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Abstract

We presenta documentcompressionsys-
temthatusesa hierarchicalnoisy-channel
modelof text production. Our compres-
sionsystemfirst automaticallyderivesthe
syntacticstructureof eachsentenceand
the overall discoursestructureof the text
givenasinput. Thesystemthenusesasta-
tistical hierarchicalmodelof text produc-
tion in order to drop non-importantsyn-
tactic anddiscourseconstituentsso as to
generatecoherent,grammaticaldocument
compressionsof arbitrarylength.Thesys-
tem outperformsboth a baselineand a
sentence-basedcompressionsystemthat
operatesby simplifying sequentiallyall
sentencesin a text. Our resultssupport
the claim that discourseknowledgeplays
animportantrolein documentsummariza-
tion.

1 Intr oduction
Single documentsummarizationsystemsproposed
to datefall within oneof thefollowing threeclasses:

Extractive summarizers simplyselectandpresent
to the user the most important sentencesin
a text — see (Mani and Maybury, 1999;
Marcu, 2000; Mani, 2001)for comprehensive
overviews of themethodsandalgorithmsused
to accomplishthis.

Headline generators arenoisy-channelprobabilis-
tic systemsthat are trained on large corpora
of � Headline,Text � pairs (Bankoet al., 2000;

Berger andMittal, 2000). Thesesystemspro-
duceshortsequencesof wordsthatareindica-
tiveof thecontentof thetext givenasinput.

Sentencesimplification systems (Chandrasekaret
al., 1996; Mahesh,1997; Carroll et al., 1998;
Grefenstette,1998; Jing, 2000; Knight and
Marcu,2000)arecapableof compressinglong
sentencesby deletingunimportantwords and
phrases.

Extraction-basedsummarizersoftenproduceout-
putsthatcontainnon-importantsentencefragments.
For example, the hypotheticalextractive summary
of Text (1), which is shown in Table1, canbecom-
pactedfurther by deletingthe clause“which is al-
readyalmostenoughto win”. Headline-basedsum-
maries,suchas that shown in Table1, areusually
indicative of a text’s contentbut not informative,
grammatical,or coherent.By repeatedlyapplyinga
sentence-simplificationalgorithmonesentenceat a
time, onecancompressa text; yet, theoutputsgen-
eratedin this way are likely to be incoherentand
to containunimportantinformation. Whensumma-
rizing text, somesentencesshouldbedroppedalto-
gether.

Ideally, we would like to build systemsthathave
thestrengthsof all thesethreeclassesof approaches.
The “Document Compression”entry in Table 1
showsagrammatical,coherentsummaryof Text (1),
which was generatedby a hypotheticaldocument
compressionsystemthatpreservesthemostimpor-
tant information in a text while deletingsentences,
phrases,andwords that aresubsidiaryto the main
messageof the text. Obviously, generatingcoher-
ent, grammaticalsummariessuchas that produced
by the hypotheticaldocumentcompressionsystem
in Table1 is not trivial becauseof many conflicting
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Typeof Hypotheticaloutput Output Outputis Outputis
Summarizer containsonly coherent grammatical

importantinfo
Extractive JohnDoehasalreadysecuredthevoteof most �
summarizer democratsin his constituency, which is already

almostenoughto win. But without thesupport
of thegoverner, heis still on shaky ground.

Headline mayorvoteconstituency governer �
generator
Sentence Themayoris now looking for re-election.JohnDoe �
simplifier hasalreadysecuredthevoteof mostdemocrats

in his constituency. Heis still on shaky ground.
Document JohnDoehassecuredthevoteof mostdemocrats. � � �
compressor But heis still on shaky ground.

Table1: Hypotheticaloutputsgeneratedby varioustypesof summarizers.

goals1. Thedeletionof certainsentencesmayresult
in incoherenceandinformationloss.Thedeletionof
certainwordsandphrasesmayalsoleadto ungram-
maticalityandinformationloss.

The mayor is now looking for re-election.JohnDoe

hasalreadysecuredthevoteof mostdemocratsin his

constituency, which is alreadyalmostenoughto win.

But without thesupportof thegoverner, he is still on

shaky grounds.

