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Abstract

Word alignment plays a crucial role in sta-
tistical machine translation. Word-aligned
corpora have been found to be an excellent
source of translation-related knowledge.
We present a statistical model for comput-
ing the probability of an alignment given a
sentence pair. This model allows easy in-
tegration of context-specific features. Our
experiments show that this model can be
an effective tool for improving an existing
word alignment.

Introduction
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It has been shown that once a baseline alignment
has been created, one can improve results by using
a refined scoring metric that is based on the align-
ment. For example Melamed uses competitive link-
ing along with an explicit noise model in (Melamed,
2000) to produce a new scoring metric, which in turn
creates better alignments.

In this paper, we present a simple, flexible, sta-
tistical model that is designed to capture the infor-
mation present in a baseline alignment. This model
allows us to compute the probability of an align-
ment for a given sentence pair. It also allows for
the easy incorporation of context-specific knowl-
edge into alignment probabilities.

A critical reader may pose the question, “Why in-
vent a new statistical model for this purpose, when

termediate result of statistical machine translatioﬁ?('snng' proven models are available to train on a

systems (Brown et al., 1993).

duction, many researchers have become interested® .
I:orpodel achieves better results than a comparable ex-

in word alignments as a knowledge source. " it p
example, alignments can be used to learn transl®"'J &€rnative.

tion lexicons (Melamed, 1996), transfer rules (Car-
bonell et al., 2002; Menezes and Richardson, 2001,
and classifiers to find safe sentence segmentati

points (Berger et al., 1996).

In addition to the IBM models, researchers hav
proposed a number of alternative alignment metH
ods. These methods often involve using a statist

Since their intro

given word alignment?” We will demonstrate exper-

ntally that, for the purposes of refinement, our

We will first present this model in its most general
f)orm. Next, we describe an alignment algorithm that

Hﬂegrates this model with linguistic constraints in

order to produce high quality word alignments. We

Will follow with our experimental results and dis-

ussion. We will close with a look at how our work
(glates to other similar systems and a discussion of

such asp? (Gale and Church, 1991) or the log likeli- possible future directions.

hood ratio (Dunning, 1993) tg create a score to meay Probability Model

sure the strength of correlation between source and

target words. Such measures can then be usedltothis section we describe our probability model.
guide a constrained search to produce word aligri-o do so, we will first introduce some necessary no-
ments (Melamed, 2000).

tation. LetE be an English senteneg, e,, . ..

7em



and letF' be a French sentendg, fo,..., fn. We Here P(lyle;,, fj,) is link probability given a co-
define dink I(e;, f;) to existife; and f; are atrans- occurrence of the two words, which is similar in
lation (or part of a translation) of one another. Wespirit to Melamed’s explicit noise model (Melamed,
define thenull link [(e;, fo) to exist if ¢; does not 2000). This term depends only on the words in-
' ' - i - i L (Clll)
correspond tq a translatlpn for_ any F_re_nch word Inolvgq d|rect|y.|n the I|nk.. .The ratl. Culesy Tip)
F. The null link I(eo, f;) is defined similarly. An mqdifies the link probability, providing context-
alignment A for two sentence#’ and F' is a set of gensitive information.
links such that every word i’ andF” participatesin - yp until this point, we have made no simplify-
atleast one link, and aword linkeddgor fo partic-  ing assumptions in our derivation. Unfortunately,
ipates in no other links. I occurs inE' z times and - ¢, — {E, F, 1!} is too complex to estimate con-
f oceursink y times, we say thatand f co-occur et probabilities directly. SupposET, is a set
ay times in this sentence pair. of context-related features such thagl,|Cy) can
We define the alignment problem as finding thgye approximated bY (Ik|eiy, fips FTk). LetCy =

alignmentA that maximizesP(A|E, F). This cor- {ei, f;. YUFT}. P(I;|C}) can then be decomposed
responds to finding the Viterbi alignment in theysing the same derivation as above.

