
A Noisy-Channel Approach to Question Answering

Abdessamad Echihabi and Daniel Marcu
Information Sciences Institute

Department of Computer Science
University of Southern California
4676 Admiralty Way, Suite 1001

Marina Del Rey, CA 90292
{echihabi,marcu}@isi.edu

Abstract

We introduce a probabilistic noisy-
channel model for question answering and
we show how it can be exploited in the
context of an end-to-end QA system. Our
noisy-channel system outperforms a state-
of-the-art rule-based QA system that uses
similar resources. We also show that the
model we propose is flexible enough to
accommodate within one mathematical
framework many QA-specific resources
and techniques, which range from the
exploitation of WordNet, structured, and
semi-structured databases to reasoning,
and paraphrasing.

1 Introduction

Current state-of-the-art Question Answering (QA)
systems are extremely complex. They contain tens
of modules that do everything from information
retrieval, sentence parsing (Ittycheriah and
Roukos, 2002; Hovy et al., 2001; Moldovan et al,
2002), question-type pinpointing (Ittycheriah and
Roukos, 2002; Hovy et al., 2001; Moldovan et al,
2002), semantic analysis (Xu et al., Hovy et al.,
2001; Moldovan et al, 2002), and reasoning
(Moldovan et al, 2002). They access external
resources such as the WordNet (Hovy et al., 2001,
Pasca and Harabagiu, 2001, Prager et al., 2001),
the web (Brill et al., 2001), structured, and semi-
structured databases (Katz et al., 2001; Lin, 2002;
Clarke, 2001). They contain feedback loops,
ranking, and re-ranking modules. Given their
complexity, it is often difficult (and sometimes

impossible) to understand what contributes to the
performance of a system and what doesn’t.

In this paper, we propose a new approach to
QA in which the contribution of various resources
and components can be easily assessed. The
fundamental insight of our approach, which
departs significantly from the current architectures,
is that, at its core, a QA system is a pipeline of
only two modules:

• An IR engine that retrieves a set of M
documents/N sentences that may contain
answers to a given question Q.

• And an answer identifier module that given
a question Q and a sentence S (from the set
of sentences retrieved by the IR engine)
identifies a sub-string SA of S that is likely
to be an answer to Q and assigns a score to
it.

Once one has these two modules, one has a QA
system because finding the answer to a question Q
amounts to selecting the sub-string SA of highest
score. Although this view is not made explicit by
QA researchers, it is implicitly present in all
systems we are aware of.

In its simplest form, if one accepts a whole
sentence as an answer (SA = S), one can assess the
likelihood that a sentence S contains the answer to
a question Q by measuring the cosine similarity
between Q and S. However, as research in QA
demonstrates, word-overlap is not a good enough
metric for determining whether a sentence contains
the answer to a question. Consider, for example,
the question “Who is the leader of France?” The
sentence “Henri Hadjenberg, who is the leader of
France’s Jewish community, endorsed confronting
the specter of the Vichy past” overlaps with all
question terms, but it does not contain the correct
answer; while the sentence “Bush later met with
French President Jacques Chirac” does not overlap

with any question term, but it does contain the
correct answer.
To circumvent this limitation of word-based
similarity metrics, QA researchers have developed
methods through which they first map questions
and sentences that may contain answers in
different spaces, and then compute the “similarity”
between them there. For example, the systems
developed at IBM and ISI map questions and
answer sentences into parse trees and surface-
based semantic labels and measure the similarity
between questions and answer sentences in this
syntactic/semantic space, using QA-motivated
metrics. The systems developed by CYC and LCC
map questions and answer sentences into logical
forms and compute the “similarity” between them
using inference rules. And systems such as those
developed by IBM and BBN map questions and
answers into feature sets and compute the
similarity between them using maximum entropy
models that are trained on question-answer
corpora. From this perspective then, the
fundamental problem of question answering is that
of finding spaces where the distance between
questions and sentences that contain correct
answers is small and where the distance between
questions and sentences that contain incorrect
answers is large.

