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Abstract and tested on a translation of the Penn Treebank
to a corpus of CCG normal-form derivations. CCG

This paper compares a number of gen-  grammars are characterized by much larger category

1

erative probability models for a wide-
coverage Combinatory Categorial Gram-
mar (CCG) parser. These models are
trained and tested on a corpus obtained by
translating the Penn Treebank trees into
CCG normal-form derivations. According
to an evaluation of unlabeled word-word
dependencies, our best model achieves a
performance of 89.9%, comparable to the
figures given by Collins (1999) for a lin-
guistically less expressive grammar. In
contrast to Gildea (2001), we find a signif-
icant improvement from modeling word-
word dependencies.

Introduction

sets than standard Penn Treebank grammars, distin-
guishing for example between many classes of verbs
with different subcategorization frames. As a re-
sult, the categorial lexicon extracted for this purpose
from the training corpus has 1207 categories, com-
pared with the 48 POS-tags of the Penn Treebank.
On the other hand, grammar rules in CCG are lim-
ited to a small number of simple unary and binary
combinatory schemata such as function application
and composition. This results in a smaller and less
overgenerating grammar than standard PCFGs (ca.
3,000 rules when instantiated with the above cate-
gories in sections 02-21, instead 12,400 in the
original Treebank representation (Collins, 1999)).

2 Evaluating a CCG parser

The currently best single-model statistical parsebince CCG produces unary and binary branching
(Charniak, 1999) achieves Parseval scores of oveees with a very fine-grained category set, CCG
89% on the Penn Treebank. However, the gramm&arseval scores cannot be compared with scores
underlying the Penn Treebank is very permissivegf standard Treebank parsers. Therefore, we also
and a parser can do well on the standard Parsewalaluate performance using a dependency evalua-
measures without committing itself on certain setion reported by Collins (1999), which counts word-
mantically significant decisions, such as predictingvord dependencies as determined by local trees and
null elements arising from deletion or movementtheir labels. According to this metric, a local tree
The potential benefit of wide-coverage parsing wittwith parent nodd®, head daughted and non-head
CCG lies in its more constrained grammar and itdaughterS (and position ofS relative toP, ie. left
simple and semantically transparent capture of exr right, which is implicit in CCG categories) de-
traction and coordination. fines a(P,H,S) dependency between the head word
We present a number of models over syntamf S, ws, and the head word d¢, wy. This measure
tic derivations of Combinatory Categorial Grammais neutral with respect to the branching factor. Fur-
(CCG, see Steedman (2000) and Clark et al. (200Z2hermore, as noted by Hockenmaier (2001), it does
this conference, for introduction), estimated fronrmot penalize equivalent analyses of multiple modi-
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Figure 1: A CCG derivation in our corpus

fiers. In the unlabeled cagk (where it only matters There is a separate level for nouns and noun phrases,
whether worda is a dependent of world, not what but, like the nonterminaNPin the Penn Treebank,
the label of the local tree is which defines this depemoun phrases do not carry any number agreement.
dency), scores can be compared across grammdrse derivations in CCGbank are “normal-form” in
with different sets of labels and different kinds ofthe sense that analyses involving the combinatory
trees. In order to compare our performance with theules of type-raising and composition are only used
parser of Clark et al. (2002), we also evaluate ouvhen syntactically necessary.

best model according to the dependency evaluation _ o
introduced for that parser. For further discussion wé Generative models of CCG derivations

refer the reader to Clark and Hockenmaier (2002) .

