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Abstract 

We introduce a probabilistic noisy-
channel model for question answering and 
we show how it can be exploited in the 
context of an end-to-end QA system. Our 
noisy-channel system outperforms a state-
of-the-art rule-based QA system that uses 
similar resources. We also show that the 
model we propose is flexible enough to 
accommodate within one mathematical 
framework many QA-specific resources 
and techniques, which range from the 
exploitation of WordNet, structured, and 
semi-structured databases to reasoning, 
and paraphrasing. 

1 Introduction 

Current state-of-the-art Question Answering (QA) 
systems are extremely complex. They contain tens 
of modules that do everything from information 
retrieval, sentence parsing (Ittycheriah and 
Roukos, 2002; Hovy et al., 2001; Moldovan et al, 
2002), question-type pinpointing (Ittycheriah and 
Roukos, 2002; Hovy et al., 2001; Moldovan et al, 
2002), semantic analysis (Xu et al., Hovy et al., 
2001; Moldovan et al, 2002), and reasoning 
(Moldovan et al, 2002). They access external 
resources such as the WordNet (Hovy et al., 2001, 
Pasca and Harabagiu, 2001, Prager et al., 2001), 
the web (Brill et al., 2001), structured, and semi-
structured databases (Katz et al., 2001; Lin, 2002; 
Clarke, 2001). They contain feedback loops, 
ranking, and re-ranking modules. Given their 
complexity, it is often difficult (and sometimes 

impossible) to understand what contributes to the 
performance of a system and what doesn’t.  

In this paper, we propose a new approach to 
QA in which the contribution of various resources 
and components can be easily assessed.  The 
fundamental insight of our approach, which 
departs significantly from the current architectures, 
is that, at its core, a QA system is a pipeline of 
only two modules:  

• An IR engine that retrieves a set of M 
documents/N sentences that may contain 
answers to a given question Q. 

• And an answer identifier module that given 
a question Q and a sentence S (from the set 
of sentences retrieved by the IR engine) 
identifies a sub-string SA of S that is likely 
to be an answer to Q and assigns a score to 
it.  

Once one has these two modules, one has a QA 
system because finding the answer to a question Q 
amounts to selecting the sub-string SA of highest 
score. Although this view is not made explicit by 
QA researchers, it is implicitly present in all 
systems we are aware of. 

In its simplest form, if one accepts a whole 
sentence as an answer (SA = S), one can assess the 
likelihood that a sentence S contains the answer to 
a question Q by measuring the cosine similarity 
between Q and S. However, as research in QA 
demonstrates, word-overlap is not a good enough 
metric for determining whether a sentence contains 
the answer to a question. Consider, for example, 
the question “Who is the leader of France?” The 
sentence “Henri Hadjenberg, who is the leader of 
France’s Jewish community, endorsed confronting 
the specter of the Vichy past” overlaps with all 
question terms, but it does not contain the correct 
answer; while the sentence “Bush later met with 
French President Jacques Chirac” does not overlap 



with any question term, but it does contain the 
correct answer. 
To circumvent this limitation of word-based 
similarity metrics, QA researchers have developed 
methods through which they first map questions 
and sentences that may contain answers in 
different spaces, and then compute the “similarity” 
between them there. For example, the systems 
developed at IBM and ISI map questions and 
answer sentences into parse trees and surface-
based semantic labels and measure the similarity 
between questions and answer sentences in this 
syntactic/semantic space, using QA-motivated 
metrics. The systems developed by CYC and LCC 
map questions and answer sentences into logical 
forms and compute the “similarity” between them 
using inference rules. And systems such as those 
developed by IBM and BBN map questions and 
answers into feature sets and compute the 
similarity between them using maximum entropy 
models that are trained on question-answer 
corpora. From this perspective then, the 
fundamental problem of question answering is that 
of finding spaces where the distance between 
questions and sentences that contain correct 
answers is small and where the distance between 
questions and sentences that contain incorrect 
answers is large.  