In this paper, we propose a new space and a
new metric for computing this distance. Being
inspired by the success of noisy-channel-based
approaches in applications as diverse as speech
recognition (Jelinek, 1997), part of speech tagging
(Church, 1988), machine translation (Brown et al.,
1993), information retrieval (Berger and Lafferty,
1999), and text summarization (Knight and Marcu,
2002), we develop a noisy channel model for QA.
This model explains how a given sentence SA that
contains an answer sub-string A to a question Q
can be rewritten into Q through a sequence of
stochastic operations. Given a corpus of question-
answer pairs (Q, SA), we can train a probabilistic
model for estimating the conditional probability
P(Q | SA). Once the parameters of this model are
learned, given a question Q and the set of
sentences Σ returned by an IR engine, one can find
the sentence Si ∈ Σ and an answer in it Ai,j by
searching for the Si,Ai,j

 that maximizes the
conditional probability P(Q | Si,Ai,j

).

In Section 2, we first present the noisy-channel
model that we propose for this task. In Section 3,
we describe how we generate training examples. In
Section 4, we describe how we use the learned
models to answer factoid questions, we evaluate
the performance of our system using a variety of
experimental conditions, and we compare it with a
rule-based system that we have previously used in
several TREC evaluations. In Section 5, we
demonstrate that the framework we propose is
flexible enough to accommodate a wide range of
resources and techniques that have been employed
in state-of-the-art QA systems.

2 A noisy-channel for QA

Assume that we want to explain why “1977” in
sentence S in Figure 1 is a good answer for the
question “When did Elvis Presley die?” To do this,
we build a noisy channel model that makes explicit
how answer sentence parse trees are mapped into
questions. Consider, for example, the automatically
derived answer sentence parse tree in Figure 1,
which associates to nodes both syntactic and
shallow semantic, named-entity-specific tags. In
order to rewrite this tree into a question, we
assume the following generative story:
1. In general, answer sentences are much longer

than typical factoid questions. To reduce the
length gap between questions and answers and
to increase the likelihood that our models can
be adequately trained, we first make a “cut” in
the answer parse tree and select a sequence of
words, syntactic, and semantic tags. The “cut”
is made so that every word in the answer
sentence or one of its ancestors belongs to the
“cut” and no two nodes on a path from a word
to the root of the tree are in the “cut”. Figure 1
depicts graphically such a cut.

2. Once the “cut” has been identified, we mark
one of its elements as the answer string. In
Figure 1, we decide to mark DATE as the
answer string (A_DATE).

3. There is no guarantee that the number of words
in the cut and the number of words in the
question match. To account for this, we
stochastically assign to every element si in a
cut a fertility according to table n(φ | si). We
delete elements of fertility 0 and duplicate
elements of fertility 2, etc. With probability p1
we also increment the fertility of an invisible

word NULL. NULL and fertile words, i.e.
words with fertility strictly greater than 1
enable us to align long questions with short
answers. Zero fertility words enable us to align
short questions with long answers.

4. Next, we replace answer words (including the
NULL word) with question words according to
the table t(qi | sj).

5. In the last step, we permute the question words
according to a distortion table d, in order to
obtain a well-formed, grammatical question.

The probability P(Q | SA) is computed by
multiplying the probabilities in all the steps of our
generative story (Figure 1 lists some of the factors
specific to this computation.) The readers familiar
with the statistical machine translation (SMT)
literature should recognize that steps 3 to 5 are
nothing but a one-to-one reproduction of the
generative story proposed in the SMT context by
Brown et al. (see Brown et al., 1993 for a detailed
mathematical description of the model and the
formula for computing the probability of an
alignment and target string given a source string).1

Figure 1: A generative model for Question
answering

To simplify our work and to enable us exploit
existing off-the-shelf software, in the experiments
we carried out in conjunction with this paper, we
assumed a flat distribution for the two steps in our

1 The distortion probabilities depicted in Figure 1 are a
simplification of the distortions used in the IBM Model 4
model by Brown et al. (1993). We chose this watered down
representation only for illustrative purposes. Our QA system
implements the full-blown Model 4 statistical model described
by Brown et al.

generative story. That is, we assumed that it is
equally likely to take any cut in the tree and
equally likely to choose as Answer any
syntactic/semantic element in an answer sentence.

