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Abstract

Kernel-based learning (e.g., Support Vec-
tor Machines) has been successfully ap-
plied to many hard problems in Natural
Language Processing (NLP). In NLP, al-
though feature combinations are crucial to
improving performance, they are heuris-
tically selected. Kernel methods change
this situation. The merit of the kernel
methods is thagffective feature combina-
tion is implicitly expanded without loss
of generality and increasing the compu-
tational costs. Kernel-based text analysis
shows an excellent performance in terms
in accuracy; however, these methods are
usually too slow to apply to large-scale
text analysis. In this paper, we extend
a Basket Miningalgorithm to convert a
kernel-based classifier into a simple and
fast linear classifier. Experimental results
on English BaseNP Chunking, Japanese
Word Segmentation and Japanese Depen-
dency Parsing show that our new classi-
fiers are about 30 to 300 times faster than
the standard kernel-based classifiers.
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2002) Text Chunking (Kudo and Matsumoto, 2001),
Named Entity Recognition (Isozaki and Kazawa,
2002), and Japanese Dependency Parsing (Kudo and
Matsumoto, 2000; Kudo and Matsumoto, 2002).

It is known in NLP that combination of features
contributes to a significant improvement in accuracy.
For instance, in the task of dependency parsing, it
would be hard to confirm a correct dependency re-
lation with only a single set of features from either
a head or its modifier. Rather, dependency relations
should be determined by at least information from
both of two phrases. In previous research, feature
combination has been selected manually, and the
performance significantly depended on these selec-
tions. This is not the case with kernel-based method-
ology. For instance, if we use a polynomial ker-
nel, all feature combinations are implicitly expanded
without loss of generality and increasing the compu-
tational costs. Although the mapped feature space
is quite large, the maximal margin strategy (Vapnik,
1995) of SVMs gives us a good generalization per-
formance compared to the previous manual feature
selection. This is the main reason why kernel-based
learning has delivered great results to the field of
NLP.

Kernel-based text analysis shows an excellent per-
formance in terms in accuracy; however, its inef-
ficiency in actual analysis limits practical applica-
tion. For example, an SVM-based NE-chunker runs

Kernel methods (e.g., Support Vector Machineat a rate of only 85 byte/sec, while previous rule-
(Vapnik, 1995)) attract a great deal of attention rebased system can process several kilobytes per sec-

cently.

In the field of Natural Language Processend (Isozaki and Kazawa, 2002). Such slow exe-

ing, many successes have been reported. Examptasgion time is inadequate for Information Retrieval,
include Part-of-Speech tagging (Nakagawa et alQuestion Answering, or Text Mining, where fast



analysis of large quantities of text is indispensable R space. Sinceéd is much larger thanV, it re-
This paper presents two novel methods that malguires heavy computation to evaluate the dot prod-
the kernel-based text analyzers substantially fastercts¢(x;) - ¢(x) in an explicit form. This problem
These methods are applicable not only to the NLPan be overcome by noticing that both construction
tasks but also to general machine learning taskd optimal parametery; (we will omit the details
where training and test examples are representedahthis construction here) and the calculation of the
a binary vector. decision function only require the evaluation of dot
More specifically, we focus onRolynomial Ker- productsp(x;) - ¢(x). This is critical, since, in some
nel of degreed, which can attain feature combina-cases, the dot products can be evaluated by a simple
tions that are crucial to improving the performancdernel Function K (x1,x2) = ¢(x1) - ¢(x2). Sub-
of tasks in NLP. Second, we introduce two fast classtituting kernel function into (1), we have the fol-
sification algorithms for this kernel. One is PKIlowing decision function.
(Polynomial Kernel Inverted), which is an exten-
sion ofInverted Indexn Information Retrieval. The y(x) = sgn( Z yjo i K (x5,%x) + b) (2)
other is PKE (Polynomial Kernel Expanded), where Jjesv

all feature combinations are explicitly expanded. B)bne of the advantages of kemels is that they are not

applying PKE, we can convert a kemel-based clage b 0 vectorial objeck, but that they are appli-
sifier into a simple and fast liner classifier. In order

to build PKE, we extend therefixSpan(Pei et al., fr?:foiopiggukcl?sd of object representation, just given
2001), an efficienBasket Miningalgorithm, to enu- '

merate effective feature combinations from a set of Polynomial Kernel of degreed

support examples.