(1)

In thispaper, wepresentadocumentcompression
systemthat useshierarchicalmodelsof discourse
and syntax in order to simultaneouslymanageall
theseconflicting goals. Our compressionsystem
first automaticallyderivesthe syntacticstructureof
eachsentenceandtheoverall discoursestructureof
the text givenasinput. Thesystemthenusesa sta-
tistical hierarchicalmodelof text productionin or-
der to drop non-importantsyntacticand discourse
units so as to generatecoherent,grammaticaldoc-
umentcompressionsof arbitrarylength.Thesystem
outperformsboth a baselineand a sentence-based
compressionsystemthatoperatesby simplifying se-
quentiallyall sentencesin a text.

2 DocumentCompression
The documentcompressiontask is conceptually
simple.Givena document�����
	��
	���������	���� , our
goalis to produceanew document��� by “dropping”
words 	�� from � . In orderto achieve this goal,we

1A number of other systemsuse the outputs of extrac-
tive summarizersandrepairthemto improve coherence(DUC,
2001;DUC, 2002).Unfortunately, noneof theseseemsflexible
enoughto producein oneshotgoodsummariesthataresimul-
taneouslycoherentandgrammatical.

extentthenoisy-channelmodelproposedby Knight
& Marcu (2000). Their systemcompressedsen-
tencesby droppingsyntacticconstituents,but could
be appliedto entiredocumentsonly on a sentence-
by-sentencebasis. As discussedin Section1, this
is not adequatebecausetheresultingsummarymay
containmany compressedsentencesthat areirrele-
vant.In orderto extendKnight & Marcu’sapproach
beyond the sentencelevel, we needto “glue” sen-
tencestogetherin atreestructuresimilar to thatused
at the sentencelevel. RhetoricalStructureTheory
(RST)(MannandThompson,1988)providesusthis
“glue.”

The tree in Figure 1 depicts the RST structure
of Text (1). In RST, discoursestructuresare non-
binary treeswhoseleavescorrespondto elementary
discourseunits (EDUs), and whoseinternal nodes
correspondto contiguoustext spans.Eachinternal
nodein an RST tree is characterizedby a rhetor-
ical relation. For example, the first sentencein
Text (1) providesBACKGROUND informationfor inter-
pretingtheinformationin sentences2 and3, which
arein a CONTRAST relation(seeFigure1). Eachre-
lation holdsbetweentwo adjacentnon-overlapping
text spanscalledNUCLEUS andSATELLITE. (Thereare
a few exceptionsto this rule: somerelations,such
as LIST and CONTRAST, are multinuclear.) The dis-
tinction betweennuclei and satellitescomesfrom
theempiricalobservationthatthenucleusexpresses
what is moreessentialto the writer’s purposethan
thesatellite.

Our systemis ableto analyzeboth the discourse
structureof a documentandthe syntacticstructure
of eachof its sentencesor EDUs.It thencompresses



the documentby droppingeither syntacticor dis-
courseconstituents.

3 A Noisy-ChannelModel
For a given document � , we want to find the
summarytext � that maximizes ����� �!�#" . Using
Bayesrule, we flip this so we end up maximizing�����$�%�&"'�����&" . Thus,weareleft with modellingtwo
probabilitydistributions: �����$�%�&" , theprobabilityof
a document� given a summary� , and �����(" , the
probability of a summary. We assumethat we are
giventhediscoursestructureof eachdocumentand
thesyntacticstructuresof eachof its EDUs.

The intuitive way of thinking aboutthis applica-
tion of Bayesrule, refferedto asthe noisy-channel
model, is that we startwith a summary� andadd
“noise” to it, yielding a longer document� . The
noiseaddedin ourmodelconsistsof words,phrases
anddiscourseunits.

For instance,given the document“JohnDoe has
securedthevoteof mostdemocrats.” we couldadd
words to it (namelythe word “already”) to gener-
ate“JohnDoehasalreadysecuredthevoteof most
democrats.” We could also chooseto add an en-
tiresyntacticconstituent,for instanceaprepositional
phrase,to generate“JohnDoe hassecuredthe vote
of mostdemocratsin his constituency.” Theseare
bothexamplesof sentenceexpansionasusedprevi-
ouslyby Knight & Marcu(2000).

Our system,however, alsohasthe ability to ex-
pandon a core messageby addingdiscoursecon-
stituents.For instance,it coulddecidetoaddanother
discourseconstituentto theoriginal summary“John
Doe has securedthe vote of most democrats”by
CONTRASTing the information in the summarywith
the uncertaintyregardingthe supportof the gover-
nor, thusyielding the text: “John Doe hassecured
thevoteof mostdemocrats.Butwithoutthesupport
of thegovernor, heis still on shakyground.”