Expansion HeadCat NonHeadCat
_ P(exp|...) P(H]...) P(S|...)
3 CCGbank—a CCG treebank Saseline . pexp o RexpH
onj P.conj P.expconje P.expH,conjp
. . + Grandparent| P.GP RGPR.exp RGPRexpH
CCGbank is a corpus of CCG normal-form deriva- | +2 PHA-Rp PexpiA-Rp  PexpH#A-Rp

tions obtained by translating the Penn Tree-
bank trees using an algorithm described by
Hockenmaier and Steedman (2002).  Almost all The models described here are all extensions of
types of construction—with the exception of gap-a very simple model which models derivations by a
ping and UCP (“Unlike Coordinate Phrases”) are top-down tree-generating process. This model was
covered by the translation procedure, which proeriginally described in Hockenmaier (2001), where
cesses 98.3% of the sentences in the training corpigsvas applied to a preliminary version of CCGbank,
(WSJ sections 02-21) and 98.5% of the sentencesd its definition is repeated here in the top row of
in the test corpus (WSJ section 23). The grammafable 1. Given a (parent) node with categd?y
contains a set of type-changing rules similar to thehoose theexpansionexp of P, whereexp can be
lexical rules described in Carpenter (1992). Figur&eaf (for lexical categories)unary (for unary ex-
1 shows a derivation taken from CCGbank. Catepansions such as type-raisinggft (for binary trees
gories, such a§S[b]\NP)/PP) /NP, encode unsat- where the head daughter is left) dght (binary
urated subcat frames. The complement-adjunct digrees, head right). IP is a leaf node, generate its
tinction is made explicit; for instancas a nonexec- head word w. Otherwise, generate the category of
utive directoris marked up a®P-CLRin the Tree- its head daughterH. If P is binary branching, gen-
bank, and hence treated as a PP-complemgptrof erate the category of itson-head daughterS (a
whereasNov. 29is marked up as aNP-TMPand complement or modifier dff).
therefore analyzed as VP modifier. THeLR tag The model itself includes no prior knowledge spe-
is not in fact a very reliable indicator of whether acific to CCG other than that it only allows unary and
constituent should be treated as a complement, boihary branching trees, and that the sets of nontermi-
the translation to CCG is automatic and must do theals and terminals are not disjoint (hence the need to
best it can with the information in the Treebank. include leaf as a possible expansion, which acts as a
The verbal categories in CCGbank carry feastop probability).
tures distinguishing declarative verbs (and auxil- All the experiments reported in this section were
iaries) from past participles in past tense, past paconducted using sections 02-21 of CCGbank as
ticiples for passive, bare infinitives and ing-formstraining corpus, and section 23 as test corpus. We

Table 1: The unlexicalized models



replace all rare words in the training data with thei.1 Adding non-lexical information

POS-tag. For all experiments reported here and Lf'he coordination feature We define a boolean

sect_ion >, the frequency threshold was set t°_5' I‘ikaeature,conj, which is true for constituents which
Collins (1999), we assume that the test data is PO%)'(pand to coordinations on the head path

tagged, and can therefore replace unknown words in

the test data with their POS-tag, which is more ap- S, +conj
propriate for a formalism like CCG with a large set S/NP, +corf NP
of lexical categories than one generic token for all S/NP, —conj S/NPJc], +conj shares
unknown words. S/(S\NP) (S\NP)/NP conj”  S/NP[c], —conj
The performance of the baseline model is shown yp buys but S/(S\NP) (S\NP)/NP
in the top row of table 3. For six out of the 2379 g\ NP sells
|

sentences in our test corpus we do not get a parse. Lotus

The reason is that a lexicon consisting of the wordrs feature is generated at the root of the sentence
category pairs observed in the training corpus doggii, P(conj| TOP). For binary expansionsonj

not contain all the entries required to parse the tegt generated witlP(conjy | H,S conjp) andconis is
corpus. We discuss a simple, but imperfect, solutioaenerated wittP(conjs | S# P, exm, H, conjp). Ta-

to this problem in section 7. ble 1 shows hoveonjis used as a conditioning vari-
able. This is intended to allow the model to cap-
ture the fact that, for a sentence without extraction,
State-of-the-art statistical parsers use many oth&rCCG derivation where the subject is type-raised
features, or conditioning variables, such as hea@nd composed with the verb is much more likely in
words, subcategorization frames, distance measuréght node raising constructions like the above.

