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Abstract

Recenttext andspeechprocessingapplications suchas
speechmining raisenew andmoregeneralproblemsre-
latedto theconstructionof language models.We present
anddescribein detailseveralnew andefficientalgorithms
to addressthesemore generalproblems and report ex-
perimental resultsdemonstratingtheir usefulness. We
give analgorithm for computing efficiently theexpected
counts of any sequence in a word lattice output by a
speechrecognizer or any arbitrary weightedautomaton;
describea new technique for creatingexact representa-
tionsof � -gramlanguagemodelsby weighted automata
whosesizeis practicalfor offline useeven for a vocab-
ulary sizeof about 500,000 wordsandan � -gram order����� ; andpresenta simpleandmoregeneral technique
for constructingclass-basedlanguage models thatallows
eachclassto represent anarbitrary weightedautomaton.
An efficient implementationof our algorithmsandtech-
niqueshasbeenincorporatedin ageneral softwarelibrary
for language modeling, the GRM Library, that includes
many othertext andgrammarprocessingfunctionalities.

1 Moti vation

Statistical language modelsare crucial componentsof
many modernnatural languageprocessingsystemssuch
as speechrecognition, information extraction, machine
translation,or document classification. In all cases,a
language model is usedin combination with other in-
formation sourcesto rank alternative hypothesesby as-
signing them some probabilities. There are classical
techniquesfor constructing language modelssuchas � -
gram models with various smoothing techniques (see
ChenandGoodman(1998) andthereferencesthereinfor
a survey andcomparisonof thesetechniques).

In somerecenttext andspeechprocessingapplications,
severalnew andmore general problemsarisethatarere-
latedto theconstructionof language models.We present
new andefficient algorithms to addressthesemoregen-
eralproblems.

Counting. Classicallanguagemodelsareconstructed
by deriving statisticsfrom large input texts. In speech
miningapplicationsor for adaptationpurposes,oneoften
needsto construct a languagemodelbasedon the out-
put of a speechrecognition system.But, theoutput of a
recognition systemis not just text. Indeed, theword er-

ror rateof conversationalspeechrecognition systemsis
still too high in many tasksto rely only on the one-best
output of the recognizer. Thus, the word lattice output
by speechrecognition systemsis usedinsteadbecauseit
contains thecorrecttranscription in mostcases.

A word lattice is a weightedfinite automaton (WFA)
output by the recognizer for a particular utterance. It
contains typically averylargesetof alternativetranscrip-
tion sentencesfor that utterance with the corresponding
weightsor probabilities. A necessarystepfor construct-
ing a languagemodel basedona word latticeis to derive
the statisticsfor any givensequencefrom the latticesor
WFAs output by therecognizer. This cannot bedone by
simplyenumeratingeachpathof thelatticeandcounting
thenumberof occurrencesof thesequenceconsideredin
eachpathsincethenumberof pathsof even a small au-
tomatonmay be more than four billion. We present a
simpleandefficientalgorithm for computing theexpected
count of any givensequencein aWFA andreport experi-
mentalresultsdemonstratingits efficiency.

Representation of language modelsby WFAs. Clas-
sical � -gramlanguagemodelsadmitanatural representa-
tion by WFAs in which eachstateencodesa left context
of width lessthan � . However, thesizeof that represen-
tationmakesit impracticalfor offline optimizationssuch
asthoseusedin large-vocabulary speechrecognition or
general informationextractionsystems.Mostofflinerep-
resentations of thesemodels arebasedinsteadon anap-
proximation to limit their size. We describea new tech-
niquefor creatinganexactrepresentationof � -gramlan-
guagemodelsby WFAs whosesizeis practicalfor offline
useevenin taskswith avocabularysizeof about500,000
wordsandfor ����� .

Class-basedmodels. In many applications, it is nat-
ural and convenient to construct class-basedlanguage
models, thatis models basedonclassesof words(Brown
et al., 1992). Suchmodelsare also often more robust
sincethey may includewordsthat belong to a classbut
thatwerenot found in thecorpus. Classicalclass-based
models are basedon simple classessuch as a list of
words.But new clusteringalgorithmsallow oneto create
moregeneral andmore complex classesthatmaybereg-
ular languages.Very large andcomplex classescanalso
bedefinedusingregular expressions.Wepresentasimple
andmoregeneralapproachto class-basedlanguagemod-
els basedon general weightedcontext-dependentrules



(KaplanandKay, 1994; Mohri andSproat,1996). Our
approachallowsusto dealefficiently with morecomplex
classessuchasweightedregular languages.

We have fully implemented the algorithms just men-
tioned and incorporatedthem in a general software li-
brary for language modeling, the GRM Library, that in-
cludesmany othertext andgrammarprocessingfunction-
alities (Allauzenet al., 2003). In the following, we will
presentin detailthesealgorithmsandbriefly describethe
corresponding GRM utilities.

2 Preliminaries

Definition 1 A system 	�

��������� ��� ��� is a semiring
(Kuich and Salomaa,1986) if: 	�
������ ��� is a commuta-
tivemonoid with identityelement� ; 	�
������ ��� isamonoid
with identityelement� ; � distributesover � ; and � is an
annihilator for � : for all ����
�� �!� �"� ���#�$� � .