As in any noisy-channelapplication, there are
threepartsthat we have to accountfor if we areto
build acompletedocumentcompressionsystem:the
channelmodel, the sourcemodeland the decoder.
We describeeachof thesebelow.

The sourcemodel assignsto a string theprobabil-
ity �����(" , the probability that the summary �
is good English. Ideally, the sourcemodel
shoulddisfavor ungrammaticalsentencesand

documentscontainingincoherentlyjuxtaposed
sentences.

The channelmodel assigns to any docu-
ment/summarypair a probability ���)�*�%�(" .
This modelsthe extent to which � is a good
expansionof � . For instance,if � is “The
mayor is now looking for re-election.”, �+� is
“The mayor is now looking for re-election.
He has to secure the vote of the democrats.”
and ��� is “The major is now looking for
re-election. Sharkshave sharp teeth.”, we
expect �����,�-�%�(" to be higher than �������.�%�&"
because �,� expands on � by elaboration,
while ��� shiftsto a differenttopic,yieldingan
incoherenttext.

The decoder searchesthrough all possible sum-
maries of a document � for the summary� that maximizes the posterior probability���)�*�%�("
�����(" .

Eachof thesepartsis describedbelow.

3.1 Sourcemodel

The job of the sourcemodel is to assigna score�����(" to a compressionindependentof the original
document.Thatis, thesourcemodelshouldmeasure
how good English a summaryis (independentof
whetherit is a goodcompressionor not). Currently,
we usea bigrammeasureof quality (trigramscores
were also testedbut failed to makea difference),
combinedwith non-lexicalizedcontext-freesyntac-
tic probabilitiesandcontext-freediscourseprobabil-
ities, giving �����("/� �102�436587'9����&"�:��<;>=@?�A����("�:�<BC;>=@?�A �)�&" . It would be better to usea lexical-
izedcontext freegrammar, but thatwasnotpossible
giventhedecoderused.

3.2 Channel model

The channel model is allowed to add syntactic
constituents(througha stochasticoperationcalled
constituent-expand) or discourseunits (throughan-
other stochastic operation called EDU-expand).
Both of theseoperationsareperformedon a com-
bineddiscourse/syntaxtreecalledtheDS-tree.The
DS-treefor Text (1) is shown in Figure1 for refer-
ence.

Supposewe start with the summary �D� “The
mayor is looking for re-election.” A constituent-
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Figure1: Thediscourse(full)/syntax(partial)treefor Text (1).

expand operation could insert a syntactic con-
stituent,suchas“this year” anywherein thesyntac-
tic treeof � . A constituent-expandoperationcould
alsoaddsinglewords: for instancetheword “now”
couldbeaddedbetween“is” and“looking,” yielding�[� “The mayor is now looking for re-election.”
The probability of insertingthis word is basedon
thesyntacticstructureof thenodeinto which it’ s in-
serted.

Knight and Marcu (2000) describein detail a
noisy-channelmodel that explains how short sen-
tencescanbeexpandedinto longeronesby inserting
and expandingsyntacticconstituents(and words).
Since our constituent-expand stochasticoperation
simplyreimplementsKnight andMarcu’smodel,we
do not focus on them here. We refer the reader
to (Knight andMarcu,2000)for thedetails.

In addition to addingsyntacticconstituents,our
systemis alsoableto adddiscourseunits. Consider
thesummary�\� “JohnDoehasalreadysecuredthe
voteof mostdemocratsin hisconsituency.” Through
a sequenceof discourseexpansions,we canexpand
uponthissummaryto reachtheoriginaltext. A com-
pletediscourseexpansionprocessthatwould occur
starting from this initial summaryto generatethe
original documentis shown in Figure2.

In this figure, we can follow the sequenceof
stepsrequiredto generateour original text, begin-
ning with our summary � . First, throughan op-
eration D-Project (“D” for “D”iscourse), we in-
creasethedepthof the tree,addingan intermediate

NUC=SPAN node. This projectionaddsa factor of��� Nuc=Span ] Nuc=Span� Nuc=Span" to theprobabil-
ity of thissequenceof operations(asis shown under
thearrow).

We arenow ableto performthesecondoperation,
D-Expand, with which we expandon thecoremes-
sagecontainedin � by addingasatellitewhicheval-
uatestheinformationpresentedin � . Thisexpansion
addsthe probability of performing the expansion
(calledthe discourseexpansionprobabilities, �<BC^ .
An examplediscourseexpansionprobability, writ-
ten ��� Nuc=Span ] Nuc=SpanSat=Eval � Nuc=Span ]
Nuc=Span" , reflectstheprobabilityof addinganeval-
uationsatelliteontoanuclearspan).