and grandparent nodes. We too can extend the

baseline model described in the previous sectio-ﬁhe impact of the grandparent feature

by including more features. Like the models Or]ohnson (1998) sfhoxved that a PCFE _estirrr]lgtsd
Goodman (1997), the additional features in ou om a version of the Penn Treebank in whic

model are generated probabilistically, whereas iwed I?bel Ofl ‘; ?Oqelj parert;t IS _at;[a_tched o the
the parser of Collins (1997) distance measures afide’s own label yields a substantial improvement

assumed to be a function of the already generatéhhpl ITR:I fr_om :S'S%d/ 29_‘7%| to 8d0.0%/ 79f'2%)'
structure and are not generated explicitly. The inclusion of an additional grandparent feature

In order to estimate the conditional probabilitiesgiveS Charniak (1999) a slight improvement in the

of our model, we recursively smooth empirical es_i\j/laxmum_ Entrc;py |nsp|r(-:d mo:\j/IeLI,E butdal SlT'gTj
timatese of specific conditional distributions with €crease in performance for an model. 1able

(possible smoothed) estimates of less specific distrp- (Qrant_:lparent) ShO,WS that a grammar transfor-
butions&_y, using linear interpolation: mation like Johnson’s does yield an improvement,

but not as dramatic as in the Treebank-CFG case.
& =N+ (1-N)&_1 At the same time coverage is reduced (which might
not be the case if this was an additional feature in
A is a smoothing weight which depends on the pathe model rather than a change in the representation
ticular distribution? of the categories). Both of these results are to be
When defining models, we will indicate a back-expected—CCG categories encode more contextual
off level with a # sign between conditioning vari-information than Treebank labels, in particular
ables, eg.A,B # C # D means that we interpolate about parents and grandparents; therefore the his-
P(... | A,B,C,D) with P(... | A,B,C), which is an in- tory feature might be expected to have less impact.
terpolation ofP(... | A,B,C) andP(... | A B). Moreover, since our category set is much larger,
Wure that the minor variations in coverage amonappendlng the parent node will lead to an even more

the other models (except Grandparent) are artefacts of the beaﬂﬂe‘grained partitioning of the data, which then
2We compute\ in the same way as Collins (1999), p. 185. results in sparse data problems.

5 Extending the baseline model



Distance measures for CCG Our distance mea- able LexCat) increases performance of the baseline
sures are related to those proposed by Goodmamodel as measured by, H,S) by almost 3%. In
(1997), which are appropriate for binary trees (unthis model,cs, the lexical category of depends on
like those of Collins (1997)). Every node has a lefthe categoryS and on the local tree in whicB is
distance measuré\-, measuring the distance fromgenerated. However, slightly worse performance is
the head word to the left frontier of the constituentobtained folLexCatDep, a model which is identical
There is a similar right distance measx® We to the originalLexCat model, except thats is also
implemented three different ways of measuring dissonditioned orcy, the lexical category of the head
tance: Aadjacency Measures string adjacency (0, 1 onode, which introduces a dependency between the
2 and more intervening wordslver, counts inter- lexical categories.
vening verbs (0 or 1 and more); afg counts in- Since there is so much information in the lexical
tervening punctuation marks (0, 1, 2 or 3 and morekategories, one might expect that this would reduce
TheseAs are generated by the model in the followthe effect of conditioning the expansion of a con-
ing manner: at the root of the sentence, geneaséte stituent on its head word. However, we did find a
with P(A- | TOP), and AR with P(AR | TOP,AL).  substantial effect. Generating the head word at the
Then, for each expansion, if it is a unary expanmaximal projection leadWord) increases perfor-
sion, Aty = Alp and ARy = ARp with a probabil- mance by a further 2%. Finally, conditionings
ity of 1. If it is a binary expansion, only thA in  on wy, hence including word-word dependencies,
the direction of the sister changes, with a probabilityHWDep) increases performance even more, by an-
of P(Aty | ALpH#P,S) if exp=right, and analo- other 3.5%, or 8.3% overall. This is in stark contrast
gously forexp=1eft. AtsandARs are conditioned to Gildea’s findings for Collins’ Model 1.
on S and theA of H and P in the direction ofS We conjecture that the reason why CCG benefits
P(Als | S#ARp, ARY) andP(ARs | S ALs#ARp, ARY).  more from word-word dependencies than Collins’
They are then used as further conditioning variabledodel 1 is that CCG allows a cleaner parametriza-
for the other distributions as shown in table 1. tion of these surface dependencies. In Collins’
Table 3 also gives the Parseval and dependentjodel 1, ws is conditioned not only on the local
scores obtained with each of these measurgs; tree(P,H,S), cy andwy, but also on the distanae
has the smallest effect. However, our model dodsetween the head and the modifier to be generated.
not yet contain anything like the hard constraint otHowever, Model 1 does not incorporate the notion

