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Abstract
We present a probabilistic parsing model
for German trained on the Negra tree-
bank. We observe that existing lexicalized
parsing models using head-head depen-
dencies, while successful for English, fail
to outperform an unlexicalized baseline
model for German. Learning curves show
that this effect is not due to lack of training
data. We propose an alternative model that
uses sister-head dependencies instead of
head-head dependencies. This model out-
performs the baseline, achieving a labeled
precision and recall of up to 74%. This in-
dicates that sister-head dependencies are
more appropriate for treebanks with very
flat structures such as Negra.
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Charniak, 1997, 2000; Collins, 1997), and the lexi-
calized model proposed by Collins (1997) has been
successfully applied to Czech (Collins et al., 1999)
and Chinese (Bikel and Chiang, 2000). However, the
resulting performance is significantly lower than the
performance of the same model for English (see Ta-
ble 1). Neither Collins et al. (1999) nor Bikel and
Chiang (2000) compare the lexicalized model to an
unlexicalized baseline model, leaving open the pos-
sibility that lexicalization is useful for English, but
not for other languages.

This paper is structured as follows. Section 2 re-
views the syntactic properties of German, focusing
on its semi-flexible wordorder. Section 3 describes
two standard lexicalized models (Carroll and Rooth,
1998; Collins, 1997), as well as an unlexicalized
baseline model. Section 4 presents a series of experi-

ments that compare the parsing performance of these
three models (and several variants) on Negra. The
results show that both lexicalized models fail to out-

I _ erform the unlexicalized baseline. This is at odds
Treebank-based probabilistic parsing has been tl&ﬁth what has been reported for English. Learning

subject of intensive research over the past few years,ryes show that the poor performance of the lexi-
resulting in parsing models that achieve both broaghjized models is not due to lack of training data.
coverage and high parsing accuracy (e.g., Collins gection 5 presents an error analysis for Collins’s
1997; Charniak 2000). However, most of the ex(1997) lexicalized model, which shows that the
isting models have been developed for English angead-head dependencies used in this model fail to
trained on the Penn Treebank (Marcus et al., 1993)q56 well with the flat structures in Negra. We pro-
which raises the question whether these modefgyse an alternative model that uses sister-head de-
generalize to other languages, and to annotatigfhndencies instead. This model outperforms the two
schemes that differ from the Penn Treebank markugyiginal lexicalized models, as well as the unlexical-
The present paper addresses this question Byq haseline. Based on this result and on the review
proposing a probabilistic parsing model trained oR¢ the previous literature (Section 6), we argue (Sec-
Negra (Skut et al., 1997), a syntactically annotateglon 7) that sister-head models are more appropriate
corpus for German. German has a number of Sy treebanks with very flat structures (such as Ne-

tactic properties that set it apart from English, angyra), typically used to annotate languages with semi-
the Negra annotation scheme differs in important reree wordorder (such as German).

spects from the Penn Treebank markup. While Ne-

gra has been used to build probabilistic chunkerg Parsing German

(Becker and Frank, 2002; Skut and Brants, 1998 . :

the research reported in this paper is the first attemétl Syntactic Properties

to develop a probabilistic full parsing model for Ger-German exhibits a number of syntactic properties

man trained on a treebank (to our knowledge). that distinguish it from English, the language that
Lexicalization can increase parsing performanchas been the focus of most research in parsing.

dramatically for English (Carroll and Rooth, 1998;Prominent among these properties is seeni-free

1 Introduction



Language Size LR LP  Source ; e i
English 40000 87 4% B8.1% (Collins, T997) other, dominated by an S node. This is a way of

Chinese 3,484 69.0% 74.8% (Bikel and Chiang, 2000) accounting for the semi-free wordorder of German
Czech 19,000 —- 80.0% —- (Collins et al., 1999) (see Section 2.1): the first NP within an S need not

Table 1. Results for the Collins (1997) model forbe(g;e_?#g:cité no SBAR- Comp S rule. Main

various languages (dependency precision for Czecf) \ses subordinate clauses, and relative clauses all
share the category S in Negra; complementizers and

wordorder, i.e., German wordorder is fixed in some'€@tive pronouns are simply sisters of the verb.
respects, but variable in others. Verb order is largely, () There is no PP~ P NP rule, i.e., the prepo-
fixed: in subordinate clauses such as (1a), both tifdfion and the noun it selects (and determiners and
finite verb hat ‘has’ and the non-finite verlkom- 2diectives, if present) are sisters, dominated by a

poniert‘composed’ are in sentence final position. PP node. An argument for this representation is that
prepositions behave like case markers in German; a