Thus,a semiringis a ring that may lack negation. Two
semiringsoften usedin speechprocessingare: the log
semiring %&�'	�(*),+.-0/1���
2 3 45��6���-0� �1� (Mohri, 2002)
which is isomorphic to the familiar real or probability
semiring 	�(879��6��5:;� �<�=��� via a >@?1A morphismwith, for
all �B� C��D(E)F+.-0/ :

�;� 2 3G4 CH��ID>@?1AJ	LKNMPOQ	RIS�P�Q6,KTMPOQ	UI�CT�U�
and the convention that: KTMPOQ	UI
-#� � � andID>@?1A�	��1�V�W- , andthe tropical semiring XY�Y	Z([7\)+.-0/1�G]!^@_`��6���-��G�1� which canbe derived from the log
semiringusingtheViterbi approximation.

Definition 2 A weightedfinite-statetransducer a over a
semiring 
 is an 8-tuple ab�c	ed
��f���g!�Gh��GiH� jk� lQ�UmP�
where: d is the finite input alphabetof the transducer;f is thefinite output alphabet; g is a finite setof states;h0nog the setof initial states; ipnqg the setof final
states;jrn0gs:D	td�)u+�v=/w�x:y	�fz)u+wvN/.�{:k
\:Vg a finite
setof transitions; l�|<h�}~
 the initial weightfunction;
and m�|�i�}�
 thefinal weightfunction mapping i to
 .

A Weightedautomaton �'��	ed
��g!�Gh��GiH� jk� lQ�UmP� is de-
fined in a similar way by simply omitting the output la-
bels.Wedenoteby ��	��
��n�d
� thesetof stringsaccepted
by anautomaton � andsimilarly by ��	Z��� thestringsde-
scribedby a regular expression� .

Givena transition �F��j , we denote by ��� �=� its input
label, �x� �=� its origin or previous stateand ��� �=� its desti-
nationstateor next state,�"� �N� its weight, �P� �=� its output
label (transducercase).Givena state�D��g , we denote
by jV� ��� thesetof transitionsleaving � .

A path ���'�1�x�=�N�U�.� is an elementof jk� with con-
secutive transitions: ��� ���L��� �S���x� �w�Z� , �����P�=�N�N�=� � . We
extend � and � to pathsby setting: ��� � �V����� � � � and�¡� � �F�¢�¡� �.��� . A cycle � is a path whoseorigin and
destinationstatescoincide: ��� � �;���¡� � � . We denoteby

£ 	Z�¤� �.¥¦� the setof pathsfrom � to �¤¥ andby
£ 	Z�¤�U§¡�G�1¥¨�

and
£ 	Z�¤�U§¡�U© �G�5¥¦� the set of paths from � to ��¥ with in-

put label §&�&d � andoutput label © (transducer case).
Thesedefinitionscanbeextendedto subsetsª$� ªk¥¡n«g ,
by:

£ 	�ª��G§Q� ª¬¥­���®)8¯�°5±x²t¯U³L°5±`³ £ 	Z�¤�U§¡�G�.¥­� . The label-
ing functions � (and similarly � ) and the weight func-
tion � canalsobe extendedto pathsby definingthe la-
bel of a path as the concatenation of the labels of its
constituent transitions, and the weight of a path as the� -product of the weightsof its constituent transitions:��� � �S����� � � ���N�N�U��� � � � , �"� � ���´��� � � � �µ�=�N���0�"� � � � . We
also extend � to any finite set of paths ¶ by setting:�"� ¶;�9�¸·�¹ °�º �"� � � . The outputweight associatedby� to eachinputstring §y��d�� is:

� � �S� �t	Z§B�[� »¹ °5¼{½@¾=² ¿5² À�Á lQ	Â�¡� � �¨�x�Ã��� � �<�Ãm 	L��� � �¨�
� � �S� �t	Z§B� is definedto be � when

£ 	Zh��U§Q� i9�k�'Ä . Simi-
larly, theoutput weightassociatedby a transducera to a
pairof input-output string 	L§¡�U©<� is:

� � a;� �Å	L§Q�G©<��� »¹ °5¼8½@¾=² ¿�² Æw² ÀQÁ l¡	Ç�x� � �L�¡�,�"� � �P�,mB	Z��� � �L�
� � aS� �Å	L§¡�U©<��� � when

£ 	Zh��U§¡�U© �Gi9���¢Ä . A successful
path in a weightedautomaton or transducer È is a path
from aninitial stateto a final state. È is unambiguous if
for any string §��yd�� thereis atmostonesuccessfulpath
labeledwith § . Thus,anunambiguous transducerdefines
a function.

For any transducer a , denote by ¶!É1	Za
� theautomaton
obtained by projecting a onits output, thatis by omitting
its input labels.

Notethatthesecondoperation of thetropical semiring
andthelog semiringaswell astheir identityelementsare
identical. Thus the weightof a pathin an automaton �
over thetropicalsemiringdoesnotchange if � is viewed
asa weightedautomaton over the log semiringor vice-
versa.