IBM translation systems. Those systems model ,
P(F, A| ), which when maximized is equivalentto p(; 1cry — p(, e, | £,) x chk'llk)'
maximizing P(A|E, F'). We propose here a system P(Cyleiy, fi)
which modelsP(A|E, F) directly, using a different
decomposition of terms. = P(lplei,, fi.) ¥ P(FTx|l)
kl€igs J gk

In the IBM models of translation, alignments exist P(FTylei, fi)
as artifacts of which English words generated which In the second line of this derivation, we can drop
French words. Our model does not state that ong, andf;, fromC}, leaving onlyF'T},, because they
sentence generates the other. Instead it takes b@tie implied by the events which the probabilities are
sentences as given, and uses the sentences to detenditionalized on. Now, we are left with the task
mine an alignment. An alignmemt consists oft  of approximatingP (FT%|l;) and P(F'Tylei,, fi.)-
links {l1,12,...,1:}, where eactt, = I(e;,, f;,) for To do so, we will assume that for afit ¢ FTj,
someiy, and;j;.. We will refer to consecutive subsetsft is conditionally independent given eithéy or
of Aasl! = {l;,li+1,...,l;}. Given this notation, (ei,, fj,). This allows us to approximate alignment
P(A|E, F) can be decomposed as follows: probability P(A|E, F') as follows:

t

i P(ft|lk)
_ t _ k—1 P(l ins Ti
P(AE,F) = PU§| B, F) = [ P(WlB, F,ii ") kg( (kles £5) % T1 pgie £

k=1 fteFTy,

In any context, only a few features will be ac-
tive. The inner product is understood to be only over
those featuregt that are present in the current con-
text. This approximation will caus€(A|E, F') to
no longer be a well-behaved probability distribution,
though as in Naive Bayes, it can be an excellent es-
Pk, Cr)  P(Chlle)P(ly) tin:]:ator fsrthe pur;?_ose OIof ra_nlfing alignmenhts. A

P(Cy)  P(Cr.ey.fy) f we have an aligne training corpgs,t & prob-
abilities needed for the above equation are quite

PGl Pl iy f.) emqsydt%.obttTinf. Lilnk Fr(l)(babilities can be deter-
= BCulen, f1) Plens 1) ined directly from|i;| (link counts) anqeik,fj’k’ _
(co-occurrence counts). For any co-occurring pair

At this point, we must factoP (I, |E, F,1¥1) to
make computation feasible. L&Y, = {E, F,1¥7 '}
represent the context @f. Note that both the con-
text Cj, and the linkl; imply the occurrence of;,
andf;,. We can rewriteP(l;,|C},) as:

P(l|Ck) =

P(Ckllk) of words (e;,, fj.), we check whether it has the
= Pllklei, 1) x P(Chlei,, f5.) feature ft. If it does, we increment the count of



|ft, e, fj.|- If this pair is also linked, then we in-
crement the count dfft, [;.|. Note that our definition W
of F'T}, allows for features that depend on previous

links. For this reason, when determining whether or
not a feature is present in a given context, one must
impose an ordering on the links. This ordering can Figure 1: An Example Aligned Corpus
be arbitrary as long as the same ordering is used in

trainingt and probability evaluation. A simple solu-

tion would be to order links according their French Table 1. Example Probability Tables
words. We choose to order links according to th?a) Link Counts and Probabilities

link probability P(le;, , f;.) as it has an intuitive ) — —
appeal of allowing rrlorke c]ekrtain links to provide cont Z““ 3:]’“ |Zf| e ’1ka | P(lk@“’ Ji)
text for others. .

We store probabilities in two tables. The first ta o fo 1 2 2
ble stores link probabilitie® (Ixe;,, fj,)- lthasan | €0 v 1 2 3
entry for every word pair that was linked at least ¢ v 1 4 %

once in the training corpus. Its size is the same as
the translation table in the IBM models. The sectb) Feature Counts

ond table stores feature probabilitie( f|l;) and | € fie | St U] |ft eiys f
P(ftlei,, f;.). For every linked word pair, this table| @ ¥ 1 1
has two entries for each active feature. In the worgt) Feature Probabilities
case.thls.ta'ble will be of sizex | FT'| x | E| x |F|. In' e, [in | P(ftllk)  P(ftle, fi)
practice, itis much smaller as most contexts activate, v 1 T

only a small number of features.