Therestof Figure2 showssomeof theremaining
stepsto producetheoriginaldocument,eachstepla-
beledwith theappropriateprobabilityfactors.Then,
the probability of the entireexpansionis the prod-
uct of all thoselisted probabilitiescombinedwith
theappropriateprobabilitiesfrom thesyntaxsideof
things. In orderto producethe final score �����$�%�&"
for a document/summarypair, we multiply together
eachof theexpansionprobabilitiesin thepathlead-
ing from � to � .

For estimatingthe parametersfor the discourse
models,we usedanRSTcorpusof 385Wall Street
Journalarticlesfrom the PennTreebank,which we
obtainedfrom LDC. The documentsin the corpus
rangein size from 31 to 2124 words,with an av-
erageof 458 wordsper document.Eachdocument
is pairedwith a discoursestructurethatwasmanu-
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Figure2: A sequenceof discourseexpansionsfor Text (1) (with probabilityfactors).

ally built in the style of RST. (See(Carlsonet al.,
2001)for detailsconcerningthe corpusandthean-
notationprocess.)From this corpus,we wereable
to estimateparametersfor a discoursePCFGusing
standardmaximumlikelihoodmethods.

Furthermore,150documentfrom thesamecorpus
are pairedwith extractive summarieson the EDU
level. Humanannotatorswereaskedwhich EDUs
weremost important; supposein the exampleDS-
tree (Figure 1) the annotatorsmarkedthe second
andfifth EDUs (the starredones). Thesestarsare
propagatedup, so that any discourseunit that has
a descendentconsideredimportant is also consid-
eredimportant. From theseannotations,we could
deducethat, to compressa NUC=CONTRAST that has
two children, NUC=SPAN and SAT=EVALUATION, we
candrop the evaluationsatellite. Similarly, we can
compressa NUC=CONTRAST that has two children,
SAT=CONDITION and NUC=SPAN by droppingthe first
discourseconstituent.Finally, we cancompressthe
ROOT deriving into SAT=BACKGROUND NUC=SPAN by
droppingtheSAT=BACKGROUND constituent.Wekeep
countsof eachof theseexamplesand, once col-
lected,we normalizethemto get the discourseex-
pansionprobabilities.

3.3 Decoder

The goal of the decoderis to combine ���)�&" with�����$�%�&" to get �������%�," . Therearea vastnumber
of potential compressionsof a large DS-tree,but

we can efficiently pack them into a shared-forest
structure,asdescribedin detailby Knight & Marcu
(2000).Eachentryin theshared-foreststructurehas
threeassociatedprobabilities,one from the source
syntaxPCFG,onefrom thesourcediscoursePCFG
and one from the expansion-templateprobabilities
describedin Section3.2. Oncewe have generateda
forestrepresentingall possiblecompressionsof the
original document,we want to extract the best(or
the � -best) trees,taking into accountboth the ex-
pansionprobabilitiesof the channelmodelandthe
bigram andsyntaxanddiscoursePCFGprobabili-
tiesof thesourcemodel.Thankfully, sucha generic
extractorhasalreadybeenbuilt (Langkilde,2000).
For ourpurposes,theextractorselectsthetreeswith
the bestcombinationof LM and expansionscores
afterperforminganexhaustivesearchoverall possi-
ble summaries.It returnsa list of suchtrees,onefor
eachpossiblelength.

4 System

The systemdevelopedworks in a pipelined fash-
ion asshown in Figure3. The first stepalong the
pipeline is to generatethe discoursestructure. To
do this, we usethedecision-baseddiscourseparser
describedby Marcu(2000)2. Oncewe have thedis-
coursestructure,we sendeachEDU off to a syn-

2The discourseparserachievesanf-scoreof ����� � for EDU
identification, �
��� � for identifying hierarchicalspans,����� � for
nuclearityidentificationand �
��� � for relationtagging.
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Figure3: Thepipelineof systemcomponents.

tactic parser (Collins, 1997). The syntaxtreesof
the EDUs are then merged with the discoursetree
in the forestgenerator to createa DS-treesimilar to
thatshown in Figure1. FromthisDS-treewegener-
ateaforestthatsubsumesall possiblecompressions.
This forest is then passedon to the forest ranking
systemwhich is usedasdecoder(Langkilde,2000).
Thedecodergivesusalist of possiblecompressions,
for eachpossiblelength. Examplecompressionsof
Text (1) areshown in Figure4 togetherwith their
respective log-probabilities.