3 Counting

This sectiondescribes a counting algorithm basedon
general weighted automataalgorithms. Let � �	�gk�Gh��GiH��d
� Ê.�GË ��l��Gm¤� be an arbitraryweightedautoma-
ton over theprobability semiringandlet � bea regular
expressiondefinedoverthealphabet d . Weareinterested
in counting theoccurrencesof thesequences §#�#�
	L���
in � while taking into account the weight of the paths
wherethey appear.

3.1 Definition

When � is deterministic andpushed, or stochastic,it can
beviewedasa probability distribution

£
over all strings
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Figure 1: Counting weightedtransducer a with dÌ�+��B��C�/ . Thetransitionweightsandthefinal weightatstate� areall equalto � .
d;� .1 Theweight � � �S� �t	Z§B� associatedby � to eachstring §
is then

£ 	Z§B� . Thus,we definethecount of thesequence§ in � , Í 	L§ � , as:

Í 	L§B�[�ÌÎÏ °5ÐBÑ
Ò Ó{Ò ¿ � � �S� �Å	L§ �

where
Ò Ó{Ò ¿ denotesthenumberof occurrencesof § in the

string
Ó

, i.e., the expectednumber of occurrencesof §
given � . Moregenerally, wewill definethecount of § as
above regardlessof whether� is stochasticor not.

In mostspeechprocessingapplications, � maybe an
acyclic automatoncalleda phone or a word lattice out-
put by a speechrecognition system.But ouralgorithmis
general anddoesnotassume� to beacyclic.

3.2 Algorit hm

We describe our algorithm for computing the expected
counts of thesequences§E�F�
	L��� andgive theproof of
its correctness.

Let Ô betheformalpower series(KuichandSalomaa,
1986) Ô over the probability semiringdefinedby Ô �Õ �¬:�§y: Õ � , where§y�D�
	L��� .
Lemma 1 For all Ö ��dS� , 	 Ô � Ö ��� Ò Ö Ò ¿ .

Proof. By definitionof themultiplication of power se-
riesin theprobability semiring:

	 Ô � Ö �×� ÎÏ ¿ Ø�Ù`Ú 	 Õ � � Ó ��:E	L§Q�G§B�S:�	 Õ � �GÛ¤�
� � Ï ¿ Ø�Ù`ÚD� Ò Ö Ò ¿

Thisprovesthelemma.Ô is a rationalpower seriesasa product andclosureof
thepolynomial power series

Õ
and § (SalomaaandSoit-

tola, 1978; Berstel and Reutenauer, 1988). Similarly,
since � is regular, theweightedtransduction definedby	ed\:�+=v=/w� ��	Z�W:����N	ed\:F+�vN/.�G� is rational.Thus,by the
theorem of Scḧutzenberger(Scḧutzenberger,1961), there
existsa weightedtransducer a definedover thealphabetd and the probability semiringrealizing that transduc-
tion. Figure1 shows the transducer a in the particular
caseof d*�µ+��B� C�/ .

1Thereexist a generalweighteddeterminizationandweight
pushingalgorithmsthatcanbeusedto createadeterministicand
pushedautomatonequivalent to an input word or phone lattice
(Mohri, 1997).

Proposition 1 Let � be a weightedautomatonover the
probability semiring, then:

� � ¶ É 	��*Ü[a
�Å� �Å	L§ ��� Í 	L§B�
Proof. By definitionof a , for any Ö ��d9� , � � a;� �Å	 Ö �U§ ���	 Ô �U§B� , and by lemma1, � � a;� �Å	 Ö �G§B��� Ò Ö Ò ¿ . Thus, by
definitionof composition:

� � ¶ É 	Z��Ü[a
�t� �Å	L§B�Ý� Î¹ °5¼{½¦¾N² ÀQÁt²ZÚPÙ��ZÞ ¹.ß � � �;� �Å	 Ö �H: Ò Ö Ò ¿
� ÎÚB°5ÐBÑ

Ò Ö Ò ¿ � � �;� �t	 Ö �à� Í 	L§ �
Thisendstheproof of theproposition.

Theproposition givesa simplealgorithmfor computing
the expectedcountsof � in a weightedautomaton �
basedon two general algorithms: composition(Mohri et
al., 1996) andprojectionof weightedtransducers. It is
alsobasedonthetransducer a whichis easyto construct.
Thesizeof a is in á 	 Ò d Ò 6 Ò ��â Ò � , where ��â is a finite
automaton accepting� . With a lazy implementationofa , only onetransitioncanbeusedinsteadof

Ò d Ò
, thereby

reducing thesizeof therepresentation of a to á 	 Ò � â Ò � .
Theweightedautomaton ã ��¶ É 	���Ü;a
� containsv -

transitions. A generalv -removal algorithm canbe used
to compute anequivalentweightedautomatonwith no v -
transition. The computation of � � ã � �Å	L§B� for a given § is
doneby composing ã with anautomatonrepresenting§
andbyusingasimpleshortest-distancealgorithm(Mohri,
2002) to compute thesumof theweights of all thepaths
of theresult.

