if ana is an indefinite NP; else 0 
1 if ana is a pronoun; else 0 
1 if ana is a proper NP; else 0 
1 if ana is a third person pronoun; 2 if a single neuter pro-
noun; 3 if a plural neuter pronoun; 4 if other types 
1 if ana is a flexible pronoun; else 0 

Features describing the candidate and the anaphor: 
17. 
18. 
 
18. 
 
20. 
21. 

ante_ana_StringMatch_1(2) 
ante_ana_GenderAgree_1(2) 
 
ante_ana_NumAgree_1(2) 
 
ante_ana_Appositive_1(2) 
ante_ana_Alias_1(2) 

1 if Ci (Cj) and ana match in string; else 0 
1 if Ci (Cj) and ana agree in gender; else 0 if disagree; -1 if 
unknown 
1 if Ci (Cj) and ana agree in number; 0 if disagree; -1 if un-
known 
1 if Ci (Cj) and ana are in an appositive structure; else 0 
1 if Ci (Cj) and ana are in an alias of the other; else 0 

Features describing the two candidates 
22. 
23. 

inter_SDistance 
inter_Pdistance 

Distance between Ci and Cj in sentences 
Distance between Ci and Cj in paragraphs 

Table 1:  Feature set for coreference resolution (Feature 22, 23 and features involving Cj are not 
used in the single-candidate model) 



1. If the current NP is a pronoun, construct the 
candidate set in the same way as during training.  

2. If the current NP is a non-pronoun,  
(a) Add all the preceding non-pronouns to the ini-

tial candidate set. 
(b) Calculate the confidence value for each candi-

date using the single-candidate classifier. 
(c) Remove the candidates with confidence value 

less than 0.5. 

5 Evaluation and Discussion 

Our coreference resolution approach is evaluated 
on the standard MUC-6 (1995) and MUC-7 (1998) 
data set. For MUC-6, 30 “dry-run” documents an-
notated with coreference information could be used 
as training data. There are also 30 annotated train-
ing documents from MUC-7. For testing, we util-
ize the 30 standard test documents from MUC-6 
and the 20 standard test documents from MUC-7. 

5.1 Baseline Systems 

In the experiment we compared our approach with 
the following research works:  
1. Strube’s S-list algorithm for pronoun resolu-

tion (Stube, 1998).  
2. Ng and Cardie’s machine learning approach to 

coreference resolution (Ng and Cardie, 2002a).  
3. Connolly et al.’s machine learning approach to 

anaphora resolution (Connolly et al., 1997).  
Among them, S-List, a version of centering 

algorithm, uses well-defined heuristic rules to rank 
the antecedent candidates; Ng and Cardie’s ap-
proach employs the standard single-candidate 
model and “Best-First” rule to select the antece-

dent; Connolly et al.’s approach also adopts the 
twin-candidate model, but their approach lacks of 
candidate filtering strategy and uses greedy linear 
search to select the antecedent (See “Related 
work” for details). 

We constructed three baseline systems based on 
the above three approaches, respectively. For com-
parison, in the baseline system 2 and 3, we used 
the similar feature set as in our system (see table 1).  

5.2 Results and Discussion 

Table 2 and 3 show the performance of different 
approaches in the pronoun and non-pronoun reso-
lution, respectively. In these tables we focus on the 
abilities of different approaches in resolving an 
anaphor to its antecedent correctly. The recall 
measures the number of correctly resolved ana-
phors over the total anaphors in the MUC test data 
set, and the precision measures the number of cor-
rect anaphors over the total resolved anaphors. The 
F-measure F=2*RP/(R+P) is the harmonic mean of 
precision and recall. 

The experimental result demonstrates that our 
competition learning approach achieves a better 
performance than the baseline approaches in re-
solving pronominal anaphors. As shown in Table 2, 
our approach outperforms Ng and Cardie’s single-
candidate based approach by 3.7 and 5.4 in F-
measure for MUC-6 and MUC-7, respectively. 
Besides, compared with Strube’s S-list algorithm, 
our approach also achieves gains in the F-measure 
by 3.2 (MUC-6), and 1.6 (MUC-7). In particular, 
our approach obtains significant improvement 
(21.1 for MUC-6, and 13.1 for MUC-7) over Con-
nolly et al.’s twin-candidate based approach. 
 
MUC-6 MUC-7  

 R P F R P F 
Strube (1998)  76.1 74.3 75.1 62.9 60.3 61.6 
Ng and Cardie (2002a) 75.4 73.8 74.6 58.9 56.8 57.8 
Connolly et al. (1997) 57.2 57.2 57.2 50.1 50.1 50.1 
Our approach 79.3 77.5 78.3 64.4 62.1 63.2 

Table 2:  Results for the pronoun resolution  
 
MUC-6 MUC-7  

R P F R P F 
Ng and Cardie (2002a) 51.0 89.9 65.0 39.1 86.4 53.8 
Connolly et al. (1997) 52.2 52.2 52.2 43.7 43.7 43.7 
Our approach  51.3 90.4 65.4 39.7 87.6 54.6 