In the next subsection we will walk through a sim-
ple example of this probability model in action. We

will describe the features used in our implementa- P(A|E,F) = P(I(b,u)|b,u)x

tion of this model in Section 3.2. P(l(a, fo)la, fo)x
P(l(eg,v)|eg,v)x

2.1 An lllustrative Example p l(avv)‘avv)Plg](c?tlef)))

Figure 1 shows an aligned corpus consisting of = IxyxgxgX %

one sentence pair. Suppose that we are concerned = i

with only one featureft that is activé for e;, _ _
and f;, if an adjacent pair is an alignment, i.e.,3 Word-Alignment Algorithm
. . k—1 ) ) k-1
Uei—1, fjs—1) € I O leigin, fn) € B7e i section, we describe a world-alignment al-
This ex_ample would produce the probability tablesgorithm guided by the alignment probability model
shown in Table.l. _ _ ~ derived above. In designing this algorithm we have
Note how ft is active for the(a, v) link, and is  selected constraints, features and a search method
not active for the(b, u) link. This is due to our se- in order to achieve high performance. The model,
lected ordering. Table 1 allows us to calculate thggyever, is general, and could be used with any in-
probability of this alignment as: stantiation of the above three factors. This section
will describe and motivate the selection of our con-
*In our experiments, the ordering is not necessary duringtraints, features and search method.
training to achieve good performance. _ The input to our word-alignment algorithm con-
2Throughout this paper we will assume that null alignments_. ts of a pair of sentencésand F, and the depen-

are special cases, and do not activate or participate in feature®®
unless otherwise stated in the feature description. dency tre€l’y for E. Tg allows us to make use of



features and constraints that are based on linguistic obj

intuitions. ‘(det\/subj\ /;edet
3.1 Constraints the host discovers all the devices

The reader will note that our alignment model as de- ]‘s A . Te

scribed above has very few factors to prevent unde- R \ R I

sirable alignments, such as having all French words 1 3 4°5 6

align to the same English word. To guide the model I' hote repére tous les périphériques
to correct alignments, we employ two constraints to the host  locate all the  peripherals

limit our search for the most probable alignment.
The first constraint is thene-to-one constraint
(Melamed, 2000): every word (except the null words
ep and fp) participates in exactly one link.

The second constraint, known as thehesion type ft, concerns surrounding links. It has been ob-
constraint (Fox, 2002), uses the dependency tregerved that words close to each other in the source
(Mel'€uk, 1987) of the English sentence to restricfanguage tend to remain close to each other in the
possible link combinations. Given the dependencitansiation (Vogel et al., 1996; Ker and Change,
treeT, the alignment can induce a dependency treegg7). To capture this notion, for any word pair
for F' (Hwa et al., 2002). The cohesion constrain(eh fj),ifalink I(e;, f;) exists where — 2 < ' <
requires that this induced dependency tree does nof. 9 andj — 2 < j/ < j + 2, then we say that the
have any crossing dependencies. The details abadhtureft,(i—i', j—j', e;) is active for this context.
how the cohesion constraint is implemented are oufy/e refer to these aadjacency features
side the scope of this papeHere we willuse asim-  The second feature typgt, uses the English
ple example to illustrate the effect of the constraintparse tree to capture regularities among grammati-
Consider the partial alignment in Figure 2. Whergg| relations between languages. For example, when
the system attempts to linéf andde, the new link  gealing with French and English, the location of
will induce the dotted dependency, which crosses e determiner with respect to its goverhi never
previously induced dependency betweenviceand  swapped during translation, while the location of ad-

Figure 3: Feature Extraction Example

donrees Thereforepf anddewill not be linked. jectives is swapped frequently. For any word pair
(ei, fj), lete; be the governor of;, and letrel be
poomp. the relationship between them. If a lidke;, f;/)
oy e exists, then we say that the featufitg(j — 5/, rel) is
the status of the data service active for this context. We refer to these depen-
dency features
Take for example Figure 3 which shows a par-