For numericalstability, implementationsoftenreplace
probabilitieswith ID>¦?5A probabilities.Thealgorithm just
describedappliesin a similar way by taking ID>@?1A of the
weightsof a (thusall the weightsof a will be zero in
thatcase)andby usingthelog semiringversionof com-
positionand v -removal.

3.3 GRM Utility and Experimental Results

An efficient implementationof the counting algorithm
was incorporatedin the GRM library (Allauzen et al.,
2003). TheGRM utility grmcount canbeusedin par-
ticular to generate a compact representationof the ex-
pectedcounts of the � -gram sequencesappearing in a
word lattice (of which a stringencodedasanautomaton
is a specialcase),whoseorderis lessor equalto a given
integer. As anexample, thefollowing commandline:

grmcount -n3 foo.fsm > count.fsm
createsanencodedrepresentationcount.fsm of the � -
gramsequences, ��ä�å , whichcanbeusedto constructa
trigrammodel. Theencodedrepresentation itself is also
givenasanautomaton thatwedonotdescribe here.

Thecounting utility of theGRM library is usedin ava-
riety of languagemodeling andtrainingadaptationtasks.



Ourexperimentsshow thatgrmcount is quiteefficient.
Wetestedthisutility with 41,000weightedautomataout-
putsof our speechrecognition systemfor thesamenum-
berof speechutterances.Thetotal numberof transitions
of theseautomatawas �=æJ� æ M. It took about1h52m, in-
cludingI/O, to computetheaccumulatedexpectedcounts
of all � -gram, �çäèå , appearing in all theseautomata
on a singleprocessorof a 1GHzIntel Pentiumprocessor
Linux clusterwith 2GB of memoryand256 KB cache.
Thetime to computethesecountsrepresents just �éUê th of
thetotaldurationof the41,000speechutterancesusedin
ourexperiment.

4 Representationof ë -gram Language
Modelswith WFAs

Standardsmoothed � -gram models, including backoff
(Katz,1987) andinterpolated(JelinekandMercer, 1980)
models, admitanatural representationby WFAs in which
eachstateencodesa conditioning history of lengthless
than � . The size of that representation is often pro-
hibitive. Indeed,thecorresponding automatonmayhaveÒ d Ò ì ��� statesand

Ò d Ò ì
transitions.Thus,evenif thevo-

cabulary sizeis just 1,000, therepresentationof a classi-
cal trigrammodelmayrequire in theworstcaseupto one
billion transitions.Clearly, thisrepresentation is evenless
adequatefor realisticnatural language processingappli-
cationswherethevocabularysizeis in theorderof several
hundredthousandwords.

In the past,two methods have beenusedto dealwith
this problem. Oneconsistsof expandingthat WFA on-
demand. Thus,in somespeechrecognition systems,the
statesand transitions of the languagemodel automaton
areconstructed asneededbasedon the particularinput
speechutterances. The disadvantageof that method is
thatit cannotbenefitfromofflineoptimization techniques
that can substantiallyimprove the efficiency of a rec-
ognizer (Mohri et al., 1998). A similar drawback af-
fectsothersystemswhereseveralinformationsourcesare
combinedsuchasa complex informationextraction sys-
tem. An alternative method commonly usedin many ap-
plicationsconsistsof constructing insteadanapproxima-
tion of that weightedautomaton whosesize is practical
for offline optimizations. This methodis usedin many
large-vocabulary speechrecognition systems.

In this section,we presenta new methodfor creat-
ing an exact representationof � -gram language models
with WFAs whosesize is practical even for very large-
vocabulary tasksandfor relatively high � -gramorders.
Thus,our representationdoesnot suffer from thedisad-
vantagesjust pointed out for thetwo classicalmethods.

We first briefly presentthe classicaldefinitions of � -
gramlanguagemodelsandseveral smoothing techniques
commonly used.We thendescribea natural representa-
tion of � -gramlanguagemodels usingfailuretransitions.
This is equivalentto theon-demandconstructionreferred

to above but it helpsus introduce both the approximate
solutioncommonly usedandoursolutionfor anexactof-
fline representation.

4.1 ClassicalDefinitions

In an � -gram model, the joint probability of a string� ê �=�N�R�S� is given as the product of conditional proba-
bilities:

íàî 	Z� ê �N�=�R� � �×� �ï
�@Ù ê

í�î 	L� � Ò ð � � (1)

wheretheconditioninghistory
ð � consistsof zeroormore

words immediately preceding � � andis dictatedby the
orderof the � -grammodel.

Let Í 	 ð ��� denotethe count of � -gram
ð � and letñí�î 	L� Ò ð � be the maximum likelihood probability of �

given
ð
, estimatedfrom counts.