Experiments on English BaseNP ChunkingFor many tasks in NLP, the training and test ex-
Japanese Word Segmentation and Japanese Dep@fples are represented in binary vectors;sets
dency Parsing show that PKI and PKE perform resince examples in NLP are usually represented in so-
spectively 2 to 13 times and 30 to 300 times faste¢alled Feature StructuresHere, we focus on such
than standard kernel-based systems, without a dieases.

cernible change in accuracy. Suppose a feature sét = {1,2,...,N} and
training examplesX;(; = 1,2,...,L), all of

2 Kernel Method and Support Vector which are subsets of (i.e., X; C F). In this
Machines case,X; can be regarded as a binary veckgr =

s h t of training data f bi y‘jl,xjg,...,l‘j]\r) Wherexji = 1if i € Xj,
clzzgi?ii?clt\iléi p?(\)/gI:rr?'e otfraining data forabinaly = _ o otherwise. The dot product of; andx;

is given byx; - x5 = ‘Xl N X2|

(x1,91),- -+, (x,y1) x; €RY, y; € {+1,-1},  Definition 1 Polynomial Kernel of degreé¢

Given setsX andY, corresponding to binary fea-
wherex; is a feature vector of thg-th training sam-  ture vectorsk andy, Polynomial Kernel of degreé
ple, andy; is the class label associated with thisk;(X,Y") is given by

training sample. The decision function of SVMs is
defined by Ka(x,y) = Kg(X,Y) = (1+[XnY])?%  (3)

y(x) =sen( > yiaye(x;)-6(x) +b), (1) Wwhered=1,2.3,....
Jesv In this paper, (3) will be referred to as @amplicit

where: (A)¢ is a non-liner mapping function from form of the Polynomial Kernel.

RN to RH (N < H) (B) aj, bewR, o > 0. 1Iﬂthe Maximg_m En’][(rop;y m(f)delz{v(;ggl))éa;ppli{eod ﬂN'II:rI]D we
. . . usually suppose binary feature functiohéX ) € {0, 1}. This
The mapping functiom should be designed suchy,majization is exactly same as representing an exakplm

that all training examples are linearly separable iaset{k|f.(X;) = 1}.



Itis known in NLP that a combination of features, function PKI_classify(X)
a subset of feature sét in general, contributes to | 9% an aray, initialized as 0
overall accuracy. In previous research, feature com-  foreachj € h(i)
bination has been selected manually. The use pf gnd_
a polynomial kernel allows such feature expansion 0%, — o
without loss of generality or an increase in compu- foreach; € sv ;
. ; . result = result + yjo; - (1 +15)
tational costs, since the Polynomial Kernel of degree end
d implicitly maps the original feature spadeinto | _ "?""™ sgn(result +)
F? space. (i.e.p : F — F%). This property is
critical and some reports say that, in NLP, the poly-
nomial kernel outperforms the simple linear kernel
(Kudo and Matsumoto, 2000; Isozaki and KazawaKQ(X7 Y)=1-1+3-3+2-3=16,
2002). o N K3(X,Y)=1-14+7-34+12-3+6-1=64.
Here, we will give an explicit form of the Polyno-
mial Kernel to show the mapping functief-).

Figure 1: Pseudo code for PKI

. _ 4 Fast Classifiers for Polynomial Kernel
Lemma 1 Explicit form of Polynomial Kernel.

The Polynomial Kernel of degrekcan be rewritten | this section, we introduce two fast classification

as algorithms for the Polynomial Kernel of degrée
d Before describing them, we give the baseline clas-
Ko(X,Y) =) ca(r) [P(XOY), 4 sifier PKB):
r=0
where

y(X) =sen( Y yia;- 1+ X0 X! +b). ()

e P.(X) is a set of all subsets of with exactly Jesv

r elements in it,

o ca(r) = XL, () (Z:n:o(_l)r—m : ml(r))_ The complexity of PKB isO(| X| - |SV]), since it
takesO(| X|) to calculate(1 + | X; N X|)¢ and there

Proof See Appendix A. _ are a total of SV| support examples.
cq(r) will be referred as aubset weighof the Poly-

nomial Kernel of degred. This function gives a
prior weightto the subset, where|s| = r.