3 Generating training and testing
material

3.1 Generating training cases

Assume that the question-answer pair in Figure 1
appears in our training corpus. When this happens,
we know that 1977 is the correct answer. To
generate a training example from this pair, we
tokenize the question, we parse the answer
sentence, we identify the question terms and
answer in the parse tree, and then we make a "cut"
in the tree that satisfies the following conditions:

a) Terms overlapping with the question are
preserved as surface text

b) The answer is reduced to its semantic or
syntactic class prefixed with the symbol “A_”

c) Non-leaves, which don’t have any question
term or answer offspring, are reduced to their
semantic or syntactic class.

d) All remaining nodes (leaves) are preserved
as surface text.

Condition a) ensures that the question terms
will be identified in the sentence. Condition b)
helps learn answer types. Condition c) brings the
sentence closer to the question by compacting
portions that are syntactically far from question
terms and answer. And finally the importance of
lexical cues around question terms and answer
motivates condition d). For the question-answer
pair in Figure 1, the algorithm above generates the
following training example:

Q: When did Elvis Presley die ?
SA: Presley died PP PP in A_DATE, and
SNT.

Figure 2 represents graphically the conditions
that led to this training example being generated.

Our algorithm for generating training pairs
implements deterministically the first two steps in
our generative story. The algorithm is constructed
so as to be consistent with our intuition that a
generative process that makes the question and
answer as similar-looking as possible is most likely
to enable us learn a useful model. Each question-

answer pair results in one training example. It is
the examples generated through this procedure that
we use to estimate the parameters of our model.

Figure 2: Generation of QA examples for training.

3.2 Generating test cases

Assume now that the sentence in Figure 1 is
returned by an IR engine as a potential candidate
for finding the answer to the question “When did
Elvis Presley die?” In this case, we don’t know
what the answer is, so we assume that any
semantic/syntactic node in the answer sentence can
be the answer, with the exception of the nodes that
subsume question terms and stop words. In this
case, given a question and a potential answer
sentence, we generate an exhaustive set of
question-answer test cases, each test case labeling
as answer (A_) a different syntactic/semantic node.
Here are some of the test cases we consider for the
question-answer pair in Figure 1:

Q: When did Elvis Presley die ?
SA1: Presley died A_PP PP PP , and SNT .
Q: When did Elvis Presley die ?
SAi: Presley died PP PP in A_DATE, and

SNT .
Q: When did Elvis Presley die ?
SAj: Presley died PP PP PP , and NP
return by A_NP NP .

If we learned a good model, we would expect it to
assign a higher probability to P(Q | Sai) than to P(Q
| Sa1) and P(Q | Saj).

4 Experiments

4.1 Training Data

For training, we use three different sets. (i) The
TREC9-10 set consists of the questions used at
TREC9 and 10. We automatically generate
answer-tagged sentences using the TREC9 and 10
judgment sets, which are lists of answer-document

pairs evaluated as either correct or wrong. For
every question, we first identify in the judgment
sets a list of documents containing the correct
answer. For every document, we keep only the
sentences that overlap with the question terms and
contain the correct answer. (ii) In order to have
more variation of sentences containing the answer,
we have automatically extended the first data set
using the Web. For every TREC9-10
question/answer pair, we used our Web-based IR
to retrieve sentences that overlap with the question
terms and contain the answer. We call this data set
TREC9-10Web. (iii) The third data set consists of
2381 question/answer pairs collected from
http://www.quiz-zone.co.uk. We use the same
method to automatically enhance this set by
retrieving from the web sentences containing
answers to the questions. We call this data set
Quiz-Zone. Table 1 shows the size of the three
training corpora:

Training Set # distinct questions # question-answer pairs

TREC9-10 1091 18618
TREC9-10Web 1091 54295
Quiz-Zone 2381 17614
Table 1: Size of Training Corpora

To train our QA noisy-channel model, we apply

the algorithm described in Section 3.1 to generate
training cases for all QA pairs in the three corpora.
To help our model learn that it is desirable to copy
answer words into the question, we add to each
corpus a list of identical dictionary word pairs wi-
wi. For each corpus, we use GIZA (Al-Onaizan et
al., 1999), a publicly available SMT package that
implements the IBM models (Brown et al., 1993),
to train a QA noisy-channel model that maps
flattened answer parse trees, obtained using the
“cut” procedure described in Section 3.1, into
questions.