ñí�î
is often adjusted

to reserve someprobability massfor unseen� -gram se-
quences. Denoteby òí�î 	Z� Ò ð � the adjustedconditional
probability. Katz or absolutediscounting bothleadto an
adjustedprobability òí�î

.
For all � -grams

ð �«� ð ¥ where
ð ��d � for some��ó� , we referto

ð ¥ asthebackoff � -gramof
ð
. Conditional

probabilitiesin a backoff modelareof theform:

ô�õTö¨÷
ø ùPúcû ürýô�õTö¨÷
ø ùPú þ ÿ � öLù�÷�ú����
��� ô`õTö¨÷
ø ù
	¨ú���
���� õ���þ���� (2)

where ��� is a factor that ensuresa normalizedmodel.
Conditional probabilities in adeletedinterpolationmodel
areof theform:

ô`õTö¨÷�ø ùPúQû�ü ö���� ��� ú��ô`õTö¨÷
ø ù¤ú � ��� ô`õNö¨÷�ø ù�	­ú#þ ÿ � öLù�÷�ú!�"�
��� ô`õNö¨÷�ø ù�	­ú ��
���� õ���þ����

(3)
where��� is themixing parameterbetweenzeroandone.

In practice,as mentioned before, for numerical sta-
bility, ID>¦?5A probabilities are used. Furthermore, due
the Viterbi approximationusedin mostspeechprocess-
ing applications,theweightassociatedto a string § by a
weightedautomatonrepresenting themodel is themini-
mumweight of a pathlabeledwith § . Thus, an � -gram
languagemodel is representedbyaWFA overthetropical
semiring.

4.2 Representation with Failur eTransitions

Both backoff and interpolatedmodels can be naturally
represented usingdefaultor failure transitions. A fail-
uretransitionis labeledwith adistinctsymbol # . It is the
default transitiontakenat state� when � doesnot admit
anoutgoing transitionlabeledwith theword considered.
Thus,failuretransitionshavethesemanticsof otherwise.
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Figure2: Representation of a trigrammodelwith failure
transitions.

Thesetof statesof theWFA representing a backoff or
interpolatedmodel is definedby associatinga state�$� to
eachsequenceof lengthlessthan � found in thecorpus:

gµ�µ+�� � | Ò ðxÒ&% �('�_*) Í 	 ð �,+*�</
Its transitionset j is definedastheunionof thefollowing
setof failuretransitions:

+¤	Z��-���³Å�.#¡�NID>@?1A�	/�0�¤��� �1��³Z�H|1��-���³x�Dg$/
andthefollowing setof regulartransitions:

+1	Z�2�J�G�9�NID>¦?5AB	 í�î 	L� Ò ð �U���G�3�2-���|5�1�V�Dg!� Í 	 ð �
�,+��P/
where� �2- is definedby:

4 �65 û ü87 �65 þÇÿ9�;:*ø ù1÷�ø<: 4
7 � ³ 5 þÇÿ{ø ù�÷�ø�û 4 �=��� õ��xù�ûE÷>	­ù�	 (4)

Figure2 illustratesthis construction for a trigrammodel.
Treating v -transitions as regular symbols, this is a
deterministic automaton. Figure 3 shows a complete
Katz backoff bigrammodel built from countstakenfrom
thefollowing toy corpusandusingfailuretransitions:

?
s @ b a a a a

?
/s @?

s @ b a a a a
?
/s @?

s @ a
?
/s @

where
?
s@ denotesthestartsymbol and

?
/s@ theendsym-

bol for eachsentence.Notethatthestartsymbol
?
s@ does

not label any transition,it encodes the history
?
s@ . All

transitionslabeledwith the endsymbol
?
/s@ lead to the

singlefinal stateof theautomaton.

4.3 Approximate Offline Representation

Thecommonmethod usedfor anoffline representationof
an � -gramlanguagemodel canbeeasilyderivedfrom the
representationusingfailuretransitionsby simply replac-
ingeach# -transitionbyan v -transition. Thus,atransition
thatcouldonly betakenin theabsenceof any otheralter-
native in the exact representationcannow be taken re-
gardlessof whetherthereexistsanalternative transition.
Thusthe approximaterepresentationmay containpaths
whoseweightdoesnot correspondto theexactprobabil-
ity of thestringlabelingthatpathaccordingto themodel.

</s>

a

</s>/1.101

a/0.405

φ/4.856 </s>/1.540

a/0.441

bb/1.945

a/0.287

φ/0.356

<s>

a/1.108

φ/0.231
b/0.693

Figure3: Example of representationof a bigrammodel
with failuretransitions.

Considerfor example thestartstatein figure3, labeled
with

?
s@ . In a failure transitionmodel,thereexists only

onepathfrom thestartstateto thestatelabeled� , with a
costof 1.108, sincethe # transitioncannot be traversed
with an input of � . If the # transitionis replacedby anv -transition, thereis a secondpathto thestatelabeled�
– takingthe v -transitionto thehistory-lessstate,thenthe� transitionout of thehistory-lessstate.This pathis not
partof theprobabilistic model – we shallreferto it asan
invalid path. In this case,thereis a problem,becausethe
costof the invalid pathto thestate– thesumof the two
transitioncosts(0.672) – is lowerthanthecostof thetrue
path. Hencethe WFA with v -transitions gives a lower
cost(higherprobability) to all stringsbeginning with the
symbol � . Notethattheinvalid pathfromthestatelabeled?
s@ to thestatelabeledC hasahighercostthanthecorrect

path,which is nota problemin thetropical semiring.