Example 1 Quadratic and Cubic Kernel Given an iten € F, if we !<now in e_ld\_/ance the
Given setsX = {a,b,c,d} andY = {a,b,d, e}, set of support examples which contain itéra F,
the Quadratic KerneK> (X, Y) and the Cubic Ker- We do not need to calculaté’; N X| for all support
nel K3(X,Y) can be calculated in an implicit form examples. This is a naive extensionlo¥erted In-

4.1 PKIl (Inverted Representation)

as: dexingin Information Retrieval. Figure 1 shows the
Ko(X,Y)=(1+|XNY])2=(1+3)2=16 pseudo code of the algorithm PKI. The functiofi)
K3(X,Y)=(1+|XNY|)? = (1 +3)% = 64. is a pre-compiled table and returns a set of support

Using Lemma 1, the subset weights of th€xamples which contain item
Quadratic Kernel and the Cubic Kernel can be cal- The complexity of the PKIig)(|.X| - B +|SV),
culated ascz(0) = 1, ¢y(1) = 3, 2(2) = 2 and WhereB is an average ofi(i)| over all itemi € F.

c3(0)=1, c3(1)=7, c3(2)=12, c3(3)=6. The PKI can make the classification speed drasti-
In addition, subsets?. (X NY) (r = 0,1,2,3) cally faster whenB is small, in other words, when
are given as follows: Py(X nY) = feature space is relatively sparse (i.B..< |[SV).

{6}, P (XNY)={{a},{b},{d}}, Po(XNY)= The feature space is often sparse in many tasks in
{{a,b},{a,d},{b,d}}, Ps(XNY) = {{a,b,d}}. NLP, since lexical entries are used as features.
Ky(X,Y) and K3(X,Y) can similarly be calcu-  The algorithm PKI does not change the final ac-
lated in an explicit form as: curacy of the classification.



4.2 PKE (Expanded Representation) Definition 2 w’: An approximation ofw

. An approximation ofw is given by w’ =

4.2.1. Basic Idea of PKE o {%U’(éd) w(s2), ..., w'(s ), where w/(s) is
Using Lemma 1, we can represent the decisio > 1 WASIDG(F)])) :

function (5) in an explicit form: set to O ifw(s) is trivially close to 0. (i.e.gpeq <

w(s) < Opos (Oneg <0, opos > 0), Whereo,,,, and

d Oneg are predefined thresholds).

y(X) = Sgn< Z ey (Z ca(r) - |Pr(X; N X)) + b). (6)

jesv =0 The algorithm PKE is an approximation of the
PKB, and changes the final accuracy according to
If we, in advance, calculate the selection of thresholds,,s ando,,.,. The cal-
culation ofw’ is formulated as the following mining
w(s) = Z yjajcd(|5’)l<5 € P|s|(Xj)) problem:
jesv

Definition 3 Feature Combination Mining
(wherel(t) is an indicator functior) for all subsets  Given a set of support examples and subset weight
s € UL, P.(F), (6) can be written as the following c4(r), extract all subsets and their weightso(s) if
simple linear form: w(s) holdsw(s) > opos OF w(s) < Opeg -
In this paper, we apply &ub-Structure Mining
y(X) = Sgn( > w(s)+ b)- (7)  algorithm to the feature combination mining prob-

sela(X) lem. Generally speaking, sub-structures mining al-
p gorithms efficiently extracfrequentsub-structures
wherel'y(X) = Ur—¢ P-(X). (e.g., subsets, sub-sequences, sub-trees, or sub-

The classification algorithm given by (7) will be graphs) from a large database (set of transactions).
referred to asPKE. The complexity of PKE is |n this contextfrequentmeans that there are no less
O(ICa(X)[) = O(|X|%), independent on the nUM- than ¢ transactions which contain a sub-structure.
ber of support examplds'V'|. The parametet is usually referred to as thdini-
422 Mining Approach to PKE mum SupportSince we mus_t gnumerqte all .subsets

of F', we can apply subset mining algorithm, in some
To apply the PKE, we first calcula€y(F)| de-  times called aBasket Miningalgorithm, to our task.