In order to choosethe “best” compressionat
any possiblelength, we cannot rely only on the
log-probabilities, lest thesystemalwayschoosethe
shortestpossiblecompression.In orderto compen-
satefor this, we normalizeby length. However, in
practice,simply dividing the log-probabilityby the
lengthof the compressionis insufficient for longer
documents.Experimentally, we founda reasonable
metricwasto, for a compressionof length � , divide
eachlog-probability by � �'� � . This was the job of
the length chooserfrom Figure 3, and enabledus
to choosea singlecompressionfor eachdocument,
which was usedfor evaluation. (In Figure 4, the
compressionchosenby the lengthselectoris itali-
cizedandwastheshortestone3.)

5 Results

For testing,we began with two setsof data. The
first setis drawn from theWall StreetJournal(WSJ)
portionof thePennTreebankandconsistsof ��� doc-
uments,eachcontainingbetween��� and ��� words.
The secondset is drawn from a collection of stu-

3This tendsto be thecasefor very shortdocuments,asthe
compressionsnever getsufficiently long for thelengthnormal-
izationto have aneffect.

dentcompositionsandconsistsof � documents,each
containingbetween�.� and � � words. We call this
settheMITRE corpus(Hirschmanet al., 1999).We
would liked to have runevaluationson longerdocu-
ments.Unfortunately, theforestsgeneratedevenfor
relatively smalldocumentsarehuge.Becausethere
areanexponentialnumberof summariesthatcanbe
generatedfor any giventext4, the decoderrunsout
of memoryfor longerdocuments;therefore,we se-
lectedshortersubtexts from theoriginal documents.

We usedboth the WSJandMitre datafor eval-
uation becausewe wantedto seewhetherthe per-
formanceof our systemvarieswith text genre.The
Mitre dataconsistsmostly of short sentences(av-
eragedocumentlength from Mitre is � sentences),
quite in constrastto the typically long sentencesin
the Wall StreetJournalarticles(averagedocument
lengthfrom WSJis ¡ �4¢�� sentences).

For purposeof comparison,the Mitre datawas
compressedusingfive systems:

Random: Drops randomwords (eachword hasa
50%chanceof beingdropped(baseline).

Hand: Handcompressionsdoneby ahuman.

Concat: Eachsentenceis compressedindividually;
the results are concatenatedtogether, using
Knight & Marcu’s (2000)systemherefor com-
parison.

EDU: Thesystemdescribedin thispaper.

Sent: Becausesyntacticparserstend not to work
well parsingjust clauses,this systemmerges
togetherleavesin the discoursetreewhich are
in thesamesentence,andthenproceedsasde-
scribedin thispaper.

TheWall StreetJournaldatawasevaluatedonthe
above five systemsaswell astwo additions. Since
the correct discoursetreeswere known for these
data,we thought it wise to test the systemsusing
thesehuman-built discoursetrees,insteadof theau-
tomaticallyderived ones. The additionall two sys-
temswere:

PD-EDU: Sameas EDU except using the perfect
discoursetrees,availablefrom theRSTcorpus
(Carlsonetal., 2001).

4In theory, a text of £ wordshas �6¤ possiblecompressions.



len log prob bestcompression� ¥C¦�¦���� �6��§6� Mayor is nowlookingwhich is enough.¦¨� ¥C¦¨�ª©«�4¦���¦�� Themayoris now looking which is alreadyalmostenoughto win.¦¨§ ¥C¦¨�ª©«� �'�¬©'� Themayoris now looking but without support,heis still on shaky ground.¦¨� ¥C¦¨§6��� �6��¦�� Mayor is now looking but without thesupportof governer, heis still on shaky ground.��� ¥C¦8©'§��4¦����6� Themayoris now looking for re-electionbut without thesupportof thegoverner, heis still on shaky
ground.�
� ¥­�
�6��� �6���6� The mayor is now looking which is alreadyalmostenoughto win. But without thesupportof the
governer, heis still on shaky ground.

Figure4: Possiblecompressionsfor Text (1).

PD-Sent: ThesameasSentexceptusingtheperfect
discoursetrees.