4.4 Exact Offline Representation

This sectionpresents a methodfor constructing an ex-
act offline representation of an � -gram language model
whosesizeremains practicalfor large-vocabulary tasks.

Themainideabehindournew construction is to mod-
ify thetopology of theWFA to removeany pathcontain-
ing v -transitionswhosecostis lowerthanthecorrectcost
associatedby the model to the string labelingthat path.
Since,asa result, the low costpathfor eachstring will
have thecorrect cost,this will guaranteethecorrectness
of therepresentationin thetropical semiring.

Ourconstructionadmits two parts:thedetectionof the
invalid pathsof the WFA, and the modification of the
topology by splittingstatesto remove theinvalid paths.

To detectinvalid paths,we determine first their initial
non-v transitions. Let jBA denote the setof v -transitions
of theoriginal automaton. Let

£ ¯ bethesetof all paths�������x�=�N�U�.����	�j�I$j A � � , �(+z� , leadingto state� such
that for all � , ���ç���N�=�G� , �¡� � � � is thedestinationstateof
somev -transition.

Lemma 2 For an � -gram language model, the number
of pathsin

£ ¯ is lessthanthe � -gramorder:
Ò £ ¯ Ò&% � .

Proof. For all �`�!� £ ¯ , let ���"�q��¥� �w� . By definition,
thereis some��¥� ��j A suchthat ��� �.¥� �x�z�x� �w�¨�x��� �2C . By
definitionof v -transitions in themodel,

Ò ð � Ò9% �yI0� for
all � . It follows from thedefinitionof regular transitions
that ��� �w�L�[� � �2CD- � � . Hence,

ð �H� ð&E � ð
, i.e. �w�;�
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Figure4: Thepath ��� is invalid if ��� �=�Q��v , ��� � �x�µ��� � ¥ � ,��� £0F
, andeither(i) G1¥à�HG and �"� ��� � % �"� �Q¥@� or (ii)��� �w¥Â� �0v and �"� ��� � % �"� �¡¥­��¥Â� .

� E ��� , for all � �G�U� E � £ ¯ . Then,
£ ¯S�µ+=���9|5��� £ ¯�IP/5)+��1/ . Thehistory-lessstatehasno incoming non-v paths,

therefore,by recursion,
Ò £ ¯ Ò � Ò £ ¯�I Ò 60�
� Ò ð � ÒJ% � .

We now definetransitionsetsK ¯U¯ ³ (originally empty)
following this procedure: for all statesGµ��g and all�s�o���¡�=�N�G�.�E� £LF

, if thereexists another path ��¥ and
transition �,��j;A suchthat ��� �=�¬���x� � � , �¡� �¡¥@�¬���¡� �N� ,
and ��� �¡¥Ç� ����� � � , andeither(i) ��� �{¥Â�`����� � � and �"� ��� � %�"� ��¥@� or (ii) thereexists ��¥[�,j A suchthat �¡� �.¥Â�8����� ��¥Â�
and ��� �.¥Â� ����� � � and �"� �=� � % �"� �Q¥¨�w¥Â� , thenwe add � � to
theset: KNM Þ ¹wß M Þ ¹ ³ ß�O KNM Þ ¹wß M Þ ¹ ³ ß )�+��.�w/ . Seefigure4 for
anillustrationof thiscondition. Usingthisprocedure,we
candetermine theset:Pju� ���`�s+��"��j�� ���Q|�QP�.¥e�G�9�RKk¯U¯U³Å/ .
This setprovidesthefirst non-v transitionof eachinvalid
path. Thus,we canusethesetransitions to eliminatein-
valid paths.

Proposition 2 Thecostof theconstructionof
PjV� ��� for all���yg is � É Ò d Ò@Ò g Ò

, where � is then-gram order.

Proof. For each �,�\g andeach��� £ ¯ , thereareat
most

Ò d Ò
possiblestates��¥ suchthat for some �#��j A ,�¡� �=�¡�µ�.¥ and ��� �N�¡�µ� . It is trivial to seefrom theproof

of lemma2 that the maximum lengthof � is � . Hence,
thecostof findingall �{¥ for agiven � is � Ò d Ò

. Therefore,
thetotal costis � É Ò d Ò¦Ò g Ò

.

For all non-empty
PjV� ��� , we createa new state

P� and
for all �D� Pj�� ��� we set �¡� �=��� P� . We createa transition	 P�¤� v��G�<� ��� , andfor all ���«j I�jSA suchthat ��� �=�S�ç� ,
we set ��� �=�à� P� . For all ���#j A suchthat ��� �=���r� andÒ K ¯ M Þ T ß Ò �r� , we set ��� �=��� P� . For all �u�*j A suchthat��� �N�¡��� and

Ò K ¯ M Þ T ß Ò +«� , we createa new intermediate
backoff state U� andset ��� �=�`�VU� ; thenfor all �¤¥��yjV� P��� , if�w¥!W�RK ¯ M Þ T ß , weadda transition X����	�U�P�U��� �5¥Ç�e�G�"� �w¥@�t�U��� ��¥Â�L�
to j .