gree of vectors There are many subset mining algorithms pro-
posed, however, we will focus on tiReefixSparal-
w = (w(s1),w(s2), -, WS, (m)))- gorithm, which is an efficient algorithm for sequen-

tial pattern mining, originally proposed by (Pei et
dratic K | s ) _ h _~al., 2001). The PrefixSpan was originally designed
Qulaf ratic erneé?s_lnceFvve J;'?St project th,ehor'g"to extract frequent sub-sequence (not subset) pat-
nal feature spacé into I x space, WhICh IS yarns, however, it is a trivial difference since a set
small enough to be calculated by a naive exhaustlvcean be seen as a special case of sequences (i.e., by
method. However, if we, for Instance, use a po_lyéorting items in a set by lexicographic order, the set
nomial kernel of degree 3 or higher, this CalCUIat'orbecomes a sequence). The basic idea of the PrefixS-

becomes_not _tr|V|aI, since the size of feature SPaGSan is to divide the database by frequent sub-patterns
exponentially increases. Here we take the followin refix) and to grow the prefix-spanning pattern in a

strategy: depth-first search fashion.
We now modify the PrefixSpan to suit to our fea-
ture combination mining.

This calculation is trivial only when we use a

1. Instead of using the original vecter, we use
w’, an approximation ofv.

e size constraint
We only enumerate up to subsets of size
when we plan to apply the Polynomial Kernel
2] (t) returns 1 ift is true,returns 0 otherwise. of degreed.

2. We apply theSubset Miningalgorithm to cal-
culatew’ efficiently.



e Subset weight;(r) Q root

In the original PrefixSpan, the frequency of e TR
each subset does not change by its size. How- gg’}b} 10.5 /aio.s /b\ C‘ d s
ever, in our mining task, it changes (i.e., the acy |12 0 ed d
frequency of subset is weighted byc,(]s|)). e | s oz 2 e 2
Here, we process the mining algorithm by A d

12

assuming that each transaction (support ex-
ample X;) has its frequencyCyy;a;, where . . .
Cy = max(ca(1),ca(2), ..., cald). The Figure 2:Q2 in TRIE representation
weight w(s) is calculated byw(s) = w(s) x
ca(|s])/Ca, wherew(s) is a frequency ofs,

given by the original PrefixSpan. Japanese Dependency Parsing (JDP). A more de-

tailed description of each task, training and test data,

e Positive/Negative support examples the system parameters, and feature sets are presented
We first divide the support examples into posiin the following subsections. Table 1 summarizes
tive (y; > 0) and negativey; < 0) examples, the detail information of support examples (e.g., size
and process mining independently. The resultf SVs, size of feature set etc.).
can be obtained by merging these two results. Our preliminary experiments show that a

o Minimum SUpPOrtSryog, o Quadratic Kernel performs the be_:st in EBC, and a

pos» =neg Cubic Kernel performs the best in JWS and JDP.

In the original PrefixSpan, minimum support SThe experiments using a Cubic Kernel are suitable

an integer. In our mining task, we can give 8, evaluate the effectiveness of the basket mining
real number to minimum support, since each S . .

) : approach applied in the PKE, since a Cubic Kernel
transaction (support examplke;) has possibly

s . rojects the original feature spageinto F> space,
non-integer frequencyyy; ;. Minimum sup- proJ g P P

orts and control the rate of aDDrox- which is too large to be handled only using a naive
POTES 0o Tneg PP ?xhaustive method.

imation. For the sake of convenience, we jus . .
ive one parameter. and calculater... and All experiments were conducted under Linux us-
g P ’ pos ing XEON 2.4 Ghz dual processors and 3.5 Ghyte of
Oneg as follows . ) .
main memory. All systems are implemented in C++.
(#of positive examples>
= o - 5

Tpos Hof support examples 5.1 English BaseNP Chunking (EBC)
o . (#Of negative 696&mpl€8> Text Chunking is a fundamental task in NLP — divid-
nes #of support examples /

ing sentences into non-overlapping phrases. BaseNP
chunking deals with a part of this task and recog-
After the process of mining, a set of tupl@s=  hizes the chunks that form noun phrases. Here is an

{(s,w(s))} is obtained, where is a frequent subset €xample sentence:
andw(s) is its weight. We use a TRIE to efficiently [He] reckons [the current account deficit]
store the sef. The example of such TRIE compres-Will narrow to [only $ 1.8 billion] .

sion is shown in Figure 2. Although there are many A BaseNP chunk is represented as sequence of
implementations for TRIE, we use a Double-Arraywords between square brackets. BaseNP chunking
(AOG, 1989) in our task. The actual classification Ofask is usually formulated as a simple tagging task,
PKE can be examined by traversing the TRIE for ayhere we represent chunks with three types of tags:
subsets € I'y(X). B: beginning of a chunk.l: non-initial word. O:
outside of the chunk. In our experiments, we used
the same settings as (Kudo and Matsumoto, 2002).
To demonstrate performances of PKI and PKE, wi/e use a standard data set (Ramshaw and Marcus,
examined three NLP tasks: English BaseNP Chunk-995) consisting of sections 15-19 of the WSJ cor-
ing (EBC), Japanese Word Segmentation (JWS) anulis as training and section 20 as testing.