punctuation marks in Collins (1999). of subcategorization frames. Instead, the distance
_ o , measure was found to yield a good, if imperfect, ap-
5.2 Adding lexical information proximation to subcategorization information.

Gildea (2001) shows that removing the lexical de- Using our notation, Collins’ Model 1 generateg

pendencies in Model 1 of Collins (1997) (that iswith the following probability:

not conditioning onwy, when generatingnvs) de- Pcollinst(Ws | ¢s,A, P,H, S, CH, W) =

creases labeled precision and recall by only 0.5%. ) Bws|cs,A,PH,S cq,wh)

It can therefore be assumed that the main influence (1) [NaP(ws | cs, A P.H,S cn) + (1—A2)P(ws | cs)]

of lexical head features (words and preterminals) in

Collins’ Model 1 is on the structural probabilites. —Whereas the CCG dependency model generates
In CCG, by contrast, preterminals are lexical catWs as follows:

egories, encoding complete subcategorization infor-

mation. They therefore encode more information

about the expansion of a nonterminal than Treebank

POS-tags and thus are more constraining. Since ourP, H, Sandcy are CCG categories, and
Generating a constituent’s lexical categomgt its hence encode subcategorization information, the lo-

maximal projection (ie. either at the root of the treecal tree always identifies a specific argument slot.

TOP, or when generating a non-head daugli®er Therefore it is not necessary for us to include a dis-

and using the lexical category as conditioning varitance measure in the dependency probabilities.

PccadedWs | Cs,P,H, S o4, WH) =
AP(ws | cs,P,H, S ¢, Wh) + (1—A)P(ws | Cs)



Expansion HeadCat NonHeadCat LexCat Head word

P(exp|...) PH]|...) P(S|...) P(cs]|...) P(ctop|..) P(ws]...) PWyop|..)
LexCat P,cp P,expcp P,exp H#cp S#H, exp P P=TOP - -
LexCatDep | P,cp P,expcp P,exp H#cp SHH, exp P#cp P=TOP — -
HeadWord P, cpwp P, exp cp#wp P, exp H#cp#wp SHH, expP P=TOP cg Cp
HWDep P, cp#wp P, exp cp#wp P, exp H#cp#wp S#H,expP  P=TOP cs#P,H,Swp cp

HWDepA P, cp#ALRp#wp P, exp cp#AN-Rp#wp P, exp HAANRp#cp#wp S#H, exaP P=TOP cg#P,H,Swp cp
HWDepConj | P,cp,conp#wp P,expcp,conp#wp P,expH,conjptcpiwp SEH,expP  P=TOP cs#P,H,Swp cp