I' état du service de données , . : ;
; N tial alignment with all links completed except for

those involving the'. Given this sentence pair and
English parse tree, we can extract features of both
types to assist in the alignment tife;. The word
pair (they,!’) will have an active adjacency feature
fta(+1,41, host) as well as a dependency feature
3.2 Features fta(—1,det). These two features will work together

In this section we introduce two types of featured® increase the probability of this correct link. In

that we use in our implementation of the probabil€ONtrast, the incorrectlinkhes, les) will have only

ity model described in Section 2. The first feature fa(+3; det), which will work to lower the link
probability, since most determiners are located be-

3The algorithm for checking the cohesion constraintispre-—
sented in a separate paper which is currently under review. “The parent node in the dependency tree.

Figure 2: An Example of Cohesion Constraint



fore their governors. 4.2 Alignment Sampling

Our use of the one-to-one constraint and the cohe-
3.3 Search sion constraint precludes sampling directly from all
Due to our use of constraints, when seeking theossible alignments. These constraints tie words in
highest probability alignment, we cannot rely on &uch a way that the space of alignments cannot be
method such as dynamic programming to (implicenumerated as in IBM models 1 and 2 (Brown et
itly) search the entire alignment space. Instead, w&l., 1993). Taking our lead from IBM models 3, 4
use a best-first search algorithm (with constant beagid 5, we will sample from the space of those high-
and agenda size) to search our constrained spacepspbability alignments that do not violate our con-
possible alignments. A state in this space is a pagtraints, and then redistribute our probability mass
tial alignment. A transition is defined as the addiamong our sample.
tion of a single link to the current state. Any link At each search state in our alignment algorithm,
which would create a state that does not violate anye consider a number of potential links, and select
constraint is considered to be a valid transition. Oupetween them using a heuristic completion of the re-
start state is the empty alignment, where all words igulting state. Our sampl& of possible alignments
E andF are linked to null. A terminal state is a statewill be the most probable alignment, plus the greedy
in which no more links can be added without violat-completions of the states visited during search. It
ing a constraint. Our goal is to find the terminal statés important to note that any sampling method that
with highest probability. concentrates on complete, valid and high probabil-

For the purposes of our best-first search, nonty alignments will accomplish the same task.

terminal states are evaluated according to a greedyWhen collecting the statistics needed to calcu-
completion of the partial alignment. We build thislate P(A|E, F) from our initial ¢* alignment, we
completion by adding valid links in the order ofgive eachs € S a uniform weight. This is rea-
their unmodified link probabilitie®(I|e, f) untiino ~ Sonable, as we have no probability estimates at this
more links can be added. The score the state receiie@nt. When training from the alignments pro-
is the probability of its greedy completion. Theseduced by our model, we normalizB(s|E, F') so
completions are saved for later use (see Section 4.#yat> "¢ P(s|E, F') = 1. We then count links and

features inS according to these normalized proba-

As was stated in Section 2, our probability modep Experimental Results

needs an initial alignment in order to create its proh- . .
. 9 ) sp t\/Ve adopted the same evaluation methodology as in
ability tables. Furthermore, to avoid having ou

r(a(t)ch and Ney, 2000), which compared alignment

model learn mistakes and noise, it helps to train on . .
: . outputs with manually aligned sentences. Och and
set of possible alignments for each sentence, rathﬁr

than one Viterbi alignment. In the following sub- ey classify manual alignments into two categories:

sections we describe the creation of the initial align?':’ure b) and Possiblelt) (SC P). They defined the

. following metrics to evaluate an alignmeat
ments used for our experiments, as well as our sam-

pling method used in training. |ANS|

5 precision= 40P

1P|

recall=

4.1 Initial Alignment NS|+|ANP]

alignment error rate (AER}- 14 BEE

We produce an initial alignment using the same al-

gorithm described in Section 3, except we maximize We trained our alignment program with the same
summed¢? link scores (Gale and Church, 1991) 50K pairs of sentences as (Och and Ney, 2000) and
rather than alignment probability. This produces #ested it on the same 500 manually aligned sen-
reasonable one-to-one word alignment that we caences. Both the training and testing sentences are
refine using our probability model. from the Hansard corpus. We parsed the training