4.2 Test Data

We used two different data sets for the purpose of
testing. The first set consists of the 500 questions
used at TREC 2002; the second set consists of 500
questions that were randomly selected from the
Knowledge Master (KM) repository
(http://www.greatauk.com). The KM questions
tend to be longer and quite different in style
compared to the TREC questions.

th e fa i t h fu l r e tu r n b y th e
h u n d r e d s e a c h y e a r to
m a r k th e a n n iv e r s a r y

o f a h e a r t d i s e a s e a t G r a c e l a n d

S N T

N P P P

P r e s le y

d i e d P P

in 1 9 7 7

S N T, .a n d P P

C o n d i t io n a)

C o n d i t io n b)

C o n d i t io n d)

C o n d i t io n c)

4.3 A noisy-channel-based QA system

Our QA system is straightforward. It has only two
modules: an IR module, and an answer-
identifier/ranker module. The IR module is the
same we used in previous participations at TREC.
As the learner, the answer-identifier/ranker module
is also publicly available – the GIZA package can
be configured to automatically compute the
probability of the Viterbi alignment between a
flattened answer parse tree and a question.
For each test question, we automatically generate a
web query and use the top 300 answer sentences
returned by our IR engine to look for an answer.
For each question Q and for each answer sentence
Si, we use the algorithm described in Section 3.2 to
exhaustively generate all Q- Si,Ai,j pairs. Hence we
examine all syntactic constituents in a sentence and
use GIZA to assess their likelihood of being a
correct answer. We select the answer Ai,j that
maximizes P(Q | Si,Ai,j

) for all answer sentences Si

and all answers Ai,j that can be found in list
retrieved by the IR module. Figure 3 depicts
graphically our noisy-channel-based QA system.

Figure 3: The noisy-channel-based QA system.

4.4 Experimental Results

We evaluate the results by generating
automatically the mean reciprocal rank (MRR)
using the TREC 2002 patterns and QuizZone
original answers when testing on TREC 2002 and
QuizZone test sets respectively. Our baseline is a
state of the art QA system, QA-base, which was
ranked from second to seventh in the last 3 years at
TREC. To ensure a fair comparison, we use the
same Web-based IR system in all experiments with
no answer retrofitting. For the same reason, we use
the QA-base system with the post-processing
module disabled. (This module re-ranks the

answers produced by QA-base on the basis of their
redundancy, frequency on the web, etc.) Table 2
summarizes results of different combinations of
training and test sets:

Trained on\Tested on TREC 2002 KM
A = TREC9-10 0.325 0.108
B = A + TREC9-10Web 0.329 0.120
C = B + Quiz-Zone 0.354 0.132
QA-base 0.291 0.128

Table 2: Impact of training and test sets.

For the TREC 2002 corpus, the relatively low
MRRs are due to the small answer coverage of the
TREC 2002 patterns. For the KM corpus, the
relatively low MRRs are explained by two factors:
(i) for this corpus, each evaluation pattern consists
of only one string – the original answer; (ii) the
KM questions are more complex than TREC
questions (What piece of furniture is associated
with Modred, Percival, Gawain, Arthur, and
Lancelot?).

It is interesting to see that using only the
TREC9-10 data as training (system A in Table 2),
we are able to beat the baseline when testing on
TREC 2002 questions; however, this is not true
when testing on KM questions. This can be
explained by the fact that the TREC9-10 training
set is similar to the TREC 2002 test set while it is
significantly different from the KM test set. We
also notice that expanding the training to TREC9-
10Web (System B) and then to Quiz-Zone (System
C) improved the performance on both test sets,
which confirms that both the variability across
answer tagged sentences (Trec9-10Web) and the
abundance of distinct questions (Quiz-Zone)
contribute to the diversity of a QA training corpus,
and implicitly to the performance of our system.

5 Framework flexibility

Another characteristic of our framework is its
flexibility. We can easily extend it to span other
question-answering resources and techniques that
have been employed in state-of-the art QA
systems. In the rest of this section, we assess the
impact of such resources and techniques in the
context of three case studies.