Six humanevaluatorsratedthesystemsaccordingto
threemetrics. The first two, presentedtogetherto
theevaluators,weregrammaticalityandcoherence;
the third, presentedseparately, wassummaryqual-
ity. Grammaticalitywasa judgmentof how good
the English of the compressionswere; coherence
includedhow well the compressionflowed (for in-
stance,anaphorslackinganantecedentwould lower
coherence).Summaryquality, on the other hand,
was a judgmentof how well the compressionre-
tainedthe meaningof theoriginal document.Each
measurewas ratedon a scalefrom � (worst) to �
(best).

We candraw several conclusionsfrom the eval-
uation resultsshown in Table 2 along with aver-
agecompressionrate(Cmp, the lengthof the com-
presseddocumentdivided by the original length).5

First, it is clear that genre influencesthe results.
BecausetheMitre datacontainedmostlyshortsen-
tences,thesyntaxanddiscourseparsersmadefewer
errors,which allowedfor bettercompressionsto be
generated.For the Mitre corpus,compressionsob-
tainedstartingfrom discoursetreesbuilt above the
sentencelevel were better than compressionsob-
tainedstartingfrom discoursetreesbuilt above the
EDU level. For the WSJ corpus,compressionob-
tainedstartingfrom discoursetreesbuilt above the
sentencelevel weremoregrammatical,but lessco-
herentthancompressionsobtainedstartingfrom dis-
coursetreesbuilt abovetheEDUlevel. Choosingthe
mannerin which the discourseandsyntacticrepre-
sentationsof textsaremixedshouldbeinfluencedby
thegenreof thetexts oneis interestedto compress.

5We did not run thesystemontheMITRE datawith perfect
discoursetreesbecausewe did not have hand-built discourse
treesfor thiscorpus.

WSJ Mitre
CmpGrm CohQual CmpGrm CohQual

Random 0.51 1.601.58 2.13 0.47 1.431.77 1.80
Concat 0.44 3.302.98 2.70 0.42 2.872.50 2.08

EDU 0.49 3.363.33 3.03 0.47 3.403.30 2.60
Sent 0.47 3.453.16 2.88 0.44 4.273.63 3.36

PD-EDU 0.47 3.613.23 2.95
PD-Sent 0.48 3.963.65 2.84

Hand 0.59 4.654.48 4.53 0.46 4.974.80 4.52

Table2: EvaluationResults

The compressionsobtained starting from per-
fectly derived discoursetreesindicate that perfect
discoursestructureshelpgreatlyin improving coher-
enceandgrammaticalityof generatedsummaries.It
wassurprisingto seethat the summaryquality was
affectednegatively by the useof perfectdiscourse
structures(althoughnotstatisticallysignificant).We
believethishappenedbecausethetext fragmentswe
summarizedwereextractedfrom longerdocuments.
It is likely thathadthediscoursestructuresbeenbuilt
specificallyfor theseshorttext snippets,they would
havebeendifferent.Moreover, therewasnocompo-
nentdesignedto handlecohesion;thusit is to beex-
pectedthatmany compressionswould containdan-
gling references.

Overall, all our systemsoutperformedboth the
Randombaselineand the Concatsystems,which
empirically show that discoursehas an important
role in documentsummarization.We performed® -
testson theresultsandfoundthaton theWall Street
Journaldata, the differencesin scorebetweenthe
Concat and Sent systemsfor grammaticalityand
coherencewere statisticallysignificantat the 95%
level,but thedifferencein scorefor summaryquality
wasnot. For theMitre data,thedifferencesin score
betweentheConcatandSentsystemsfor grammati-
cality andsummaryquality werestatisticallysignif-
icantat the95%level, but thedifferencein scorefor



coherencewasnot. Thescoredifferencesfor gram-
maticality, coherence,andsummaryqualitybetween
our systemsandthebaselineswerestatisticallysig-
nificantat the95%level.

The results in Table 2, which can be also as-
sessedby inspectingthe compressionsin Figure4
show that, in spite of our success,we arestill far
away from humanperformancelevels.An errorthat
our systemmakesoftenis thatof droppingcomple-
mentsthat cannotbe dropped,suchas the phrase
“for re-election”, which is the complementof “is
looking”. We arecurrentlyexperimentingwith lex-
icalized modelsof syntax that would prevent our
compressionsystemfrom droppingrequiredverbar-
guments.We alsoconsidermethodsfor scalingup
thedecoderto handlingdocumentsof morerealistic
length.
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