(1) a.  Weil ergestern Musikkomponierthat. preposition and a determiner can merge into a single
becauseryesterdaymusic composed has

‘Because he has composed music yesterday. word (e'g"l.n .dem in the becomes.m)' .
b.  Hater gestern Musik Eompon_iert? Another idiosyncrasy of Negra is that it assumes
c.  Erhatgestern Musik komponiert. specialcoordinate categories A coordinated sen-

, - tence has the category CS, a coordinate NP has the
In yes/no questions such as (1b), the finite verb I('5"ategory CNP, etcg V\yhile this does not make the
sentence initial, while the non-finite verb is sen- nnotation more flat, it substantially increases the
tence final. In declarative main clauses (see (1c)), Oﬁhmber of non-terminal labels. Negra also contains

the other hand, the finite verb is in second positio , :
(i.e., preceded by exactly one constituent) V\I?hile th rammatical function labels that augment phrasal
N ' nd lexical categories. Example are MO (modifier),

non-finite verb is final. . .
While verb order is fixed in German, the orderHD (head), SB (subject), and OC (clausal object).

of complements and adjuncts is variable, and influ3 Probabilistic Parsing Models
enced by a variety of syntactic and non-syntactiC

factors, including pronominalization, information3.1 Probabilistic Context-Free Grammars
structure, definiteness, and animacy (e.g., Uszkor-. . . .. .
eit 1987). The first position in a declarative Sen![exmahzanon has been shown to improve pars-

: : formance for the Penn Treebank (e.g., Car-
tence, for example, can be occupied by various cor9 Per . . . :
stituents, including the subjecer(‘he’ in (1c)), the roll and Rooth 1998; Charniak 1997, 2000; Collins

object (Musik ‘music’ in (2a)), an adjunctdestern 1997). The aim of the present paper is to test if this

‘ e e _ finding carries over to German and to the Negra cor-
ggs}g;gggmlgoge?j)’)i,nczrzg;])e non-finite vertkgm pus. We therefore use an unlexicalized model as our

baseline against which to test the lexicalized models.
) g. g/lustik heﬁ etrge,ater_rﬂ(kkomponi_ertt. More specifically, we used a standard proba-
: estern hat er Musik komponiert . bilistic context-free grammar (PCFG; see Charniak
¢ Komponiert hat er gestern Musik. 1993). Each context-free ruRHS— LHSis anno-
The semi-free wordorder in German means that tated with an expansion probabilify(RHSLHS).
context-free grammar model has to contain mor&he probabilities for all rules with the same lefthand
rules than for a fixed wordorder language. For trarside have to sum to one, and the probability of a
sitive verbs, for instance, we need the rules-S parse tre€l is defined as the product of the prob-
V NP NP, S— NP V NP, and S— NP NP V to abilities of all rules applied in generating
account for verb initial, verb second, and verb final

order (assuming a flat S, see Section 2.2). 3.2 '\C/iagol” and Rooth’s Head-Lexicalized
ode
2.2 Negra Annotation Scheme The head-lexicalized PCFG model of Carroll and

The Negra corpus consists of around 350,000 word®ooth (1998) is a minimal departure from the stan-

of German newspaper text (20,602 sentences). Thard unlexicalized PCFG model, which makes it

annotation scheme (Skut et al., 1997) is modeled toideal for a direct comparisoh.

certain extent on that of the Penn Treebank (Marcus A grammar ruleLHS — RHScan be written as

et al., 1993), with crucial differences. Most impor-P — C;...C,, whereP is the mother category, and

tantly, Negra follows the dependency grammar trae; ...C, are daughters. Ld{C) be the lexical head

dition in assumindlat syntactic representations T Icharmiak ( iallv th del:
(a) There is no S NP VP rule. Rather, the sub- arniak (1997) proposes essentially the same model; we