5.1 Statistical-based “Reasoning”

The LCC TREC-2002 QA system (Moldovan et
al., 2002) implements a reasoning mechanism for
justifying answers. In the LCC framework,

T est
question

Q

S i,A
i,j

Q A M odel
trained
using
G IZA

S x,A
x,y

= argm ax (P(Q | S i,A
i,j

))

A = A x,y

G IZA

S 1

S m

S 1,A
1,1

S 1,A
1,v

S m ,A
m ,1

S m ,A
m ,w

IR

questions and answers are first mapped into logical
forms. A resolution-based module then proves that
the question logically follows from the answer
using a set of axioms that are automatically
extracted from the WordNet glosses. For example,
to prove the logical form of “What is the age of our
solar system?” from the logical form of the answer
“The solar system is 4.6 billion years old.”, the
LCC theorem prover shows that the atomic
formula that corresponds to the question term
“age” can be inferred from the atomic formula that
corresponds to the answer term “old” using an
axiom that connects “old” and “age”, because the
WordNet gloss for “old” contains the word “age”.
Similarly, the LCC system can prove that “Voting
is mandatory for all Argentines aged over 18”
provides a good justification for the question
“What is the legal age to vote in Argentina?”
because it can establish through logical deduction
using axioms induced from WordNet glosses that
“legal” is related to “rule”, which in turn is related
to “mandatory”; that “age” is related to “aged”;
and that “Argentine” is related to “Argentina”. It is
not difficult to see by now that these logical
relations can be represented graphically as
alignments between question and answer terms
(see Figure 4).

Figure 4: Gloss-based reasoning as word-level
alignment.

The exploitation of WordNet synonyms, which is
part of many QA systems (Hovy et al., 2001;
Prager et al., 2001; Pasca and Harabagiu, 2001), is
a particular case of building such alignments
between question and answer terms. For example,
using WordNet synonymy relations, it is possible
to establish a connection between “U.S.” and
“United States” and between “buy” and “purchase”
in the question-answer pair (Figure 5), thus
increasing the confidence that the sentence
contains a correct answer.

Figure 5: Synonym-based alignment.

The noisy channel framework we proposed in this
paper can approximate the reasoning mechanism
employed by LCC and accommodate the
exploitation of gloss- and synonymy-based
relations found in WordNet. In fact, if we had a
very large training corpus, we would expect such
connections to be learned automatically from the
data. However, since we have a relatively small
training corpus available, we rewrite the WordNet
glosses into a dictionary by creating word-pair
entries that establish connections between all
Wordnet words and the content words in their
glosses. For example, from the word “age” and its
gloss “a historic period”, we create the dictionary
entries “age - historic” and “age – period”. To
exploit synonymy relations, for every WordNet
synset Si, we add to our training data all possible
combinations of synonym pairs Wi,x-Wi,y.
Our dictionary creation procedure is a crude
version of the axiom extraction algorithm
described by Moldovan et al. (2002); and our
exploitation of the glosses in the noisy-channel
framework amounts to a simplified, statistical
version of the semantic proofs implemented by
LCC. Table 3 shows the impact of WordNet
synonyms (WNsyn) and WordNet glosses
(WNgloss) on our system. Adding WordNet
synonyms and glosses improved slightly the
performance on the KM questions. On the other
hand, it is surprising to see that the performance
has dropped when testing on TREC 2002
questions.

Trained on\Tested on TREC 2002 KM
C 0.354 0.132
C+WNsyn 0.345 0.138
C + WNgloss 0.343 0.136

Table 3: WordNet synonyms and glosses impact.

5.2 Question reformulation

Hermjakob et al. (2002) showed that
reformulations (syntactic and semantic) improve
the answer pinpointing process in a QA system.
To make use of this technique, we extend our
training data set by expanding every question-
answer pair Q-SA to a list (Qr-SA), Qr ⊂ Θ where Θ
is the set of question reformulations. 2 We also
expand in a similar way the answer candidates in
the test corpus. Using reformulations improved the

2 We are grateful to Ulf Hermjakob for sharing his
reformulations with us.

In 1867, Secretary of State William H. Seward arranged for
the United-States to purchase Alaska for 2 cents per acre.

 What year did the U.S. buy Alaska?

What is the legal age to vote in Argentina?

Voting is mandatory for all Argentines aged over 18

performance of our system on the TREC 2002 test
set while it was not beneficial for the KM test set
(see Table 4). We believe this is explained by the
fact that the reformulation engine was fine tuned
on TREC-specific questions, which are
significantly different from KM questions.