Proposition 3 TheWFA over thetropicalsemiringmod-
ifiedfollowingtheprocedurejustoutlinedis equivalentto
theexactonlinerepresentation with failure transitions.

Proof. Assumethatthereexistsa string Y for which the
WFA returnsa weight

P��	ZYw� lessthanthecorrectweight�"	ZY�� that would have beenassignedto Y by the exact
online representationwith failure transitions. We will
call an v -transition � � within a path �¸�Ì� � �N�N� � � in-
valid if the next non-v transition � E , [\+o� , hasthe la-
bel � , andthereis a transition � with �¡� �=��� �¡� ���L� and

b ε/0.356

a
a/0.287

a/0.441

ε/0

ε/4.856

a/0.405

</s>

</s>/1.101

<s> b/0.693

a/1.108

ε/0.231
b/1.945 </s>/1.540

Figure 5: Bigram model encoded exactly with v -
transitions.��� �=�9�q� . Let � be a paththrough the WFA suchthat��� � �;�VY and �"� � �;� P��	ZYw� , and � hasthe leastnumber
of invalid v -transitions of all pathslabeledwith Y with
weight

P��	ZY�� . Let ��� bethe last invalid v -transitiontaken
in path � . Let �x¥ bethevalid pathleaving �x� �¤�¨� suchthat��� ��¥Â�!�W��� � �@7¡� �N�N� � � � . �"� �Q¥Â�(+¸�"� � � �N�=�G� � � , otherwise
therewouldbeapathwith fewerinvalid v -transitionswith
weight

P��	ZYw� . Let G be thefirst statewherepaths� ¥ and� �@7x� �N�=�G� � intersect.Then G"�«��� � E � for some[(+0� . By
definition, ���¦7¡�x�=�N�G� E � £LF

, sinceintersectionwill occur
before any v -transitions aretraversedin � . Thenit must
be thecasethat ���¦7¡�V�]K ì Þ T C ß M Þ T C ß , requiring thepathto
beremovedfrom theWFA. This is acontradiction.

4.5 GRM Utility and Experimental Results

Notethatsomeof thenew intermediatebackoff states( U� )
canbe fully or partially merged, to reduce thespacere-
quirementsof the model. Finding the optimal configu-
ration of thesestates,however, is an NP-hard problem.
For our experiments,we useda simplegreedy approach
to sharingstructure,which helpedreducespacedramati-
cally.

Figure5 shows our example bigram model,after ap-
plicationof thealgorithm. Noticethattherearenow two
history-lessstates,whichcorrespondto � and

P� in theal-
gorithm (no U� wasrequired). Thestartstatebacksoff to� , which doesnot includea transitionto thestatelabeled� , thuseliminating theinvalid path.

Table 1 gives the sizesof threemodelsin terms of
transitionsandstates,for both the failure transitionandv -transition encoding of the model. The DARPA North
American BusinessNews (NAB) corpus contains250
million words,with a vocabulary of 463,331words.The
Switchboard trainingcorpushas3.1million words,anda
vocabulary of 45,643. Thenumber of transitions needed
for the exact offline representation in eachcasewasbe-
tween2 and3 timesthenumberof transitions usedin the
representationwith failuretransitions,andthenumber of
stateswaslessthantwice the original number of states.
This shows that our technique is practicaleven for very
largetasks.

Efficient implementations of model building algo-
rithms have been incorporatedinto the GRM library.
The GRM utility grmmake produces basic backoff
models, using Katz or Absolute discounting (Ney et
al., 1994) methods, in the topology shown in fig-



Model ^ -representation exactoffline
Corpus order arcs states arcs states
NAB 3-gram 102752 16838 303686 19033
SWBD 3-gram 2416 475 5499 573
SWBD 6-gram 15430 6295 54002 12374

Table 1: Size of models(in thousands) built from the
NAB and Switchboard corpora, with failure transitions
# versustheexactoffline representation.

ure 3, with v -transitions in the place of failure tran-
sitions. The utility grmshrink removes transitions
from the model according to the shrinking methods of
Seymore andRosenfeld(1996) or Stolcke (1998). The
utility grmconvert takesabackoff modelproducedby
grmmake or grmshrink andconvertsit into anexact
model usingeitherfailuretransitionsor thealgorithm just
described. It alsoconvertsthe model to an interpolated
model for usein the tropical semiring. As an example,
thefollowing commandline:
grmmake -n3 counts.fsm > model.fsm

createsa basic Katz backoff trigram model from the
countsproducedby thecommandline example in theear-
lier section.Thecommand:
grmshrink -c1 model.fsm > m.s1.fsm

shrinksthe trigrammodelusingtheweighteddifference
method(Seymore andRosenfeld, 1996) with a threshold
of 1. Finally, thecommand:
grmconvert -tfail m.s1.fsm > f.s1.fsm
outputs themodelrepresentedwith failuretransitions.