5 Experiments



5.2 Japanese Word Segmentation (JWS) 5.4 Results

Tables 2, 3 and 4 show the execution time, accu-

Since there are no explicit spaces between words }Qcy“ and|Q)| (size of extracted subsets), by chang-
Japanese sentences, we must first identify the womjg a’from 0.01 to 0.0005 ’

boundaries before analyzing deep structure ofasen-.l_he PKI leads to about 2 to 12 times improve-

ten.ce. Japane.s.e vvprd segmentation is formalized fnts over the PKB. In JDP, the improvement is sig-
a simple classification task.

nificant. This is becausB, the average of(i) over
Lets = cico--- ¢y, be a sequence of Japanesell items: € F, is relatively small in JDP. The im-

characters;, = t1t, - - - t,,, be a sequence of Japanes@rovement significantly depends on the sparsity of

character types associated with each characterthe given support examples.

andy; € {+1,-1}, (i = (1,2,...,m—1)) bea  The improvements of the PKE are more signifi-

boundary marker. If there is a boundary between cant than the PKI. The running time of the PKE is

andc;+1, y; = 1, otherwisey; = —1. The feature 30 to 300 times faster than the PKB, when we set an

set of exampler; is given by all characters as well gppropriater, (e.g.,c = 0.005 for EBC and JWS,

as character types in some constant window (e.g., %): = 0.0005 for JDP). In these settings, we could

{eima,ciz1, - citas Civs timo tim1, -+, tig2, tiys}. preserve the final accuracies for test data.

Note that we distinguish the relative position of

each character and character type. We use the Kydidd Frequency-based Pruning

University Corpus (Kurohashi and Nagao, 1997}, pKE with a Cubic Kernel tends to maRearge

7,958 sentences in the articles on January 1st 8.9.,1Q = 2.32 million for JWS, |2 = 8.26 mil-

January 7th are used as training data, and 1,2 Bn for JDP).

sentences in the articles on January 9th are used as; oqjuce the size of), we examined sim-

the test data. ple frequency-based pruning experiments. Our ex-

tension is to simply give a prior thresholgl=
1,2,3,4...), and erase all subsets which occur in
less thart support examples. The calculation of fre-
Suency can be similarly conducted by tRe=fixS-

5.3 Japanese Dependency Parsing (JDP)

If@e;asgrfégtaszggizffg,er;?i:éfssrzg?(ﬁ;;d pan algorithm. Tables_5 and 6 show_the results of
phrase in Japanese). In previous research, we p;[?ée_vquency-based pruning, when we #x0.005 for
sented a state-of-the-art SVMs-based Japanese t] VS, and>=0.0005 for JDP. i

pendency parser (Kudo and Matsumoto, 2002). We_'n JDP, we can make the size of 5§é1.ab0utt one
combined SVMs into an efficient parsing algorithm,thlrd of the pngmal size. This reductlc_)n gives us
Cascaded Chunking Modathich parses a sentence ot only a slight speed increase but an improvement

deterministically only by deciding whether the cur—Of accuracy (89.29%389.34%). Frequency-based

rent chunk modifies the chunk on its immediate righ?'ru_ning allows us to remove subsets that have large
hand side. The input for this algorithm consists Oyvelght and small frequency. Such subsets may be

a set of the linguistic features related to the heagenerated from errors orsp.ecial outliers in the tra'in—
and modifier (e.g., word, part-of-speech, and infledd examples, which sometimes cause an overfitting

tions), and the output from the algorithm is either of" training. )
the value +1 (dependent) or -1 (independent). we N JWS, the frequency-based pruning does not
use a standard data set, which is the same corpus §@k well. — Although we can reduce the size

scribed in the Japanese Word Segmentation. of € by half, the accuracy is also reduced
(97.94%—-97.83%). It implies that, in JWS, features

even with frequency of one contribute to the final de-

3Usually, in Japanese, word boundaries are highly corgision hyperplane.
strained by character types, such ldeagana and katakana
(both are phonetic characters in Japanese), Chinese characters?In EBC, accuracy is evaluated using F measure, harmonic
English alphabets and numbers. mean between precision and recall.