) ] ) ) will nevertheless use the label ‘Carroll and Rooth model’ as we
ject, the verb, and its objects are all sisters of eacdie using their implementation (see Section 4.1).



of the constituen€. The rule probability is then de- tion 2.1) in the face of Negra’s very flat annota-

fined as (see also Beil et al. 2002): tion scheme. For instance, subject and object NPs
(3) P(RHSLHS) = Pye(Ci...CalPI(P)) have different wordorder preferences (subjects tend
n to be preverbal, while objects tend to be postver-

"l_!Pchoice(l (G)ICi,PI(P)) bal), a fact that is captured if subjects have the la-

bel NP-SB, while objects are labeled NP-OA (ac-
Here Puie(Cy...Co|PI(P)) is the probability that cusative object), NP-DA (dative object), etc. Also
categoryP with lexical head (P) is expanded by the the fact that verb order differs between subordinate
rule P — Cy...Cy, andPenoice(l (C)|C,P,1(P)) is the  and main clauses is captured by the function labels:
probability that the (non-head) categdZyhas the the former are labeled S, while the latter are labeled
lexical head (C) given that its mother i® with lex-  S-OC (object clause), S-RC (relative clause), etc.

ical head (P). Another idiosyncrasy of the Negra annotation is
- o that conjoined categories have separate labels (S and
3.3 Collins's Head-Lexicalized Model CS, NP and CNP, etc.), and that PPs do not contain

In contrast to Carroll and Rooth's (1998) approachan Np node. We tested a variant of the Carroll and

the model proposed by Collins (1997) does not comi 4tk (1998) model that takes this into account.
pute rule probabilities directly. Rather, they are gen-

erated using a Markov process that makes certain iﬂ'l Method

dependence assumptions. A grammar LS — :

RHS can be written ad® — L,...L1 H R;...R, Data Sets All experiments reported in this paper
whereP is the mother and is the head daughter. used the treebank format of Negra. This format,
Let [(C) be the head word df andt(C) the tag of which is included in the Negra distribution, was de-
the head word of. Then the probability of a rule is rived from the native format by replacing crossing

defined as: branches with traces. We split the corpus into three
@ P(RHSLHS) = P(Lm...L1 H Ry...Rq|P) subsets. The first 18,602 sentences constituted the
= PL,(H|P)A(Lm...L1|P,H)P(R;...Ry|P,H) training set. Of the remaining 2,000 sentences, the

m L _ first 1,000 served as the test set, and the last 1000 as
Ph(H‘P)I_LH(Li‘RH>d(|))'I_LPr(Ri|P7H7d(')) the development set. To increase parsing efficiency,
_ = . = _ we removed all sentences with more than 40 words.
Here, B, is the probability of generating the head,Tjs resulted in a test set of 968 sentences and a
andP andp are the probabilities of generating theye,elopment set of 975 sentences. Early versions
nonte_rm;ngls to thgz_ left and right g thedhead, r€3f the models were tested on the development set,
spectively:d(i) is aA 'Sg]ance _meaﬁur O((?nl IRo alrle and the test set remained unseen until all parameters
stop categories.) At this point, the model is still uny oo fivad The final results reported this paper were

lexicalized. To add lexical sensitivity, tH&, P and . :
P probability functions also take into account hea@Ptained on the test set, unless stated otherwise.

words and their POS tags:

Grammar Induction  For the unlexicalized PCFG

) P(RHSLHS) = Py(H[Pt(P),I(P)) model (henceforthbaseline mode), we used the
m AN ;
v . probabilistic left-corner parser Lopar (Schmid,
’iELP'(L"t(L')’l(L')‘RH’I(H)’l(H)’d(')) 2000). When run in unlexicalized mode, Lopar im-
n plements the model described in Section 3.1. A
"l_LPr(Rivt(Ri)al(Ri)|P,Hat(H),|(H)»d(i)) grammar and a lexicon for Lopar were read off the

Negra training set, after removing all grammatical
function labels. As Lopar cannot handle traces, these
were also removed from the training data.
This experiment was designed to compare the per- The head-lexicalized model of Carroll and Rooth
formance of the three models introduced in th€1998) (henceforttC&R model) was again realized
last section. Our main hypothesis was that the lexusing Lopar, which in lexicalized mode implements
icalized models will outperform the unlexicalizedthe modelin Section 3.2. Lexicalization requires that
baseline model. Another prediction was that addingach rule in a grammar has one of the categories on
Negra-specific information to the models will in-its righthand side annotated as the head. For the cate-
crease parsing performance. We therefore testedgaries S, VP, AP, and AVP, the head is marked in Ne-
model variant that included grammatical function lagra. For the other categories, we used rules to heuris-
bels, i.e., the set of categories was augmented by ttieally determine the head, as is standard practice for
function tags specified in Negra (see Section 2.2). the Penn Treebank.