Table 2: Comparison with (Och and Ney, 2000) Table 3: Evaluation of Features

Method Prec| Rec | AER Algorithm Prec| Rec | AER
ours 95.71 86.4| 87 initial (¢?) 88.9] 84.6| 13.1
IBM-4 F—E 805! 91.2| 15.6 without features | 93.7 | 84.8| 10.5
IBM-4 E—F 80.0 | 90.8| 16.0 with ft4 only 95.6| 854 93
IBM-4 Intersect| 95.7 | 85.6| 9.0 with ft, only 959|858 90
IBM-4 Refined | 85.9| 92.3| 11.7 with ft, andft, | 95.7| 86.4| 8.7

and testing corpora with Minip&r.We then ran the =2 Contributions of Features

training procedure in Section 4 for three iterations. Table 3 shows the contributions of features to our al-
We conducted three experiments using thigorithm’s performance. Thanitial (¢?) row is the
methodology. The goal of the first experiment is t6core for the algorithm (described in Section 4.1)
compare the a|gorithm in Section 3to a state-of-théhat generates our initial alignment. Twehout fea-
art alignment system. The second will determin&iresrow shows the score after 3 iterations of refine-
the contributions of the features. The third experiMent with an empty feature set. Here we can see that
ment aims to keep all factors constant except for th@ur model in its simplest form is capable of produc-
model, in an attempt to determine its performanctd @ significant improvement in alignment quality.

when compared to an obvious alternative. The rowswith ftq only andwith ft, only describe
the scores after 3 iterations of training using only de-

pendency and adjacency features respectively. The
two features provide significant contributions, with
Table 2 compares the results of our algorithm withhe adjacency feature being slightly more important.
the results in (Och and Ney, 2000), where an HMMrhe final row shows that both features can work to-
model is used to bootstrap IBM Model 4. The rowsyether to create a greater improvement, despite the
IBM-4 F—E andIBM-4 E—F are the results ob- independence assumptions made in Section 2.
tained by IBM Model 4 when treating French as the

source and English as the target or vice versa. T3 Model Evaluation
row IBM-4 Intersectshows the results obtained byEven though we have compared our algorithm to
taking the intersection of the alignments producedlignments created using IBM statistical models, it
by IBM-4 E—F andIBM-4 F—E. The rowIBM-4 s not clear if our model is essential to our perfor-
Refinedshows results obtained by refining the intermance. This experiment aims to determine if we
section of alignments in order to increase recall. could have achieved similar results using the same
Our algorithm achieved over 44% relative erroinitial alignment and search algorithm with an alter-
reduction when compared with IBM-4 used in ei-native model.
ther direction and a 25% relative error rate reduc- Without using any features, our model is similar
tion when compared withBM-4 Refined It also toIBM’s Model 1, in that they both take into account
achieved a slight relative error reduction when comenly the word types that participate in a given link.
pared withIBM-4 Intersect This demonstrates that IBM Model 1 usesP(f|e), the probability off be-
we are competitive with the methods described ifng generated by, while our model use®(lle, f),
(Och and Ney, 2000). In Table 2, one can see th#te probability of a link existing betweenand f.
our algorithm is high precision, low recall. This wasln this experiment, we set Model 1 translation prob-
expected as our algorithm uses the one-to-one coabilities according to our initiap? alignment, sam-
straint, which rules out many of the possible alignpling as we described in Section 4.2. We then use the
ments present in the evaluation data. [17=1 P(fjleq;) to evaluate candidate alignments in
a search that is otherwise identical to our algorithm.
Savailable at http://www.cs.ualberta dmdek/minipar.htm  We ran Model 1 refinement for three iterations and

5.1 Comparison to state-of-the-art



This prevents us from starting with uniform proba-

Table 4:P(ile, f) vs. P(fle) bilities and estimating parameters with EM. This is

Algorithm Prec| Rec | AER why we must supply the model with a noisy initial
initial (¢*) 88.9|84.6| 13.1 alignment, while IBM can start from an unaligned
P(lle, f) model | 93.7 | 84.8| 10.5 corpus.