In this paper, we propose a new space and a 
new metric for computing this distance. Being 
inspired by the success of noisy-channel-based 
approaches in applications as diverse as speech 
recognition (Jelinek, 1997), part of speech tagging 
(Church, 1988), machine translation (Brown et al., 
1993), information retrieval (Berger and Lafferty, 
1999), and text summarization (Knight and Marcu, 
2002), we develop a noisy channel model for QA. 
This model explains how a given sentence SA that 
contains an answer sub-string A to a question Q 
can be rewritten into Q through a sequence of 
stochastic operations. Given a corpus of question-
answer pairs (Q, SA), we can train a probabilistic 
model for estimating the conditional probability 
P(Q | SA). Once the parameters of this model are 
learned, given a question Q and the set of 
sentences Σ returned by an IR engine, one can find 
the sentence Si ∈ Σ and an answer in it Ai,j by 
searching for the Si,Ai,j

 that maximizes the 
conditional probability P(Q | Si,Ai,j

).   

In Section 2, we first present the noisy-channel 
model that we propose for this task. In Section 3, 
we describe how we generate training examples. In 
Section 4, we describe how we use the learned 
models to answer factoid questions, we evaluate 
the performance of our system using a variety of 
experimental conditions, and we compare it with a 
rule-based system that we have previously used in 
several TREC evaluations. In Section 5, we 
demonstrate that the framework we propose is 
flexible enough to accommodate a wide range of 
resources and techniques that have been employed 
in state-of-the-art QA systems.  

2 A noisy-channel for QA 

Assume that we want to explain why “1977” in 
sentence S in Figure 1 is a good answer for the 
question “When did Elvis Presley die?” To do this, 
we build a noisy channel model that makes explicit 
how answer sentence parse trees are mapped into 
questions. Consider, for example, the automatically 
derived answer sentence parse tree in Figure 1, 
which associates to nodes both syntactic and 
shallow semantic, named-entity-specific tags. In 
order to rewrite this tree into a question, we 
assume the following generative story: 
1. In general, answer sentences are much longer 

than typical factoid questions. To reduce the 
length gap between questions and answers and 
to increase the likelihood that our models can 
be adequately trained, we first make a “cut” in 
the answer parse tree and select a sequence of 
words, syntactic, and semantic tags. The “cut” 
is made so that every word in the answer 
sentence or one of its ancestors belongs to the 
“cut” and no two nodes on a path from a word 
to the root of the tree are in the “cut”. Figure 1 
depicts graphically such a cut. 

2. Once the “cut” has been identified, we mark 
one of its elements as the answer string. In 
Figure 1, we decide to mark DATE as the 
answer string (A_DATE). 

3. There is no guarantee that the number of words 
in the cut and the number of words in the 
question match. To account for this, we 
stochastically assign to every element si in a 
cut a fertility according to table n(φ | si). We 
delete elements of fertility 0 and duplicate 
elements of fertility 2, etc. With probability p1 
we also increment the fertility of an invisible 



word NULL. NULL and fertile words, i.e. 
words with fertility strictly greater than 1 
enable us to align long questions with short 
answers. Zero fertility words enable us to align 
short questions with long answers. 

4. Next, we replace answer words (including the 
NULL word) with question words according to 
the table t(qi | sj).  

5. In the last step, we permute the question words 
according to a distortion table d, in order to 
obtain a well-formed, grammatical question. 

The probability P(Q | SA) is computed by 
multiplying the probabilities in all the steps of our 
generative story (Figure 1 lists some of the factors 
specific to this computation.) The readers familiar 
with the statistical machine translation (SMT) 
literature should recognize that steps 3 to 5 are 
nothing but a one-to-one reproduction of the 
generative story proposed in the SMT context by 
Brown et al. (see Brown et al., 1993 for a detailed 
mathematical description of the model and the 
formula for computing the probability of an 
alignment and target string given a source string).1 

Figure 1: A generative model for Question 
answering  

To simplify our work and to enable us exploit 
existing off-the-shelf software, in the experiments 
we carried out in conjunction with this paper, we 
assumed a flat distribution for the two steps in our 

                                                           
1 The distortion probabilities depicted in Figure 1 are a 
simplification of the distortions used in the IBM Model 4 
model by Brown et al. (1993). We chose this watered down 
representation only for illustrative purposes. Our QA system 
implements the full-blown Model 4 statistical model described 
by Brown et al. 

generative story. That is, we assumed that it is 
equally likely to take any cut in the tree and 
equally likely to choose as Answer any 
syntactic/semantic element in an answer sentence. 