Adding grammatical functions is a way of deal- The lexicalized model proposed by Collins (1997)
ing with the wordorder facts of German (see SecthenceforthCollins model) was re-implemented by

4 Experiment 1



one of the authors. For training, empty categorieSEVAL measures. We report labeled recall (LR)
were removed from the training data, as the moddhbeled precision (LP), average crossing brackets
cannot handle them. The same head finding strate¢@Bs), zero crossing brackets (0CB), and two or less
was applied as for the C&R model. crossing brackets{2CB). We also give the cover-

In this experiment, only head-head statistics werage (Cov), i.e., the percentage of sentences that the
used (see (5)). The original Collins model usegarser was able to parse.
sister-head statistics for non-recursive NPs. This will
be discussed in detail in Section 5. 4.2 Results

o _ The results for all three models and their variants
Training and Testing For all three models, the are given in Table 2, for both TnT tags and per-
model parameters were estimated using maximufact tags. The baseline model achieves 70.56% LR
likelihood estimation. Both Lopar and the Collinsand 66.69% LP with TnT tags. Adding grammatical
model use various backoff distributions to smoothynctions reduces both figures slightly, and cover-
the estimates. The reader is referred to Schmighe drops by about 15%. The C&R model performs
(2000) and Collins (1997) for details. For the C&Rworse than the baseline, at 68.04% LR and 60.07%
model, we used a cutoff of one for rule frequenciesp (for TnT tags). Adding grammatical function
Puie and lexical choice frequenci€noice (the cutoff  again reduces performance slightly. Parameter pool-
value was optimized on the development set). ing increases both LR and LP by about 1%. The

We also tested variants of the baseline model andollins models also performs worse than the base-
the C&R model that include grammatical functionline, at 67.91% LR and 66.07% LP.
information, as we hypothesized that this informa- Performance using perfect tags (an upper bound
tion might help the model to handle wordorder vari-of model performance) is 2—-3% higher for the base-
ation more adequately, as explained above. line and for the C&R model. The Collins model

Finally, we tested variant of the C&R model thatgains only about 1%. Perfect tagging results in a per-
uses Lopar’'s parameter pooling feature. This fegermance increase of over 10% for the models with
ture makes it possible to collapse the lexical choicgrammatical functions. This is not surprising, as the
distribution Peoice for either the daughter or the perfect tags (but not the TnT tags) include grammat-
mother categories of a rule (see Section 3.2). Weal function labels. However, we also observe a dra-
pooled the estimates for pairs of conjoined and normatic reduction in coverage (to about 65%).
conjoined daughter categories (S and CS, NP and _ .
CNP, etc.): these categories should be treated as thé Discussion
same daughters; e.g., there should be no differengge added grammatical functions to both the base-
between S— NPV and S— CNP V. We also pooled |ine model and the C&R model, as we predicted
the estimates for the mother categories NPs and PRsat this would allow the model to better capture the
This is a way of dealing with the fact that there is nQuordorder facts of German. However, this predic-
separate NP node within PPs in Negra. tion was not borne out: performance with grammat-

Lopar and the Collins model differ in their han-jcal functions (on TnT tags) was slightly worse than
dling of unknown words. In Lopar, a POS tag distri-without, and coverage dropped substantially. A pos-
bution for unknown words has to be specified, whicible reason for this is sparse data: a grammar aug-
is then used to tag unknown words in the test datamented with grammatical functions contains many
The Collins model treats any word seen fewer thaadditional categories, which means that many more
five times in the training data as unseen and uses parameters have to be estimated using the same
external POS tagger to tag unknown words. In ord&raining set. On the other hand, a performance in-
to make the models comparable, we used a uniforgrease occurs if the tagger also provides grammati-
approach to unknown words. All models were rurtal function labels (simulated in the perfect tags con-
on POS-tagged input; this input was created by tagtition). However, this comes at the price of an unac-
ging the test set with a separate POS tagger, for bogeptable reduction in coverage.
known and unknown words. We used TnT (Brants, When training the C&R model, we included a
2000), trained on the Negra training set. The taggingariant that makes use of Lopar's parameter pool-
accuracy was 97.12% on the development set.  ing feature. We pooled the estimates for conjoined

