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1.1 Source-Channel Model

According to Bayes’ decision rule, we can equiva-
lently to Eq. 1 perform the following maximization:

Abstract

We present a framework for statistical
machine translation of natural languages
based on dlrect.maX|mur'n entropy mod- el = argmax {Pr(el)- Pr(f{leD)} (2)
els, which contains the widely used sour- el

ce-channel approach as a special case. All

knowledge sources are treated as feature This approach is referred to as source-channel ap-

functions, which depend on the source
language sentence, the target language
sentence and possible hidden variables.
This approach allows a baseline machine
translation system to be extended easily by
adding new feature functions. We show

proach to statistical MT. Sometimes, it is also re-
ferred to as the ‘fundamental equation of statisti-
cal MT' (Brown et al., 1993). HerePr(el) is

the language model of the target language, whereas
Pr(f{el) is the translation model. Typically, Eq. 2

is favored over the direct translation model of Eq. 1

with the argument that it yields a modular approach.
Instead of modeling one probability distribution,
we obtain two different knowledge sources that are
trained independently.

The overall architecture of the source-channel ap-
proach is summarized in Figure 1. In general, as
shown in this figure, there may be additional trans-
We are given a source (‘French’) sentent€ = formations to make the translation task simpler for
fis--o s fjs -, 7, which is to be translated into a the algorithm. Typically, training is performed by
target (‘English’) sentence{ = e1,... ,ei,... ,er.  applying a maximum likelihood approach. If the
Among all possible target sentences, we will ChOOSl%nguage modePr(el) = Pw(e{) depends on pa-
the sentence with the highest probabifity: rametersy and the translation modétr(f;|el) =
po(f{lel) depends on parametefis then the opti-
mal parameter values are obtained by maximizing
the likelihood on a parallel training corplf§,e15

The argmax operation denotes the search probler@,rOWn etal., 1993):
i.e. the generation of the output sentence in the target

that a baseline statistical machine transla-
tion system is significantly improved us-
ing this approach.

1 Introduction

el = argmax {Pr(ellf)} @

€1

S
language. 6 = argmax [ po(files) (3)
e — 9 -
1The notational convention will be as follows. We use the s=1
symbol Pr(-) to denote general probability distributions with S
(nearly) no specific assumptions. In contrast, for model-based 4 = argmax H pv(QS) 4)

probability distributions, we use the generic sympo). ~ =1
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Figure 1: Architecture of the translation approach based on source-channel models.

We obtain the following decision rule:

el = argqlaX{pa(ef )-ps(fileD}  (5)

€1

State-of-the-art statistical MT systems are based on
this approach. Yet, the use of this decision rule has
various problems:

1. The combination of the language moge(e!)
and the translation mode};( f{|e]) as shown
in Eq. 5 can only be shown to be optimal if the
true probability distributiongs (el) = Pr(el)
and p;(f{le}) = Pr(f{|el) are used. VYet,
we know that the used models and training

instead of Eq. 5 (Och et al., 1999):

é1 = argmax{p;(e1) - py(eil fi)}  (6)

I
€1

Here, we replacedy; (f{|el) by pj(el|f7).
From a theoretical framework of the source-
channel approach, this approach is hard to jus-
tify. Yet, if both decision rules yield the same
translation quality, we can use that decision
rule which is better suited for efficient search.

methods provide only poor approximations oft-2 Direct Maximum Entropy Translation

the true probability distributions. Therefore, a
different combination of language model and

Model

translation model might yield better results. AS alternative to the source-channel app;oaf]ch, we
directly model the posterior probabilit#r(e7]| f7).

. There is no straightforward way to extend &\n especially well-founded framework for doing

baseline statistical MT model by including ad-this is maximum entropy (Berger et al., 1996). In
ditional dependencies. this framework, we have a set @ff feature func-

tionsh,,(el, f{),m = 1,... , M. For each feature
. Often, we observe that comparable results afanction, there exists a model paramelgy, m =
obtained by using the following decision rulel, ... , M. The direct translation probability is given
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Figure 2: Architecture of the translation approach based on direct maximum entropy models.

by: the following two feature functions:
Pr(el|ff) = pur(ell i) @) hi(ef, f{) = logps(e]) €)
I ey T
B exp[ZM A Fom 617 flJ)] @) ha(ey, fi) = logpg(fl le1) (10)
Dol eXﬁZM Ambm (€], f{)] and set\; = \, = 1. Optimizing the corresponding

parameters; and)\. of the model in Eq. 8 is equiv-

This approach has been suggested by (Papineniaent to the optimization of model scaling factors,
al., 1997; Papineni et al., 1998) for a natural lanwhich is a standard approach in other areas such as

guage understanding task. speech recognition or pattern recognition.
We obtain the following decision rule: The use of an ‘inverted’ translation model in the
unconventional decision rule of Eq. 6 results if we
N I eJ use the feature functiotog Pr(e!|f{) instead of
1 = ammax { (exl /i )} log Pr(f{|el). In this framework, this feature can