Table 2: The lexicalized models

Model NoParse LexCat LP LR BP BR (PH,S (9 () CMon() <2CD

Baseline 6 87.7 728 724 783 779 75.7 81.1 843 23.0 51.1
Conj 9 87.8 738 739 793 793 76.7 82.0 851 243 53.7
Grandparent 91 88.8 771 776 824 829 79.9 84.7 87.9 30.9 63.4
Apct 6 88.1 73.7 731 792 786 765 818 849 231 53.7
Dverb 6 88.0 759 755 816 811 76.9 82.3 853 252 55.1
Dpdjacency 6 88.6 775 773 829 828 789 83.8 86.9 24.38 59.6
LexCat 9 88.5 758 76.0 813 815 786 83.7 86.8 274 57.§
LexCatDep 9 88.5 757 759 812 814 784 835 86.6 26.3 57.4
HeadWord 8 89.6 779 78.0 830 831 805 85.2 883 304 63.(
HWDep 8 92.0 816 819 855 859 840 87.8 90.1 37.9 69.7
HWDepA 8 90.9 814 816 86.1 86.3 830 87.0 89.8 357 68.7
HWDepConj 9 91.8 80.7 812 848 853 836 875 89.9 36.5 68.6
HWDep (+ tagger)|| 7 91.7 814 818 856 859 836 875 899 381 69.1

Table 3. Performance of the models: LexCat indicates accuracy of the lexical categories; LP, LR, BP and
BR (the standard Parseval scores labeled/bracketed precision and recall) are not commensurate with other
Treebank parsergP,H,S), (S), and() are as defined in section 2. CM ¢his the percentage of sentences

with complete match of), and<2 CD is the percentage of sentences with under 2 “crossing dependencies”

as defined by).

The (P,H,S) labeled dependencies we report ar@lone. We conjecture that this arises from data
not directly comparable with Collins (1999), sincesparseness. It cannot be concluded from these re-
CCG categories encode subcategorization framesults alone that the lexical dependencies make struc-
For instance, if the direct object of a verb has beetural information redundant or superfluous. Instead,
recognized as such, but a PP has been mistakenitag quite likely that we are facing an estimation
a complement (whereas the gold standard saysptoblem similar to Charniak (1999), who reports
is an adjunct), the fully labeled dependency evakhat the inclusion of the grandparent feature worsens
uation (P H,S) will not award a point. Therefore, performance of an MLE model, but improves per-
we also include in Table 3 a more comparable evafermance if the individual distributions are modelled
uation (S) which only takes the correctness of theusing Maximum Entropy. This intuition is strength-
non-head category into account. The reported figghed by the fact that, on casual inspection of the
ures are also deflated by retaining verb features likecores for individual sentences, it is sometimes the
tensed/untensed. If this is done (by stripping oftase that the lexicalized models perform worse than
all verb features), an improvement of 0.6% on théhe unlexicalized models.

(P,H,S) score for our best model is obtained.

5.4 The impact of tagging errors
5.3 Combining lexical and non-lexical

information All of the experiments described above use the POS-

tags as given by CCGbank (which are the Treebank
When incorporating the adjacency distance medags, with some corrections necessary to acquire cor-
sure or the coordination feature into the dependencgct features on categories). It is reasonable to as-
model HWDepA and HWDepConj), overall per- sume that this input is of higher quality than can
formance is lower than with the dependency moddde produced by a POS-tagger. We therefore ran the



dependency model on a test corpus tagged with tmeodel,HWDep, predicts the correct analyses, using
POS-tagger of Ratnaparkhi (1996), which is trainethe development section 00.

on the original Penn Treebank (sd&/Dep (+ tag- o .
er) in Table 3). Performance degrades Sligh,[IyCoordlnatlon There are two instances of argu-
g ' ment cluster coordination (constructions likest

which is to be expected, since our approach mak . . .
so much use of the POS-tag information for un?%’OOO in July and$5,000 in Augustin the devel

known words. However, a POS-tagger trained ORpment corpus.  Of thes¢jWDep recovers none

) . ) correctly. This is a shortcoming in the model, rather
CCGbank might yield slightly better results. than in CCG: the relatively high probability both of