Trained on\Tested on TREC 2002 KM
C 0.354 0.132
C+reformulations 0.365 0.128

Table 4: Reformulations impact.

5.3 Exploiting data in structured -and semi-
structured databases

Structured and semi-structured databases were
proved to be very useful for question-answering
systems. Lin (2002) showed through his federated
approach that 47% of TREC-2001 questions could
be answered using Web-based knowledge sources.
Clarke et al. (2001) obtained a 30% improvement
by using an auxiliary database created from web
documents as an additional resource. We adopted
a different approach to exploit external knowledge
bases.

In our work, we first generated a natural
language collection of factoids by mining different
structured and semi-structured databases (World
Fact Book, Biography.com, WordNet…). The
generation is based on manually written question-
factoid template pairs, which are applied on the
different sources to yield simple natural language
question-factoid pairs. Consider, for example, the
following two factoid-question template pairs:

Qt1: What is the capital of _c?
St1: The capital of _c is capital(_c).
Qt2: How did _p die?
St2: _p died of causeDeath(_p).

Using extraction patterns (Muslea, 1999), we
apply these two templates on the World Fact Book
database and on biography.com pages to instantiate
question and answer-tagged sentence pairs such as:

Q1: What is the capital of Greece?
S1: The capital of Greece is Athens.
Q2: How did Jean-Paul Sartre die?
S2: Jean-Paul Sartre died of a lung
ailment.

These question-factoid pairs are useful both in
training and testing. In training, we simply add all
these pairs to the training data set. In testing, for
every question Q, we select factoids that overlap
sufficiently enough with Q as sentences that
potentially contain the answer. For example, given

the question “Where was Sartre born?” we will
select the following factoids:

1-Jean-Paul Sartre was born in 1905.
2-Jean-Paul Sartre died in 1980.
3-Jean-Paul Sartre was born in Paris.
4-Jean-Paul Sartre died of a lung
ailment.

Up to now, we have collected about 100,000
question-factoid pairs. We found out that these
pairs cover only 24 of the 500 TREC 2002
questions. And so, in order to evaluate the value of
these factoids, we reran our system C on these 24
questions and then, we used the question-factoid
pairs as the only resource for both training and
testing as described earlier (System D). Table 5
shows the MRRs for systems C and D on the 24
questions covered by the factoids.

System 24 TREC 2002 questions
C 0.472
D 0.812

Table 5: Factoid impact on system performance.

It is very interesting to see that system D
outperforms significantly system C. This shows
that, in our framework, in order to benefit from
external databases, we do not need any additional
machinery (question classifiers, answer type
identifiers, wrapper selectors, SQL query
generators, etc.) All we need is a one-time
conversion of external structured resources to
simple natural language factoids. The results in
Table 5 also suggest that collecting natural
language factoids is a useful research direction: if
we collect all the factoids in the world, we could
probably achieve much higher MRR scores on the
entire TREC collection.

6 Conclusion

In this paper, we proposed a noisy-channel model
for QA that can accommodate within a unified
framework the exploitation of a large number of
resources and QA-specific techniques. We believe
that our work will lead to a better understanding of
the similarities and differences between the
approaches that make up today’s QA research
landscape. We also hope that our paper will reduce
the high barrier to entry that is explained by the
complexity of current QA systems and increase the
number of researchers working in this field:
because our QA system uses only publicly
available software components (an IR engine; a

parser; and a statistical MT system), it can be
easily reproduced by other researchers.
However, one has to recognize that the reliance of
our system on publicly available components is not
ideal. The generative story that our noisy-channel
employs is rudimentary; we have chosen it only
because we wanted to exploit to the best extent
possible existing software components (GIZA).
The empirical results we obtained are extremely
encouraging: our noisy-channel system is already
outperforming a state-of-the-art rule-based system
that took many person years to develop. It is
remarkable that a statistical machine translation
system can do so well in a totally different context,
in question answering. However, building
dedicated systems that employ more sophisticated,
QA-motivated generative stories is likely to yield
significant improvements.