3 Generating training and testing 
material 

3.1 Generating training cases 

Assume that the question-answer pair in Figure 1 
appears in our training corpus. When this happens, 
we know that 1977 is the correct answer. To 
generate a training example from this pair, we 
tokenize the question, we parse the answer 
sentence, we identify the question terms and 
answer in the parse tree, and then we make a "cut" 
in the tree that satisfies the following conditions: 

a) Terms overlapping with the question are 
preserved as surface text 

b) The answer is reduced to its semantic or 
syntactic class prefixed with the symbol “A_” 

c) Non-leaves, which don’t have any question 
term or answer offspring, are reduced to their 
semantic or syntactic class. 

d) All remaining nodes (leaves) are preserved 
as surface text. 

Condition a) ensures that the question terms 
will be identified in the sentence. Condition b) 
helps learn answer types. Condition c) brings the 
sentence closer to the question by compacting 
portions that are syntactically far from question 
terms and answer.  And finally the importance of 
lexical cues around question terms and answer 
motivates condition d).  For the question-answer 
pair in Figure 1, the algorithm above generates the 
following training example: 

Q: When did Elvis Presley die ? 
SA: Presley died PP PP in A_DATE, and 
SNT. 

Figure 2 represents graphically the conditions 
that led to this training example being generated. 

Our algorithm for generating training pairs 
implements deterministically the first two steps in 
our generative story. The algorithm is constructed 
so as to be consistent with our intuition that a 
generative process that makes the question and 
answer as similar-looking as possible is most likely 
to enable us learn a useful model. Each question-



answer pair results in one training example. It is 
the examples generated through this procedure that 
we use to estimate the parameters of our model. 

Figure 2: Generation of QA examples for training. 

3.2 Generating test cases 

Assume now that the sentence in Figure 1 is 
returned by an IR engine as a potential candidate 
for finding the answer to the question “When did 
Elvis Presley die?” In this case, we don’t know 
what the answer is, so we assume that any 
semantic/syntactic node in the answer sentence can 
be the answer, with the exception of the nodes that 
subsume question terms and stop words. In this 
case, given a question and a potential answer 
sentence, we generate an exhaustive set of 
question-answer test cases, each test case labeling 
as answer (A_) a different syntactic/semantic node. 
Here are some of the test cases we consider for the 
question-answer pair in Figure 1: 

Q: When did Elvis Presley die ? 
SA1: Presley died A_PP PP PP , and SNT . 
Q:  When did Elvis Presley die ? 
SAi: Presley died PP PP in A_DATE, and 

SNT . 
Q:  When did Elvis Presley die ? 
SAj: Presley died PP PP PP , and NP 
return by A_NP NP . 

If we learned a good model, we would expect it to 
assign a higher probability to P(Q | Sai) than to P(Q 
| Sa1) and P(Q | Saj). 

4 Experiments 

4.1 Training Data 

For training, we use three different sets. (i) The 
TREC9-10 set consists of the questions used at 
TREC9 and 10.  We automatically generate 
answer-tagged sentences using the TREC9 and 10 
judgment sets, which are lists of answer-document 

pairs evaluated as either correct or wrong.  For 
every question, we first identify in the judgment 
sets a list of documents containing the correct 
answer.  For every document, we keep only the 
sentences that overlap with the question terms and 
contain the correct answer.  (ii) In order to have 
more variation of sentences containing the answer, 
we have automatically extended the first data set 
using the Web. For every TREC9-10 
question/answer pair, we used our Web-based IR 
to retrieve sentences that overlap with the question 
terms and contain the answer. We call this data set 
TREC9-10Web.  (iii) The third data set consists of 
2381 question/answer pairs collected from 
http://www.quiz-zone.co.uk. We use the same 
method to automatically enhance this set by 
retrieving from the web sentences containing 
answers to the questions.  We call this data set 
Quiz-Zone.  Table 1 shows the size of the three 
training corpora: 

 
Training Set # distinct questions # question-answer pairs 

TREC9-10 1091 18618 
TREC9-10Web 1091 54295 
Quiz-Zone 2381 17614 
Table 1: Size of Training Corpora 

 
To train our QA noisy-channel model, we apply 

the algorithm described in Section 3.1 to generate 
training cases for all QA pairs in the three corpora. 
To help our model learn that it is desirable to copy 
answer words into the question, we add to each 
corpus a list of identical dictionary word pairs wi-
wi.  For each corpus, we use GIZA (Al-Onaizan et 
al., 1999), a publicly available SMT package that 
implements the IBM models (Brown et al., 1993), 
to train a QA noisy-channel model that maps 
flattened answer parse trees, obtained using the 
“cut” procedure described in Section 3.1, into 
questions. 