55 Limitations of the current model the NP modifier analysis of PPs like July and of

_ NP coordination is enough to misdirect the parser.
Unlike Clark et al. (2002), our parser does not al- There are 203 instances of verb phrase coordina-
ways model the dependencies in the logical formiqn (s11\NP, with [.] any verbal feature) in the de-
For example, in the interpretation of a coordinatge|opment corpus. On these, we obtain a labeled re-
structure liké"ouy and sell shares,'shareswillhead ¢4 and precision of 67.0%/67.3%. Interestingly, on
an object of bottbuyandsell Similarly, in examples e 24 instances of right node raising (coordination

like “b_uy the company that wins"the relative con- (SLJ\NP)/NP), our parser achieves higher per-
struction makegompanydepend upon botbuyas  tqrmance, with labeled recall and precision of 79.2%

object andwins as subject. As is well known (Ab- gnq 73.19%. Figure 2 gives an example of the output
ney, 1997), DAG-like dependencies cannot in genss oy parser on such a sentence.

eral be modeled with a generative approach of the

kind taken herg Extraction Long-range dependencies are not cap-
tured by the evaluation used here. However, the ac-
5.6 Comparison with Clark et al. (2002) curacy for recovering lexical categories for words

Clark et al. (2002) presents another statistical cciith “extraction” categories, such as relative pro-
parser, which is based on a conditional (rathe'?ouns’ gives some indication of how well the model
detects the presence of such dependencies.

than generative) model of the derived depen T ; bi lati
dency structure, including non-surface dependen- € most common category for subject relative
(NP\NP)/(S[dcl]\NP), has been recov-

cies. The following table compares the two parsergronou_ns, .
according to the evaluation of surface and dee red with precision and recall of 97.1% (232 out of

dependencies given in Clark etal. (2002). W 32) 1ndd(91463% 532/246)' _ _ h il
use Clark et al’s parser to generate these d?- mbedded subject extraction requires the specia

pendencies from the output of our parser (Segxical category ((S[dcl[\NP)/NP)/(S[dcl]\NP)

Clark and Hockenmaier (20029) for yerbs Ilkethlr_1I§ On this category, the model
achieves a precision of 100% (5/5) and recall of
LP LR uP UR 83.3% (5/6). The case the parser misanalyzed is due
Clark | 81.9% | 81.8% | 89.1% | 90.1% to lexical coverage: the vedgreeoccurs in our lex-
Hockenmaier| 83.7% | 84.2% | 90.5% | 91.1%

icon, but not with this category.

The most common category for object relative
6 Performance on specific constructions  pronouns, (NP\NP)/(S[dcl]/NP), has a recall of

_ _ _ 76.2% (16 out of 21) and precision of 84.2% (16/19).

One of the advantages of CCG s that it provides a Free object relativesNP/(S[dcl]/NP), have a
simple, surface grammatical analysis of extractiopecall of 84.6% (11/13), and precision of 91.7%
and coordination. We investigate whether our be%ql/lZ) However, Object extraction appears more

31t remains to be seen whether the more restricted reentraﬁ-equently as areduced relativia¢ man John sa)y
cies of CCG will ultimately support a generative model. and there are no lexical categories indicating this ex-

“Due to the smaller grammar and lexicon of Clark et al., outraction. Reduced relative clauses are captured by a

i 0, -

parser can only be evaluated on slightly over 94% of the se%)/pe-changing rul&lP\NP — S[dcl]/NP. This rule

tences in section 23, whereas the figures for Clark et al. (200 } ] )
are on 97%. was applied 56 times in the gold standard, and 70



Sldcl]