Acknowledgments. This work was supported by
the Advanced Research and Development Activity
(ARDA)’s Advanced Question Answering for
Intelligence (AQUAINT) Program under contract
number MDA908-02-C-0007.

References
Yaser Al-Onaizan, Jan Curin, Michael Jahr, Kevin

Knight, John Lafferty, Dan Melamed, Franz-Josef
Och, David Purdy, Noah A. Smith, and David
Yarowsky. 1999. Statistical machine translation. Fi-
nal Report, JHU Summer Workshop.

Adam L. Berger, John D. Lafferty. 1999. Information
Retrieval as Statistical Translation. In Proceedings of
the SIGIR 1999, Berkeley, CA.

Eric Brill, Jimmy Lin, Michele Banko, Susan Dumais,
Andrew Ng. 2001. Data-Intensive Question
Answering. In Proceedings of the TREC-2001
Conference, NIST. Gaithersburg, MD.

Peter F. Brown, Stephen A. Della Pietra, Vincent J.
Della Pietra, and Robert L. Mercer. 1993. The
mathematics of statistical machine translation:
Parameter estimation. Computational Linguistics,
19(2):263--312.

Kenneth W. Church. 1988. A stochastic parts program
and noun phrase parser for unrestricted text. In
Proceedings of the Second Conference on Applied
Natural Language Processing, Austin, TX.

Charles L. A. Clarke, Gordon V. Cormack, Thomas R.
Lynam, C. M. Li, G. L. McLearn. 2001. Web
Reinforced Question Answering (MultiText

Experiments for TREC 2001). In Proceedings of the
TREC-2001Conference, NIST. Gaithersburg, MD.

Ulf Hermjakob, Abdessamad Echihabi, and Daniel
Marcu. 2002. Natural Language Based
Reformulation Resource and Web Exploitation for
Question Answering. In Proceedings of the TREC-
2002 Conference, NIST. Gaithersburg, MD.

Edward H. Hovy, Ulf Hermjakob, Chin-Yew Lin. 2001.
The Use of External Knowledge in Factoid QA. In
Proceedings of the TREC-2001 Conference, NIST.
Gaithersburg, MD.

Abraham Ittycheriah and Salim Roukos. 2002. IBM's
Statistical Question Answering System-TREC 11. In
Proceedings of the TREC-2002 Conference, NIST.
Gaithersburg, MD.

Frederick Jelinek. 1997. Statistical Methods for Speech
Recognition. MIT Press, Cambridge, MA.

Boris Katz, Deniz Yuret, Sue Felshin. 2001. Omnibase:
A universal data source interface. In MIT Artificial
Intelligence Abstracts.

Kevin Knight, Daniel Marcu. 2002. Summarization
beyond sentence extraction: A probabilistic approach
to sentence compression. Artificial Intelligence
139(1): 91-107.

Jimmy Lin. 2002. The Web as a Resource for Question
Answering: Perspective and Challenges. In LREC
2002, Las Palmas, Canary Islands, Spain.

Dan Moldovan, Sanda Harabagiu, Roxana Girju, Paul
Morarescu, Finley Lacatusu, Adrian Novischi,
Adriana Badulescu, Orest Bolohan. 2002. LCC Tools
for Question Answering. In Proceedings of the
TREC-2002 Conference, NIST. Gaithersburg, MD.

Ion Muslea. 1999. Extraction Patterns for Information
Extraction Tasks: A Survey. In Proceedings of
Workshop on Machine Learning and Information
Extraction (AAAI-99), Orlando, FL.

Marius Pasca, Sanda Harabagiu, 2001. The Informative
Role of WordNet in Open-Domain Question
Answering. In Proceedings of the NAACL 2001
Workshop on WordNet and Other Lexical Resources,
Carnegie Mellon University, Pittsburgh PA.

John M. Prager, Jennifer Chu-Carroll, Krysztof Czuba.
2001. Use of WordNet Hypernyms for Answering
What-Is Questions. In Proceedings of the TREC-
2002 Conference, NIST. Gaithersburg, MD.

Jinxi Xu, Ana Licuanan, Jonathan May, Scott Miller,
Ralph Weischedel. 2002. TREC 2002 QA at BBN:
Answer Selection and Confidence Estimation. In
Proceedings of the TREC-2002 Conference, NIST.
Gaithersburg, MD.