4.2 Test Data 

We used two different data sets for the purpose of 
testing.  The first set consists of the 500 questions 
used at TREC 2002; the second set consists of 500 
questions that were randomly selected from the 
Knowledge Master (KM) repository 
(http://www.greatauk.com). The KM questions 
tend to be longer and quite different in style 
compared to the TREC questions. 
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4.3 A noisy-channel-based QA system 

Our QA system is straightforward. It has only two 
modules: an IR module, and an answer-
identifier/ranker module. The IR module is the 
same we used in previous participations at TREC. 
As the learner, the answer-identifier/ranker module 
is also publicly available – the GIZA package can 
be configured to automatically compute the 
probability of the Viterbi alignment between a 
flattened answer parse tree and a question. 
For each test question, we automatically generate a 
web query and use the top 300 answer sentences 
returned by our IR engine to look for an answer. 
For each question Q and for each answer sentence 
Si, we use the algorithm described in Section 3.2 to 
exhaustively generate all Q- Si,Ai,j pairs. Hence we 
examine all syntactic constituents in a sentence and 
use GIZA to assess their likelihood of being a 
correct answer. We select the answer Ai,j that 
maximizes P(Q | Si,Ai,j

) for all answer sentences Si  

and all answers Ai,j that can be found in list 
retrieved by the IR module. Figure 3 depicts 
graphically our noisy-channel-based QA system. 

 
Figure 3: The noisy-channel-based QA system. 

4.4 Experimental Results 

We evaluate the results by generating 
automatically the mean reciprocal rank (MRR) 
using the TREC 2002 patterns and QuizZone 
original answers when testing on TREC 2002 and 
QuizZone test sets respectively.  Our baseline is a 
state of the art QA system, QA-base, which was 
ranked from second to seventh in the last 3 years at 
TREC.  To ensure a fair comparison, we use the 
same Web-based IR system in all experiments with 
no answer retrofitting. For the same reason, we use 
the QA-base system with the post-processing 
module disabled. (This module re-ranks the 

answers produced by QA-base on the basis of their 
redundancy, frequency on the web, etc.) Table 2 
summarizes results of different combinations of 
training and test sets: 

Trained on\Tested on TREC 2002 KM 
A = TREC9-10 0.325 0.108 
B = A + TREC9-10Web 0.329 0.120 
C = B + Quiz-Zone 0.354 0.132 
QA-base 0.291 0.128 

Table 2: Impact of training and test sets. 
 

For the TREC 2002 corpus, the relatively low 
MRRs are due to the small answer coverage of the 
TREC 2002 patterns.  For the KM corpus, the 
relatively low MRRs are explained by two factors: 
(i) for this corpus, each evaluation pattern consists 
of only one string – the original answer; (ii) the 
KM questions are more complex than TREC 
questions (What piece of furniture is associated 
with Modred, Percival, Gawain, Arthur, and 
Lancelot?).  

It is interesting to see that using only the 
TREC9-10 data as training (system A in Table 2), 
we are able to beat the baseline when testing on 
TREC 2002 questions; however, this is not true 
when testing on KM questions.  This can be 
explained by the fact that the TREC9-10 training 
set is similar to the TREC 2002 test set while it is 
significantly different from the KM test set.  We 
also notice that expanding the training to TREC9-
10Web (System B) and then to Quiz-Zone (System 
C) improved the performance on both test sets, 
which confirms that both the variability across 
answer tagged sentences  (Trec9-10Web) and the 
abundance of distinct questions (Quiz-Zone) 
contribute to the diversity of a QA training corpus, 
and implicitly to the performance of our system. 

5 Framework flexibility 

Another characteristic of our framework is its 
flexibility.  We can easily extend it to span other 
question-answering resources and techniques that 
have been employed in state-of-the art QA 
systems.  In the rest of this section, we assess the 
impact of such resources and techniques in the 
context of three case studies. 