NIP/ T slde\ne
the suit ~ S[dcl]\NP (S\NP)\(S\NP)
(S[del]\NP)/NP " NP ___Slng]\NP

seeks acourtorder  (S[ng]\NP)/PP __— PP —~—
—_—

((SIngl\NP)/PP)/NP \NIP PP/(S[ng]\NP) S[ng]\NP
preventing the guild from  (S[ng]\NP)/NP NP
(S[ng]\NP)/NP  (S[ng]\NP)/NP[c]  Mr. Trudeau
punishing  conj (S[ng]\NP)/NP
or  (Sng]\NP)/PP  PP/NP
retaliéting agéinst

Figure 2: Right node raising output produced by our paienishingandretaliating are unknown words.

times by the parser, out of which 48 times it corre- For standard Treebank parsers, the latter problem

sponded to a rule in the gold standard (or 34 timesloes not have much impact, if any, since the Penn

if the exact bracketing of thg[dcl] /NP is taken into Treebank tagset is fairly small, and the grammar un-

account—this lower figure is due to attachment dederlying the Treebank is very permissive. However,

cisions made elsewhere in the tree). for CCG this is a serious problem: the first three
These figures are difficult to compare with stan¥ows in table 4 show a significant difference in per-

dard Treebank parsers. Despite the fact that termance for sentences with complete lexical cover-

original Treebank does contain traces for moveage (“No missing”) and sentences with missing lex-

ment, none of the existing parsers try to geneiical entries (“Missing”).

ate these traces (with the exception of Collins’ Usingthe POS-tags in the corpus, we can estimate

Model 3, for which he only gives an overall scorethe lexical probabilitiesP(w | ¢) using a linear in-

of 96.3%/98.8% P/R for subject extraction anderpolation between the relative frequency estimates

81.4%/59.4% P/R for other cases). The only “long®(w | ¢) and the following approximatioh:

range” dependency for which Collins gives numbers ~ A A

is subject extractioSBAR, WHNP, SG,)Rwhich Pags(w|c) = ZtetagsP(W [OP(t]c)

has labeled precision and recall Of_90'56% amg\le smooth the lexical probabilities as follows:

90.56%, whereas the CCG model achieves a labeled

precision and recall of 94.3% and 96.5% onthe most P(w|c) = AP(w|c)+ (1—A)Piags(W|C)

frequency subject extraction depender{dyP\NP,

(NP\NP)/(S[dcl]\NP), S[dcl]\NP), which occurs  Table 4 shows the performance of the baseline

262 times in the gold standard and was produce®odel with a frequency cutoff of 5 and 10 for rare

256 times by our parser. However, out of thevords and with a smoothed and non-smoothed lexi-

15 cases of this relation in the gold standard th&on® This frequency cutoff plays an important role

our parser did not return, 8 were in fact analyzediere - smoothing with a small cutoff yields worse

as subject extraction of bare infinitival®/P\NP, performance than not smoothing, whereas smooth-

(NP\NP)/(S[b]\NP), S[b]\NP), yielding a com- ing with a cutoff of 10 does not have a significant

bined recall of 97.3%. impact on performance. Smoothing the lexicon in
this way does make the parser more robust, result-
7 Lexical coverage ing in complete coverage of the test set. However, it

does not affect overall performance, nor does it alle-

The most serious problem facing parsers like th@iate the problem for sentences with missing lexical
present one with large category sets is not SO mughntries for seen words.

h ndard problem of unseen wor rather

the standard problem of unsee ords, but rathe t 5We compute\ in the same way as Collins (1999), p. 185.
problem of words that have been seen, but not with 6Smoothing was only done for categories with a total fre-
the necessary category. quency of 100 or more.



Baseline, Cutoff =5 Baseline, Cutoff = 10 HWDep, Cutoff = 10
(Missing = 463 sentences) (Missing = 387 sentences)| (Missing = 387 sentences
Non-smoothed] Smoothed| Non-smoothed] Smoothed Smoothed
Parse failures 6 - 5 - -
(PH,S), All 75.7 73.2 76.2 76.3 83.9
(P,H,S), Missing 66.4 64.2 67.0 67.1 75.1
(PH,S), No missing 78.5 75.9 78.5 78.6 86.6

Table 4: The impact of lexical coverage, using a different cutoff for rare words and smoothing (section 23)

8 Conclusion and future work References

even Abney. 1997. Stochastic Attribute-Value Grammars.