Table 3:  Results for the non-pronoun resolution  



MUC-6 MUC-7  
R P F R P F 

Ng and Cardie (2002a) 62.2 78.8 69.4 48.4 74.6 58.7 
Our approach 64.0 80.5 71.3 50.1 75.4 60.2 

Table 4: Results for the coreference resolution  
 
Compared with the gains in pronoun resolution, 

the improvement in non-pronoun resolution is 
slight. As shown in Table 3, our approach resolves 
non-pronominal anaphors with the recall of 51.3 
(39.7) and the precision of 90.4 (87.6) for MUC-6 
(MUC-7). In contrast to Ng and Cardie’s approach, 
the performance of our approach improves only 0.3 
(0.6) in recall and 0.5 (1.2) in precision. The rea-
son may be that in non-pronoun resolution, the 
coreference of an anaphor and its candidate is usu-
ally determined only by some strongly indicative 
features such as alias, apposition, string-matching, 
etc (this explains why we obtain a high precision 
but a low recall in non-pronoun resolution). There-
fore, most of the positive candidates are coreferen-
tial to the anaphors even though they are not the 
“best”. As a result, we can only see comparatively 
slight difference between the performances of the 
two approaches.  

Although Connolly et al.’s approach also adopts 
the twin-candidate model, it achieves a poor per-
formance for both pronoun resolution and non-
pronoun resolution. The main reason is the absence 
of candidate filtering strategy in their approach 
(this is why the recall equals to the precision in the 
tables). Without candidate filtering, the recall may 
rise as the correct antecedents would not be elimi-
nated wrongly. Nevertheless, the precision drops 
largely due to the numerous invalid NPs in the 
candidate set. As a result, a significantly low F-
measure is obtained in their approach. 

Table 4 summarizes the overall performance of 
different approaches to coreference resolution. Dif-
ferent from Table 2 and 3, here we focus on 
whether a coreferential chain could be correctly 
identified. For this purpose, we obtain the recall, 
the precision and the F-measure using the standard 
MUC scoring program (Vilain et al. 1995) for the 
coreference resolution task. Here the recall means 
the correct resolved chains over the whole 
coreferential chains in the data set, and precision 
means the correct resolved chains over the whole 
resolved chains.  

In line with the previous experiments, we see 
reasonable improvement in the performance of the 

coreference resolution: compared with the baseline 
approach based on the single-candidate model, the 
F-measure of approach increases from 69.4 to 71.3 
for MUC-6, and from 58.7 to 60.2 for MUC-7.  

6 Related Work 

A similar twin-candidate model was adopted in the 
anaphoric resolution system by Connolly et al. 
(1997). The differences between our approach and 
theirs are: 
(1) In Connolly et al.’s approach, all the preceding 

NPs of an anaphor are taken as the antecedent 
candidates, whereas in our approach we use 
candidate filters to eliminate invalid or irrele-
vant candidates.  

(2) The antecedent identification in Connolly et 
al.’s approach is to apply the classifier to 
successive pairs of candidates, each time 
retaining the better candidate. However, due to 
the lack of strong assumption of transitivity, 
the selection procedure is in fact a greedy 
search. By contrast, our approach evaluates a 
candidate according to the times it wins over 
the other competitors. Comparatively this 
algorithm could lead to a better solution. 

(3) Our approach makes use of more indicative 
features, such as Appositive, Name Alias, 
String-matching, etc. These features are effec-
tive especially for non-pronoun resolution. 

7 Conclusion 

In this paper we have proposed a competition 
learning approach to coreference resolution. We 
started with the introduction of the single-
candidate model adopted by most supervised ma-
chine learning approaches. We argued that the con-
fidence values returned by the single-candidate 
classifier are not reliable to be used as ranking cri-
terion for antecedent candidates. Alternatively, we 
presented a twin-candidate model that learns the 
competition criterion for antecedent candidates 
directly. We introduced how to adopt the twin-
candidate model in our competition learning ap-



proach to resolve the coreference problem. Particu-
larly, we proposed a candidate filtering algorithm 
that can effectively reduce the computational cost 
and data noises.  

The experimental results have proved the effec-
tiveness of our approach. Compared with the base-
line approach using the single-candidate model, the 
F-measure increases by 1.9 and 1.5 for MUC-6 and 
MUC-7 data set, respectively. The gains in the 
pronoun resolution contribute most to the overall 
improvement of coreference resolution. 

Currently, we employ the single-candidate clas-
sifier to filter the candidate set during resolution. 
While the filter guarantees the qualification of the 
candidates, it removes too many positive candi-
dates, and thus the recall suffers. In our future 
work, we intend to adopt a looser filter together 
with an anaphoricity determination module (Bean 
and Riloff, 1999; Ng and Cardie, 2002b). Only if 
an encountered NP is determined as an anaphor, 
we will select an antecedent from the candidate set 
generated by the looser filter. Furthermore, we 
would like to incorporate more syntactic features 
into our feature set, such as grammatical role or 
syntactic parallelism. These features may be help-
ful to improve the performance of pronoun resolu-
tion.  
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