5.1 Statistical-based “Reasoning”  

The LCC TREC-2002 QA system (Moldovan et 
al., 2002) implements a reasoning mechanism for 
justifying answers. In the LCC framework, 
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questions and answers are first mapped into logical 
forms. A resolution-based module then proves that 
the question logically follows from the answer 
using a set of axioms that are automatically 
extracted from the WordNet glosses. For example, 
to prove the logical form of “What is the age of our 
solar system?” from the logical form of the answer 
“The solar system is 4.6 billion years old.”, the 
LCC theorem prover shows that the atomic 
formula that corresponds to the question term 
“age” can be inferred from the atomic formula that 
corresponds to the answer term “old” using an 
axiom that connects “old” and “age”, because the 
WordNet gloss for “old” contains the word “age”. 
Similarly, the LCC system can prove that “Voting 
is mandatory for all Argentines aged over 18” 
provides a good justification for the question 
“What is the legal age to vote in Argentina?” 
because it can establish through logical deduction 
using axioms induced from WordNet glosses that 
“legal” is related to “rule”, which in turn is related 
to “mandatory”; that “age” is related to “aged”; 
and that “Argentine” is related to “Argentina”. It is 
not difficult to see by now that these logical 
relations can be represented graphically as 
alignments between question and answer terms 
(see Figure 4).  
 
 
 
 
Figure 4: Gloss-based reasoning as word-level 
alignment. 
 
The exploitation of WordNet synonyms, which is 
part of many QA systems (Hovy et al., 2001; 
Prager et al., 2001; Pasca and Harabagiu, 2001), is 
a particular case of building such alignments 
between question and answer terms. For example, 
using WordNet synonymy relations, it is possible 
to establish a connection between “U.S.” and 
“United States” and between “buy” and “purchase” 
in the question-answer pair (Figure 5), thus 
increasing the confidence that the sentence 
contains a correct answer. 

  
 

 
 
Figure 5: Synonym-based alignment. 

 
The noisy channel framework we proposed in this 
paper can approximate the reasoning mechanism 
employed by LCC and accommodate the 
exploitation of gloss- and synonymy-based 
relations found in WordNet. In fact, if we had a 
very large training corpus, we would expect such 
connections to be learned automatically from the 
data. However, since we have a relatively small 
training corpus available, we rewrite the WordNet 
glosses into a dictionary by creating word-pair 
entries that establish connections between all 
Wordnet words and the content words in their 
glosses. For example, from the word “age” and its 
gloss “a historic period”, we create the dictionary 
entries “age - historic” and “age – period”. To 
exploit synonymy relations, for every WordNet 
synset Si, we add to our training data all possible 
combinations of synonym pairs Wi,x-Wi,y.  
Our dictionary creation procedure is a crude 
version of the axiom extraction algorithm 
described by Moldovan et al. (2002); and our 
exploitation of the glosses in the noisy-channel 
framework amounts to a simplified, statistical 
version of the semantic proofs implemented by 
LCC. Table 3 shows the impact of WordNet 
synonyms (WNsyn) and WordNet glosses 
(WNgloss) on our system. Adding WordNet 
synonyms and glosses improved slightly the 
performance on the KM questions.  On the other 
hand, it is surprising to see that the performance 
has dropped when testing on TREC 2002 
questions.  

Trained on\Tested on TREC 2002 KM 
C 0.354 0.132 
C+WNsyn 0.345 0.138 
C + WNgloss 0.343 0.136 

Table 3: WordNet synonyms and glosses impact. 

5.2 Question reformulation  

Hermjakob et al. (2002) showed that 
reformulations (syntactic and semantic) improve 
the answer pinpointing process in a QA system.  
To make use of this technique, we extend our 
training data set by expanding every question-
answer pair Q-SA to a list (Qr-SA), Qr ⊂ Θ where Θ 
is the set of question reformulations. 2   We also 
expand in a similar way the answer candidates in 
the test corpus.  Using reformulations improved the 
                                                           
2 We are grateful to Ulf Hermjakob for sharing his 
reformulations with us. 

In 1867, Secretary of State William H. Seward arranged for 
the United-States to purchase Alaska for 2 cents per acre. 

   What year did the U.S. buy Alaska? 

What  is the legal age to vote in Argentina? 

Voting  is mandatory for all Argentines aged over 18  



performance of our system on the TREC 2002 test 
set while it was not beneficial for the KM test set 
(see Table 4).  We believe this is explained by the 
fact that the reformulation engine was fine tuned 
on TREC-specific questions, which are 
significantly different from KM questions. 

Trained on\Tested on TREC 2002 KM 
C 0.354 0.132 
C+reformulations 0.365 0.128 

Table 4: Reformulations impact. 