, t
We have compared a humber of generative probabﬁ- Computational Linguistic23(4).

ity models of CCG derivations, and shown that our _ _

best model recovers 89.9% of word-word dependerf°P Carpenter. 1992. Categorial Grammars, Lexical Rules,
. . . .. and the English Predicative. In R. Levine, eé@igrmal

recovers 89.7% of word-word dependencies. These ) _ _

. . . )Eugene Charniak. 1999. A Maximum-Entropy-Inspired Parser.

figures are surprisingly close to the figure of 90.9% "t 5 99-12, Brown University.

reported by Collins (1999) on section 00, given that, o o _

in order to allow a direct comparison, we have useBa‘é‘)‘(jtrca';'tzggﬁzegogajiiﬁtr'g'g;ﬁ‘rfgg%:’v%ﬁ”@ﬁgnggﬂga"y'

the same interpolation technique and beam strategypp. 456-463. ’ '

as Collins (1999), which are very unlikely to be as _ _ _
. Stephen Clark and Julia Hockenmaier. 2002. Evaluating a
well-tuned to our kind of grammar.

X o Wide-Coverage CCG ParserLREC Beyond PARSEVAL
As is to be expected, a statistical model of a CCG workshop Las Palmas, Spain.

extracted from the Treebank is less robust than a . .

. o ephen Clark, Julia Hockenmaier, and Mark Steedman.
model with an overly permissive grammar such as 2002. Building Deep Dependency Structures Using a Wide-
Collins (1999). This problem seems to stem mainly Coverage CCG Parset0th ACL Philadelphia.
from the mcomplete cov.erage of the lexicon. Wq\/lichael Collins. 1997. Three Generative Lexicalized Models
have shown that smoothing can compensate for en-for Statistical Parsing35th ACL, Madrid, pp. 16-23.
tirely unknown words. Hovyever, th!s apprqach doe?/Iichael Collins. 1999. Head-Driven Statistical Models for
not help on sentences which require previously un- Natural Language Parsing Ph.D. thesis, University of
seen entries for known words. We would expect a Pennsylvania.

less naive approach such a_s applying morphOIOQIBaniel Gildea. 2001. Corpus Variation and Parser Perfor-
cal rules to the observed entries, together with better mance.EMNLP, Pittsburgh, PA.

smoothing techniques, to yield bettgr r'eSUItS' Julia Hockenmaier. 2001. Statistical Parsing for CCG with
We have also shown that a statistical model of simple Generative ModelsStudent Workshop, 39th ACL/

CCG benefits from word-word dependencies to a 10th EACL Toulouse, France, pp. 7-12.

much greater extent than a less linguistically motizyjia Hockenmaier and Mark Steedman 2002. Acquiring Com-

vated model such as Collins’ Model 1. This indi- pact Lexicalized Grammars from a Cleaner Treebaftkrd

cates to us that, although the task faced by a CCG -REG Las Palmas, Spain.

parser might seem harder prima facie, there amshua Goodman.

advantages to using a more linguistically adequate 'WPT, Boston.

grammar. Mark Johnson. 1998. PCFG Models of Linguistic Tree Repre-
sentationsComputational Linguistic24(4).

1997. Probabilistic Feature Grammars.

ACknOWIedgementS Adwait Ratnaparkhi. 1996. A Maximum Entropy Part-Of-

Thanks to Stephen Clark, Miles Osborne and the SPeech Ta0geEMNLE, Philadelphia, pp. 133-142.
ACL-02 referees for comments. Various parts of thélark Steedman. 2000The Syntactic Proces§he MIT Press,
research were funded by EPSRC grants GR/M96889 Cambridge Mass.

and GR/R02450 and an EPSRC studentship.