Table 1: Details of Data Set

Table 2: Results of EBC

Data Set EBC JWS JDP PKE Time Speedup| F1 |9
#of examples | 135,692| 265,413| 110,355 o | (sec./sent.) Ratio (x 1000)
|SV]| # of SVs 11,690 57,672| 34,996 0.01| 0.0016 105.2 | 93.79 518
# of positive SVs 5,637| 28,440| 17,528 0.005| 0.0016 101.3 | 93.85 668
# of negative SVs 6,053 | 29,232 17,468 0.001 0.0017 97.7 | 93.84 858
|F| (size of feature)| 17,470 11,643| 28,157 0.0005| 0.0017 96.8 | 93.84 889
Avg. of | X;] 11.90 11.73 17.63 PKI 0.020 8.3 |93.84
B (Avg. of |h(i)])) 7.74 58.13 21.92 PKB 0.164 1.0 |93.84
(Note: In EBC, to handld(-class problems, we usepairwise
classification building K x (K —1) /2 classifiers considering all Table 3: Results of JWS
pairs of classes, and final class decision was given by majority PKE Time Speedup| Acc.(%) ‘Q|
voting. The values in this column are averages over all pairwise o | (sec./sent.) Ratio (x 1000)
classifiers.) 0.01| 00024 | 3582 | 97.93 | 1,228
0.005| 0.0028 300.1 | 97.95 2,327
6 Discussion 0.001| 0.0034 242.6 | 97.94 4,392
. - .0.0005| 0.0035 238.8 | 97.94 4,820
There have been several studies for efficient classi
. . PKI 0.4989 1.7 97.94
fication of SVMs. Isozaki et al. propose an XQK oKE 08535 10 9794
(eXpand the Quadratic Kernel) which can make their : : :
Named-Entity recognizer drastically fast (Isozaki
and Kazawa, 2002). XQK can be subsumed into Table 4: Results of JDP
PKE. Both XQK and PKE share the basic idea; all pPKE Time Speedup| Acc.(%) Q]
feature combinations are explicitly expanded and we o | (sec./sent.) Ratio (x 1000)
convert the kernel-based classifier into a simple lin- 0.01| 0.0042 66.8 88.91 73
ear classifier. 0.005| 0.0060 | 47.8 | 89.05 1,924
The explicit difference between XQK and PKE is 0.001| 0.0086 33.3 89.26 6,686
that XQK is designed only for Quadratic Kernel. It 0.0005| 0.0090 31.8 89.29 8,262
implies that XQK can only deal with feature com- PKI 0.0226 12.6 89.29
bination of size up to two. On the other hand, PKE™ pxg | 0.2848 1.0 89.29

is more general and can also be applied not only to
the Quadratic Kernel but also to the general-style of
polynomial kernelg1 + | X N Y|)¢. In PKE, there

Table 5: Frequency-based pruning (JWS)

are no theoretical constrains to limit the size of com- PKE time Speedup| Acc.(%) €2
binations. ¢ | (sec./sent.) Ratio (x 1000)

In addition, Isozaki et al. did not mention howto 1| 0.0028 | 300.1 | 97.95 2,327
expand the feature combinations. They seemtouse 2| 0.0025 | 337.3 | 97.83 954
a naive exhaustive method to expand them, whichis 3| 0.0023 | 367.0 | 97.83 591
not always scalable and efficient for extracting three PKB |  0.8535 1.0 97.94

or more feature combinations. PKE takes a basket
mining approach to enumerating effective feature

Table 6: Frequency-based pruning (JDP)

combinations more efficiently than their exhaustive

1 0
method. PKE time Spegdup Acc.(%) |2
¢ | (sec./sent.) Ratio (x 1000)
7 Conclusion and Future Works 1) 0.0090 | 318 | 89.29 | 8,262
. 2| 0.0072 39.3 89.34 2,450
We focused on @olynomial Kernelof degreed, 3| 0.0068 418 | 8931 1,360
which has been widely applied in many tasks in NLP 55 0.2848 1.0 89.29




and can attain feature combination that is crucial to ¢ /d L (T L .
- Z rl— (r—=1)'+ (r—2)" —...