5.3 Exploiting data in structured -and semi-
structured databases 

Structured and semi-structured databases were 
proved to be very useful for question-answering 
systems.  Lin (2002) showed through his federated 
approach that 47% of TREC-2001 questions could 
be answered using Web-based knowledge sources.  
Clarke et al. (2001) obtained a 30% improvement 
by using an auxiliary database created from web 
documents as an additional resource.  We adopted 
a different approach to exploit external knowledge 
bases. 

In our work, we first generated a natural 
language collection of factoids by mining different 
structured and semi-structured databases (World 
Fact Book, Biography.com, WordNet…). The 
generation is based on manually written question-
factoid template pairs, which are applied on the 
different sources to yield simple natural language 
question-factoid pairs. Consider, for example, the 
following two factoid-question template pairs: 

Qt1: What is the capital of _c? 
St1: The capital of _c is capital(_c). 
Qt2: How did _p die? 
St2: _p died of causeDeath(_p). 

Using extraction patterns (Muslea, 1999), we 
apply these two templates on the World Fact Book 
database and on biography.com pages to instantiate 
question and answer-tagged sentence pairs such as: 

Q1: What is the capital of Greece? 
S1: The capital of Greece is Athens. 
Q2: How did Jean-Paul Sartre die? 
S2: Jean-Paul Sartre died of a lung 
ailment. 

These question-factoid pairs are useful both in 
training and testing. In training, we simply add all 
these pairs to the training data set. In testing, for 
every question Q, we select factoids that overlap 
sufficiently enough with Q as sentences that 
potentially contain the answer.  For example, given 

the question “Where was Sartre born?” we will 
select the following factoids: 

1-Jean-Paul Sartre was born in 1905. 
2-Jean-Paul Sartre died in 1980. 
3-Jean-Paul Sartre was born in Paris. 
4-Jean-Paul Sartre died of a lung 
ailment. 

Up to now, we have collected about 100,000 
question-factoid pairs.  We found out that these 
pairs cover only 24 of the 500 TREC 2002 
questions.  And so, in order to evaluate the value of 
these factoids, we reran our system C on these 24 
questions and then, we used the question-factoid 
pairs as the only resource for both training and 
testing as described earlier (System D). Table 5 
shows the MRRs for systems C and D on the 24 
questions covered by the factoids. 

System 24 TREC 2002 questions 
C 0.472 
D 0.812 

Table 5: Factoid impact on system performance. 
 

It is very interesting to see that system D 
outperforms significantly system C. This shows 
that, in our framework, in order to benefit from 
external databases, we do not need any additional 
machinery (question classifiers, answer type 
identifiers, wrapper selectors, SQL query 
generators, etc.) All we need is a one-time 
conversion of external structured resources to 
simple natural language factoids. The results in 
Table 5 also suggest that collecting natural 
language factoids is a useful research direction: if 
we collect all the factoids in the world, we could 
probably achieve much higher MRR scores on the 
entire TREC collection. 

6 Conclusion 

In this paper, we proposed a noisy-channel model 
for QA that can accommodate within a unified 
framework the exploitation of a large number of 
resources and QA-specific techniques. We believe 
that our work will lead to a better understanding of 
the similarities and differences between the 
approaches that make up today’s QA research 
landscape. We also hope that our paper will reduce 
the high barrier to entry that is explained by the 
complexity of current QA systems and increase the 
number of researchers working in this field: 
because our QA system uses only publicly 
available software components (an IR engine; a 



parser; and a statistical MT system), it can be 
easily reproduced by other researchers.  
However, one has to recognize that the reliance of 
our system on publicly available components is not 
ideal.  The generative story that our noisy-channel 
employs is rudimentary; we have chosen it only 
because we wanted to exploit to the best extent 
possible existing software components (GIZA). 
The empirical results we obtained are extremely 
encouraging: our noisy-channel system is already 
outperforming a state-of-the-art rule-based system 
that took many person years to develop. It is 
remarkable that a statistical machine translation 
system can do so well in a totally different context, 
in question answering. However, building 
dedicated systems that employ more sophisticated, 
QA-motivated generative stories is likely to yield 
significant improvements. 

 
Acknowledgments.  This work was supported by 
the Advanced Research and Development Activity 
(ARDA)’s Advanced Question Answering for 
Intelligence (AQUAINT) Program under contract 
number MDA908-02-C-0007. 