In order to obtain an upper bound for the perfordaughter categories, and for NP and PP mother cat-
mance of the parsing models, we also ran the parsegories. This is a way of taking the idiosyncrasies of
on the test set with the correct tags (as specified the Negra annotation into account, and resulted in a
Negra), again for both known and unknown wordssmall improvement in performance.
We will refer to this mode as ‘perfect tagging’. The most surprising finding is that the best per-

All models were evaluated using standaslR- formance was achieved by the unlexicalized PCFG



TnT tagging Perfect tagging
LR LP CBs 0CB <2CB Cov LR LP CBs 0CB <2CB Cov
Baseline 70.56 66.69 1.03 58.21 84.46 9442 7299 70.00 0.88 60.30 87.42 95.25
Baseline + GF 70.45 65.49 1.07 58.02 85.01 79.24 81.14 78.37 0.46 74.25 95.26 65.39
C&R 68.04 60.07 1.31 52.08 79.54 94.42 70.79 63.38 1.17 5499 82.21 95.25
C&R +pool 69.07 61.41 1.28 53.06 80.09 94.42 71.74 64.73 1.11 56.40 83.08 95.25
C&R + GF 67.66 60.33 1.31 55.67 80.18 79.24 81.17 76.83 0.48 73.46 94.15 65.39
Collins 67.91 66.07 0.73 65.67 89.52 95.21 68.63 66.94 0.71 64.97 89.73 96.23

Table 2: Results for Experiment 1. comparison of lexicalized and unlexicalized models (GF: grammatical
functions; pool: parameter pooling for NPs/PPs and conjoined categories)

75— : \ \ \ Penn Negra Penn Negra
] NP 220 308 VP 232 259
. PP 203 266 S 222 422
"] Table 3: Average number of daughters for the gram-
matical categories in the Penn Treebank and Negra

] well with the fact that Negra rules are so flat (see

ol | G (Colling) | Section 2.2). We will focus on the Collins model, as
L +-— lexicalized PCFG (C&R) | | it outperformed the C&R model in Experiment 1.
45114 Y H An error analysis revealed that many of the errors
20 40 60 80 100 . . . .
percent of training corpus of the Collins model in Experiment 1 are chunking

Figure 1: Learning curves for all three models errors. For example, the Pieben den Mitteln des
Theatersshould be analyzed as (6a). But instead the
parser produces two constituents as in (6b)):

baseline model. Both lexicalized models (C&R and _

Collins) performed worse than the baseline. Thisrd6) a  [PP ”et;te?he”mmer!” [NP g}eStThheet‘te,fsﬂ

sults is at odds with what has been found for En- apart om the means of the theater’.

glish, where lexicalization is standardly reported to  b.  [PP neben den Mitteln] [NP des Theaters]

increase performance by about 10%. The poor per-

formance of the lexicalized models could be due tdhe reason for this problem is thaebenis the head

a lack of sufficient training data: our Negra trainingof the constituent in (6), and the Collins model uses
set contains approximately 18,000 sentences, andascrude distance measure together with head-head
therefore significantly smaller than the Penn Treedependencies to decide if additional constituents
bank training set (about 40,000 sentences). Negshould be added to the PP. The distance measure is
sentences are also shorter: they contain, on averagegdequate for finding PPs with high precision.