5 General class-basedlanguagemodeling

Standardclass-basedor phrase-basedlanguagemodels
arebasedon simpleclassesoften reducedto a shortlist
of wordsor expressions.New spoken-dialogapplications
require the useof moresophisticatedclasseseitherde-
rivedfromaseriesof regularexpressionsorusinggeneral
clusteringalgorithms.Regularexpressionscanbeusedto
defineclasseswith aninfinite number of elements.Such
classescannaturally arise,e.g.,datesform aninfinite set
sincethe yearfield is unbounded, but they canbe eas-
ily represented or approximatedby a regular expression.
Also, representing a classby anautomaton canbemuch
morecompact thanspecifying themasa list, especially
whendealingwith classesrepresenting phone numbers
or a list of namesor addresses.

This sectiondescribesa simple andefficient method
for constructing class-basedlanguagemodelswhereeach
classmay representan arbitrary (weighted) regular lan-
guage.

Let Í �.� Í É5�N�N�=�N� Í ì be a set of � classesand assume
that eachclass Í � corresponds to a stochasticweighted
automaton � � definedover the log semiring. Thus, the
weight � � �
�Z� �t	Z�
� associatedby ��� to a string � canbein-
terpretedas ID>¦?5A of theconditionalprobability

£ 	L� Ò Í �e� .

EachclassÍ � definesa weightedtransduction:

� � IB} Í �
This can be viewed as a specific obligatory weighted
context-dependent rewrite rule wherethe left and right
contextsarenot restricted(KaplanandKay, 1994; Mohri
andSproat,1996). Thus,thetransduction corresponding
to theclassÍ � canbeviewedastheapplicationof thefol-
lowing obligatory weightedrewrite rule:

� � } Í ��_ v v
The directionof applicationof the rule, left-to-right or
right-to-left, canbechosendependingonthetask2. Thus,
these� classescanbe viewed asa setof batchrewrite
rules(KaplanandKay, 1994)whichcanbecompiledinto
weightedtransducers. Theutilities of the GRM Library
canbe usedto compile sucha batchsetof rewrite rules
efficiently (Mohri andSproat,1996).

Let a betheweightedtransducerobtained by compil-
ing therulescorresponding to theclasses.Thecorpuscan
berepresentedasafiniteautomaton � . Toapplytherules
definingthe classesto the input corpus, we just needto
composetheautomaton � with a andproject the result
on theoutput: X�q�\¶�É�	L��Ü[a
�
X� can be madestochasticusing a pushingalgorithm

(Mohri, 1997). In general, the transducer a may not
be unambiguous. Thus, the resultof the applicationof
theclassrulesto thecorpus maynot bea singletext but
anautomatonrepresenting a setof alternativesequences.
However, this is not an issuesincewe canusethe gen-
eralcounting algorithm previouslydescribedto construct
a languagemodel basedonaweightedautomaton. When�s�r) ì�¦Ù¡� ��	Z�
�e� , the language definedby theclasses,is
a code, thetransducer a is unambiguous.

Denote now by X` the language model constructed
from the new corpus X� . To construct our final class-
basedlanguagemodel

`
, we simply have to compose X`

with a �`� andproject theresulton theoutput side:

` �\¶�É1	 X` Ü[a ��� �
A moregeneralapproachwould beto have two trans-

ducers a¡� and a�É , thefirst oneto beappliedto thecorpus
andthe secondoneto the languagemodel. In a proba-
bilistic interpretation,a8� shouldrepresenttheprobability
distribution

£ 	 Í � Ò �
� and a É the probability distribution£ 	L� Ò Í � � . By using a � �za and a É ��a �`� , wearein fact
makingtheassumptions thattheclassesareequallyprob-
able and thus that

£ 	 Í � Ò �
�Ã� £ 	Z� Ò Í � � _ d ìE Ù¡� £ 	L� Ò Í E � .
Moregenerally, theweightsof aà� and a�É could bethere-
sultsof an iterative learningprocess.Notehowever that

2Thesimultaneouscaseis equivalent to theleft-to-right one
here.
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Figure6: Weightedtransducer a obtainedfrom thecom-
pilationof context-dependentrewrite rules.
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0

1<movie>/0.510

3
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returns/0

ε/0

Figure7: Corpora � and X� .

we arenot limited to this probabilistic interpretationand
that our approachcanstill be usedif a[� and a�É do not
represent probability distributions,sincewe canalways
push X� andnormalize

`
.

Example. We illustratethis construction in the simple
caseof thefollowing classcontaining movie titles:

%
movie+
�s+�	 batman�G�J� ������	 batmanreturns� �<� a���/

Thecompilation of therewrite rule definedby this class
andappliedleft to right leadsto theweightedtransducera given by figure 6. Our corpus simply consistsof the
sentence“batman returns” andis represented by theau-
tomaton� givenby figure7. Thecorpus X� obtained by
composing � with a is givenby figure7.

6 Conclusion

We presentedseveral new and efficient algorithms to
dealwith more general problems relatedto theconstruc-
tion of languagemodels found in new languageprocess-
ing applicationsandreportedexperimentalresultsshow-
ing their practicality for constructing very largemodels.
Thesealgorithmsandmany othersrelatedto theconstruc-
tion of weightedgrammarshave beenfully implemented
andincorporatedin a general grammar softwarelibrary,
theGRM Library (Allauzenet al., 2003).
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