P(fle) model | 89.2| 83.0| 13.7 In the IBM framework, when one needs the model

to take new information into account, one must cre-
ate an extended model which can base its parame-
recorded the best results that it achieved. ters on the previous model. In our model, new in-
It is clear from Table 4 that refining our initia?  formation can be incorporated modularly by adding
alignment using IBM’s Model 1 is less effective thanfeatures. This makes our work similar to maximum
using our model in the same manner. In fact, thentropy-based machine translation methods, which
Model 1 refinement receives a lower score than owlso employ modular features. Maximum entropy

initial alignment. can be used to improve IBM-style translation prob-
abilities by using features, such as improvements to
6 Related Work P(fle) in (Berger et al., 1996). By the same token

we can use maximum entropy to improve our esti-
mates ofP(lle;, , f;,. Ck). We are currently inves-
When viewed with no features, our probatigating maximum entropy as an alternative to our
bility model is most similar to the explicit current feature model which assumes conditional in-
noise model defined in (Melamed, 2000). Independence among features.

fact, Melamed defines a probability distribution

P(links(u,V)|cooc(u,v), \*, A7) which appearsto 6.2 Grammatical Constraints

make our work redundant. However, this distriburnere have been many recent proposals to leverage
tion refers to the probability that two word typess oy niactic data in word alignment. Methods such as
andv are linkedlinks(u,v) times in the entire cor- (Wu, 1997), (Alshawi et al., 2000) and (Lopez et al.,

pus. Our distributionP(/le, f) refers to the proba- 5402y employ a synchronous parsing procedure to
bility of linking a specific co-occurrence of the word ., strain 4 statistical alignment. The work done in
tokense and f. In Melamed’s work, these probabil-og;]p

6.1 Probability models

- Yamada and Knight, 2001) measures statistics on
ities are used to compute a score based on a pr

> - el derations that transform a parse tree from one lan-
gblhtill ratio. In our work, we use the probabllltlesgmge into another.
irectly.

By far the most prominent probability models in7  Eyture Work
machine translation are the IBM models and their
extensions. When trying to determine whether twd he alignment algorithm described here is incapable
words are aligned, the IBM models ask, “What if creating alignments that are not one-to-one. The
the probability that this English word generated thisnodel we describe, however is not limited in the
French word?” Our model asks instead, “If we aresame manner. The model is currently capable of
given this English word and this French word, whatreating many-to-one alignments so long as the null
is the probability that they are linked?” The dis-probabilities of the words added on the “many” side
tinction is subtle, yet important, introducing manyare less than the probabilities of the links that would
differences. For example, in our modéd,and ' be created. Under the current implementation, the
are symmetrical. Furthermore, we mod#(l|e, f')  training corpus is one-to-one, which gives our model
andP(l|e, f”) as unrelated values, whereas the IBMh0 opportunity to learn many-to-one alignments.
model would associate them in the translation prob- We are pursuing methods to create an extended
abilities t(f'|e) andt(f"|e) through the constraint algorithm that can handle many-to-one alignments.
>f t(fle) = 1. Unfortunately, by conditionalizing This would involve training from an initial align-
on both words, we eliminate a large inductive biasnent that allows for many-to-one links, such as one



of the IBM models. Features that are related téddam Lopez, Michael Nossal, Rebecca Hwa, and Philip
multiple links should be added to our set of feature Resnik. 2002. Word-level alignment for multilingual

P : . resource acquisition. IRroceedings of the Workshop
types, to guide intelligent placement of such links. on Linguistic Knowledge Acquisition and Representa-

; tion: Bootstrapping Annotated Language Data
8 Conclusion pping guag

) ] _|. Dan Melamed. 1996. Automatic construction of clean
We have presented a simple, flexible, statistical broad-coverage translation lexicons. Proceedings
model for computing the probability of an alignment of the 2nd Conference of the Association for Machine

given a sentence pair. This model allows easy in- Trar;s'ation in the Americaspages 125-134, Mon-
tegration of context-specific features. Our experi- eal
ments show that this model can be an effective tool Dan Melamed. 2000. Models of translational equiv-

for improving an existing word alignment. alence among words. Computational Linguistics
26(2):221-249, June.
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