References 
Yaser Al-Onaizan, Jan Curin, Michael Jahr, Kevin 

Knight, John Lafferty, Dan Melamed, Franz-Josef 
Och, David Purdy, Noah A. Smith, and David 
Yarowsky. 1999. Statistical machine translation. Fi-
nal Report, JHU Summer Workshop.  

Adam L. Berger, John D. Lafferty. 1999. Information 
Retrieval as Statistical Translation. In Proceedings of 
the SIGIR 1999, Berkeley, CA. 

Eric Brill, Jimmy Lin, Michele Banko, Susan Dumais, 
Andrew Ng. 2001. Data-Intensive Question 
Answering. In Proceedings of the TREC-2001 
Conference, NIST. Gaithersburg, MD. 

Peter F. Brown, Stephen A. Della Pietra, Vincent J. 
Della Pietra, and Robert L. Mercer. 1993. The 
mathematics of statistical machine translation: 
Parameter estimation. Computational Linguistics, 
19(2):263--312. 

Kenneth W. Church. 1988. A stochastic parts program 
and noun phrase parser for unrestricted text. In 
Proceedings of the Second Conference on Applied 
Natural Language Processing, Austin, TX. 

Charles L. A. Clarke, Gordon V. Cormack, Thomas R. 
Lynam, C. M. Li, G. L. McLearn. 2001. Web 
Reinforced Question Answering (MultiText 

Experiments for TREC 2001). In Proceedings of the 
TREC-2001Conference, NIST. Gaithersburg, MD. 

Ulf Hermjakob, Abdessamad Echihabi, and Daniel 
Marcu. 2002. Natural Language Based 
Reformulation Resource and Web Exploitation for 
Question Answering. In Proceedings of the TREC-
2002 Conference, NIST. Gaithersburg, MD. 

Edward H. Hovy, Ulf Hermjakob, Chin-Yew Lin. 2001. 
The Use of External Knowledge in Factoid QA. In 
Proceedings of the TREC-2001 Conference, NIST. 
Gaithersburg, MD. 

Abraham Ittycheriah and Salim Roukos. 2002. IBM's 
Statistical Question Answering System-TREC 11. In 
Proceedings of the TREC-2002 Conference, NIST. 
Gaithersburg, MD. 

Frederick Jelinek. 1997. Statistical Methods for Speech 
Recognition. MIT Press, Cambridge, MA. 

Boris Katz, Deniz Yuret, Sue Felshin. 2001. Omnibase: 
A universal data source interface. In MIT Artificial 
Intelligence Abstracts. 

Kevin Knight, Daniel Marcu. 2002. Summarization 
beyond sentence extraction: A probabilistic approach 
to sentence compression. Artificial Intelligence 
139(1): 91-107. 

Jimmy Lin. 2002. The Web as a Resource for Question 
Answering: Perspective and Challenges. In LREC 
2002, Las Palmas, Canary Islands, Spain. 

Dan  Moldovan, Sanda Harabagiu, Roxana Girju, Paul 
Morarescu, Finley Lacatusu, Adrian Novischi, 
Adriana Badulescu, Orest Bolohan. 2002. LCC Tools 
for Question Answering. In Proceedings of the 
TREC-2002 Conference, NIST. Gaithersburg, MD. 

Ion Muslea. 1999. Extraction Patterns for Information 
Extraction Tasks: A Survey. In Proceedings of 
Workshop on Machine Learning and Information 
Extraction (AAAI-99), Orlando, FL. 

Marius Pasca, Sanda Harabagiu, 2001. The Informative 
Role of WordNet in Open-Domain Question 
Answering. In Proceedings of the NAACL 2001 
Workshop on WordNet and Other Lexical Resources, 
Carnegie Mellon University, Pittsburgh PA. 

John M. Prager, Jennifer Chu-Carroll, Krysztof Czuba. 
2001. Use of WordNet Hypernyms for Answering 
What-Is Questions. In Proceedings of the TREC-
2002 Conference, NIST. Gaithersburg, MD. 

Jinxi Xu, Ana Licuanan, Jonathan May, Scott Miller, 
Ralph Weischedel. 2002. TREC 2002 QA at BBN:  
Answer Selection and Confidence Estimation. In 
Proceedings of the TREC-2002 Conference, NIST. 
Gaithersburg, MD. 