15 words compared to 22 in the Penn Treebank. The chunking problem is more widespread than

We computed learning curves for the unmodified®Ps. The error analysis shows that other con-

variants (without grammatical functions or paramestituents, including Ss and VPs, also have the wrong
ter pooling) of all three models (on the developmeniboundary. This problem is compounded by the fact
set). The result (see Figure 1) shows that there is ribat the rules in Negra are substantially flatter than
evidence for an effect of sparse data. For both thie rules in the Penn Treebank, for which the Collins
baseline and the C&R model, a fairly high f-scoranodel was developed. Table 3 compares the average
is achieved with only 10% of the training data. Anumber of daughters in both corpora.
slow increase occurs as more training data is added.The flatness of PPs is easy to reduce. As detailed
The performance of the Collins model is even lesi Section 2.2, PPs lack an intermediate NP projec-
affected by training set size. This is probably due ttion, which can be inserted straightforwardly using
the fact that it does not use rule probabilities directlythe following rule:
but generates rules using a Markov chain.

(7) [PPP...]1-[PPP[NP...]]
5 Experiment 2 _ _ _ ) _

In the present experiment, we investigated if parsing
As we saw in the last section, lack of training data iperformance improves if we test and train on a ver-
not a plausible explanation for the sub-baseline pesion of Negra on which the transformation in (7) has
formance of the lexicalized models. In this experibeen applied.
ment, we therefore investigate an alternative hypoth- In a second series of experiments, we investigated
esis, viz., that the lexicalized models do not copa more general way of dealing with the flatness of



C&R Collins Charniak Current  gjmjjar in structure to NPs (see Section 2.2). Then

HSZS 2!2%2{ ﬁ%fg wgrd ;(< ;(< ;(< we tested a model in which sister-head relationships
Head sister head tag X X are applied to all categories.

prev. sister category | X X X In a third series of experiments, we trained mod-
Prev. sister head tag X els that use sister-head relationships everywhere ex-

- _ cept for one category. This makes it possible to de-
Table 4: Linguistic features in the current modetermine which sister-head dependencies are crucial

compared to the models of Carroll and RootHor improving performance of the model.
(1998), Collins (1997), and Charniak (2000)

5.2 Results

The results of the PP experiment are listed in Ta-

Negra, based on Collins’s (1997) model for non; X . . ;
rec%rsive NPs in the Penn T(reeba)nk (which are aldd€ 5- Again, we give results obtained using TnT tags

flat). For non-recursive NPs, Collins (1997) does ngi"d using perfect tags. The row ‘Split PP contains
use the probability function in (5), but instead subthe performance figures obtained by including split
stitutesP, (and, by analogyR) by: PPs in both the training and in the testing set. This

. , _ _ _ . leads to a substantial increase in LR (6—7%) and LP
®) P(RtR)NRIIPR-1,tR-1),|(Ria).d(D)) (around 8%) for both tagging schemes. Note, how-
Here the head is substituted by the sist&_1  ever, that these figures are not directly comparable to
(andLi_;). In the literature, the version & in (5)  the performance of the unmodified Collins model: it
is said to capturéead-head relationshipsWe will  js possible that the additional brackets artificially in-
refer to the alternative model in (8) as capturingjate LR and LP. Presumably, the brackets for split
sister-head relationships o PPs are easy to detect, as they are always adjacent to
Using sister-head relationships is a way of coung preposition. An honest evaluation should therefore
teracting the flatness of the grammar productiongiain on the modified training set (with split PPs),
it implicitly adds binary branching to the grammar.pyt collapse the split categories for testing, i.e., test
Our proposal is to extend the use of sister-head ren the unmodified test set. The results for this evalu-
lationship from non-recursive NPs (as proposed bition are listed in rows ‘Collapsed PP’. Now there is
Collins) to all categories. no increase in performance compared to the unmod-
Table 4 shows the linguistic features of the resultified Collins model; rather, a slight drop in LR and
ing model compared to the models of Carroll and p js observed.
Rooth (1998), Collins (1997), and Charniak (2000). Table 5 also displays the results of our exper-
The C&R model effectively includes category infor-iments with the sister-head model. For TnT tags,
mation aboutll previous sisters, as it uses contextywe observe that using sister-head dependencies for
free rules. The Collins (1997) model does not UsR|Ps |eads to a small decrease in performance com-
context-free rules, but generates the next categopared to the unmodified Collins model, resulting in
using zeroth order Markov chains (see Section 3.367.84% LR and 65.96% LP. Sister-head dependen-
hence no information about the preViOUS sisters aes for PPs, howe\/er, increase performance sub-
included. Charniak’s (2000) model extends this t@tantially to 70.27% LR and 68.45% LP. The high-
higher Ord_er Markov chains (first to thlrd order), an(;bst improvement is observed if head-sister depen-
therefore includes category information about previgencies are used for all categories; this results in
ous sisters.The current model differs from all thesg1.329 LR and 70.93% LP, which corresponds to an
proposals: it does not use any information about thighprovement of 3% in LP and 5% in LR compared
head sister, but instead includes the category, hegslthe unmodified Collins model. Performance with
word, and head tag of the previous sister, effectivelgerfect tags is around 2—4% higher than with TnT
treating it as the head. tags. For perfect tags, sister-head dependencies lead
to an improvement for NPs, PPs, and all categories.
5.1 Method The third series of experiments was designed to
We first trained the original Collins model on a mod-determine which categories are crucial for achiev-
ified versions of the training test from Experiment ling this performance gain. This was done by train-
in which the PPs were split by applying rule (7).  ing models that use sister-head dependencies for all
In a second series of experiments, we tested ategories but one. Table 6 shows the change in LR
range of models that use sister-head dependencimsd LP that was found for each individual category
instead of head-head dependencies for different cgggain for TnT tags and perfect tags). The highest
egories. We first added sister-head dependencies finop in performance (around 3%) is observed when
NPs (following Collins’s (1997) original proposal) the PP category is reverted to head-head dependen-
and then for PPs, which are flat in Negra, and thusies. For S and for the coordinated categories (CS,