improving the performance of tasks in NLP. Then, —~\I 1 2

we introduced two fast classification algorithms for d .

this kernel. One is PKI (Polynomial Kernel In- = <§l) (Z(q)rﬂﬂ.ml <7;)) o
verted), which is an extension riverted IndexThe 1=r m=0

other is PKE (Polynomial Kernel Expanded), where
all feature combinations are explicitly expanded. References
The concept in PKE can also be applicable to kegunichi Aoe. 1989. An efficient digital search algorithm by us-
nels for discrete data structures, such as String Ker- 19 double-array structuré=EE Transactions on Software
. . ngineerin .
nel (Lodhi et al., 2002) and Tree Kernel (Kashima g 9150)
and Koyanagi, 2002; Collins and Duffy, 2001).Michael Collins and Nigel Duffy. 2001. Convolution kernels
: : for natural language. IMdvances in Neural Information
For instance, Tree Kernel gives _a_dot product of Processing Systems 14, Vol.1 (NIPS 20paes 625-632.
an ordered-tree, and maps the original ordered-tree
onto its all sub-tree space. To apply the PKE Wéﬁdeki Isozaki and Hideto Kazawa. 2002. Efficient support

. . . vector classifiers for named entity recognition. Rroceed-
must efficiently enumerate the effective sub-trees ings of the COLING-200ages 390-396.

from a set of support examples. We can similarl
PP P ¥|isashi Kashima and Teruo Koyanagi. 2002. Svm kernels

apply a sub-tree mining algorithm (Zaki, 2002) to for semi-structured data. IRroceedings of the ICML-2002
this problem. pages 291-298.

Appendix A.: Lemma 1 and its pI’OOf Taku Kudo and Yuji Matsumoto. 2000. Japanese Dependency
Structure Analysis based on Support Vector Machines. In

Proceedings of the EMNLP/VLC-20Qfages 18-25.

d r
d m 1T Taku Kudo and Yuji Matsumoto. 2001. Chunking with support
= -1 . . . .
ca(r) Z (l) (Z( ) m (m)) vector machines. I#Proceedings of the the NAAChages
=r m=0 192-199.
Proof. _ Taku Kudo and Yuji Matsumoto. 2002. Japanese dependency
Let X, Y be subsets of” = {1,2,..., N}. In this case|X N analyisis using cascaded chunking. Rmoceedings of the
Y| is same as the dot product of vectary, where CoNLL-2002 pages 63-69.
x =A{z1,22,...,2n}, ¥y ={y1,¥2,..., YN} Sadao Kurohashi and Makoto Nagao. 1997. Kyoto University
(z;,y; € {0,1}) tfféfﬂgus project. IRroceedings of the ANLP-1997ages

zj =1ifj € X, 3= 0 otherwge. Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello Cris-
(I+XNY])? = (1+x-y)® canbe expanded as follows ~ {ianini, and Chris Watkins. 2002. Text classification using

string kernelsJournal of Machine Learning Research
d

N
l
Z (d> (Z a:jyl,) Tetsuji Nakagawa, Taku Kudo, and Yuji Matsumoto. 2002. Re-
! = vision learning and its application to part-of-speech tagging.
In Proceedings of the ACL 200gages 497-504.

(1+x-y)?

=0

d
d
(l> -7(l) Jian Pei, Jiawei Han, and et al. 2001. Prefixspan: Mining
1=0 sequential patterns by prefix-projected growth. Pioc. of
International Conference of Data Engineeringages 215—
where 224.
() = k'li!k:'(xlyl)kl . (zNyn)EN. Lance A. Ramshaw and Mitchell P. Marcus. 1995. Text chunk-
o ' RN ing using transformation-based learning. Rroceedings of
- the VLG pages 88-94.
Note that :r’;7 is binary (i.e., zfj € {0,1}), the num- Viadimir N. Vapnik. 1995.The Nature of Statistical Learning
ber of r-size subsets can be given by a coefficient of Theory Springer.
(z1y122Y2 - - - T+ Yr). Thus,
Mohammed Zaki. 2002. Efficiently mining frequent trees in a
forest. InProceedings of the 8th International Conference
d k1+...+kp=l 1 on Knowledge Discovery and Data Mining KDpages 71—
(X, )

calr) = Z(? 3 80.

l=r kn>1,n=1,2,...,r