TnT tagging Perfect tagging
LR LP CBs 0CB <2CB Cov LR LP CBs 0CB <2CB Cov
Unmod. Collins 67.91 66.07 0.73 65.67 89.52 95.21 68.63 66.94 0.71 64.97 89.73 96.23
Split PP 73.84 7377 0.82 62.89 88.98 95.11 75.93 75.27 0.77 65.36 89.03 93.79
Collapsed PP 66.45 66.07 0.89 66.60 87.04 95.11 68.22 67.32 0.94 66.67 85.88 93.79
Sister-head NP 67.84 65.96 0.75 65.85 88.97 95.11 71.54 70.31 0.60 68.03 93.33 94.60
Sister-head PP 70.27 68.45 0.69 66.27 90.33 94.81 73.20 72.44 0.60 68.53 93.21 94.50
Sister-head all 71.32 70.93 0.61 69.53 91.72 95.92 73.93 74.24 0.54 72.30 93.47 95.21

Table 5: Results for Experiment 2: performance for models using split phrases and sister-head dependencies

CNP, etc.), a drop in performance of around 1% each Angtagaing - Ferfecttagging

is observed. A slight drop is observed also for VP PP 345 —160 —471 =335

(around 0.5%). Only minimal fluctuations in perfor- S -1.28 011 -223 -1.22

mance are observed when the other categories are ~ Sgord —1.87 -0.39  ~1.54 ~0.80

removed (AP, AVP, and NP): there is a small effect AP _057 010 008 -007

(around 0.5%) if TnT tags are used, and almost no AVP  -0.32 044 010 0.11

effect for perfect tags. NP 006 078 -015 0.02

_ _ Table 6: Change in performance when reverting to

5.3 Discussion head-head statistics for individual categories

We showed that splitting PPs to make Negra less
flat does not improve parsing performance if test- _ _ _ _
ing is carried out on the collapsed categories. Howter information (Charniak, 2000), as illustrated in
ever, we observed that LR and LP are artificially in-Table 4. Lexical sister-head dependencies have only
flated if split PPs are used for testing. This finding?een found useful in a limited way: in the original
goes some way towards explaining why the parsinfollins model, they are used for non-recursive NPs.
performance reported for the Penn Treebank is sub- Our results show, however, that for parsing Ger-
stantially higher than the results for Negra: the Penfan, lexical sister-head information is more im-
Treebank contains split PPs, which means that thep@rtant than lexical head-head information. Only a
are lot of brackets that are easy to get right. The reénodel that replaced lexical head-head with lexical
sulting performance figures are not directly compasister-head dependencies was able to outperform a
rable to figures obtained on Negra, or other corporaaseline model that uses no lexicalizatbBased
with flat PP<2 on the error analysis for Experiment 1, we claim that
We also obtained a positive result: we demonthe reason for the success of the sister-head model is
strated that a sister-head model outperforms the ufe fact that the rules in Negra are so flat; using a
lexicalized baseline model (unlike the C&R modekister-head model is a way of binarizing the rules.
and the Collins model in Experiment 1). LR was
about 1% higher and LP about 4% higher than th6 Comparison with Previous Work
baseline if lexical sister-head dependencies are used o
for all categories. This holds both for TnT tags and here are currently no probabilistic, treebank-
for perfect tags (compare Tables 2 and 5). We aldéained parsers available for German (to our knowl-
found that using lexical sister-head dependencies f§f9e). A number of chunking models have been pro-
all categories leads to a larger improvement than ugosed, however. Skut and Brants (1998) used Ne-
ing them only for NPs or PPs (see Table 5). Thigra to train a maximum entropy-based chunker, and
result was confirmed by a second series of experiePort LR and LP of 84.4% for NP and PP chunk-
ments, where we reverted individual categories badR9- Using cascaded Markov models, Brants (2000)
to head-head dependencies, which triggered a deports an improved performance on the same task
crease in performance for all categories, with the exLR 84.4%, LP 88.3%). Becker and Frank (2002)
ception of NP, AP, and AVP (see Table 6). train an unlexicalized PCFG on Negra to perform
On the whole, the results of Experiment 2 are & dlffere_nt c_hunklng task, viz., the identification of
odds with what is known about parsing for Englishtopological fields (sentence-based chunks). They re-
The progression in the probabilistic parsing literaPOrt an LR and LP of 93%.
ture has been to start with lexical head-head depen- The head-lexicalized model of Carroll and Rooth
dencies (Collins, 1997) and then add non-lexical si¢1998) has been applied to German by Beil et al.

2This result generalizes to Ss, which are also flat in Negra S3It is unclear what effecbi-lexical statistics have on the
(see Section 2.2). We conducted an experiment in which waster-head model; while Gildea (2001) shows bi-lexical statis-
added an SBAR above the S. No increase in Ferformance wéses are sparse for some grammars, Hockenmaier and Steedman
obtained if the evaluation was carried using collapsed Ss.  (2002) found they play a greater role in binarized grammars.



(1999, 2002). However, this approach differs in thdexicalized models is due to the fact that the rules in
number of ways from the results reported here: (a) ldegra are flatter than in the Penn Treebank, which
hand-written grammar (instead of a treebank grammakes lexical head-head dependencies less useful
mar) is used; (b) training is carried out on unanfor correctly determining constituent boundaries.
notated data; (c) the grammar and the training s&ased on this assumption, we proposed an alterna-
cover only subordinate and relative clauses, not utive model hat replaces lexical head-head dependen-
restricted text. Beil et al. (2002) report an evaluatiorties with lexical sister-head dependencies. This can
using an NP chunking task, achieving 92% LR anthe thought of as a way of binarizing the flat rules in
LP. They also report the results of a task-based evallegra. The results show that sister-head dependen-
uation (extraction of sucategorization frames). cies improve parsing performance not only for NPs
There is some research on treebank-based patgich is well-known for English), but also for PPs,
ing of languages other than English. The work byPs, Ss, and coordinate categories. The best perfor-
Collins et al. (1999) and Bikel and Chiang (2000)nance was obtained for a model that uses sister-head
has demonstrated the applicability of the Collinglependencies for all categories. This model achieves
(1997) model for Czech and Chinese. The perforp to 74% recall and precision, thus outperforming
mance reported by these authors is substantialtpe unlexicalized baseline model.
lower than the one reported for English, which might It can be hypothesized that this finding carries
be due to the fact that less training data is availever to other treebanks that are annotated with flat
able for Czech and Chinese (see Table 1). This hgtructures. Such annotation schemes are often used
pothesis cannot be tested, as the authors do rfor languages that (unlike English) have a free or
present learning curves for their models. Howevegemi-free wordorder. Testing our sister-head model
the learning curve for Negra (see Figure 1) indicategn these languages is a topic for future research.
that the performance of the Collins (1997) mOdeheferences
IS Stable’ even fOI’ Sma” trammg sets. CO”mS eta ecker, Markus and Anette Frank. 2002. A stochastic topological parser of Ger-
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