€1

be as good aeg Pr(f{|el). It has to be empirically

_ argmax { Z Amham (L, 1) } verified, which of the two features yields better re-
sults. We even can use both featuiesPr(e!|f{)

and log Pr(f{|el), obtaining a more symmetric

Hence, the time-consuming renormalization in Eq. §anslation model.

is not needed in search. The overall architecture of AS training criterion, we use the maximum class
the direct maximum entropy models is summarizegosterior probability criterion:

in Figure 2.

Interestingly, this framework contains as_special 5\{% — argmax Zlogpw(eslf RN
case the source channel approach (Eg. 5) if we use AM pry



This corresponds to maximizing the equivocatio2 Alignment Templates
or maximizing the likelihood of the direct transla-
tion model. This direct optimization of the poste-
rior probability in Bayes decision rule is referred to

as discriminative training (Ney, 1995) because we:éh'Z?gporfozghri;e;?(;'?grmstnr;r?mgafgm:ges .
directly take into account the overlap in the proba pal u g guage p i

bility distributions. The optimization problem hasgether with an alignment between the words within

the phrases. The advantage of the alignment tem-
one global optimum and the optimization crlterlon
plate approach compared to single word-based sta-

As specific MT method, we use the alignment tem-
plate approach (Och et al., 1999). The key elements

iS convex. e . .
tistical translation models is that word context and
1.3 Alignment Models and Maximum local changes in word order are explicitly consid-
Approximation ered.

The alignment template model refines the transla-
tion probablhtyPr(fl lel) by introducing two hid-
den variableg® andaff for the K alignment tem-
plates and the alignment of the alignment templates:

Typically, the probabilityPr(f{|e!) is decomposed
via additional hidden variables. In statistical align-
ment modelsPr(f{, af|el), the alignment. is in-
troduced as a hidden variable:

Pr(f{e1) ZPr aile]) Pr(fflef) = Y Pr(afle])-
2K ol
The alignment mapping is — i = a; from source Pr(zK|a ey - Pr(f{|K, afS e

position; to target position = a;.
Search is performed using the so-called maximurklence, we obtain three different probability
approximation: distributions:  Pr(af|el), Pr(zK|af el) and
Pr(f{ 2K, af el). Here, we omit a detailed de-
el = argmax Pr(el) ZPT (f{,al)e! scription of modeling, training and sea_rc_;h, as this is
el 7 not relevant for the subsequent exposition. For fur-
! ther details, see (Och et al., 1999).
~ argmax {Pr(el) max Pr(fl a ’e{) Tq use these three component moo_lels ina dir(_ect
maximum entropy approach, we define three dif-
ferent feature functions for each component of the
translation model instead of one feature function for
the whole translation model(f{|el). The feature
functions have then not only a dependencefgn
ande! but also onef, aff.

el af
Hence, the search space consists of the set of all poS
sible target language sentenedsand all possible
alignmentsz{ .

Generalizing this approach to direct translation
models, we extend the feature functions to in?
clude the dependence on the additional hidden va®  Eagture functions

able. Using M feature functions of the form
hm(el, f{,al),m = 1,... M, we obtain the fol- So far, we use the logarithm of the components of
lowing model: a translation model as feature functions. This is a
I T e very convenient approach to improve the quality of
Prie,ailfi) = a baseline system. Yet, we are not limited to train
exp (fozl Amha (el £ a;{)) only model scaling factors, but we have many possi-
= bilities:

Ze e a"] exp <Zn]\;[:1 Amhm(el{v fljv a’/i]))

Obviously, we can perform the same step for transla-

e We could add a sentence length feature:

tion models with an even richer structure of hidden h(fl, el =T
. . . . 1->%1
variables than only the alignmen{. To simplify
the notation, we shall omit in the following the de- This corresponds to a word penalty for each

pendence on the hidden variables of the model. produced target word.



e We could use additional language models by Training

using features of the following form: . .
g 9 To train the model parameteks’ of the direct trans-

lation model according to Eq. 11, we use the GIS
(Generalized lterative Scaling) algorithm (Darroch
and Ratcliff, 1972). It should be noted that, as
e We could use a feature that counts how manwas already shown by (Darroch and Ratcliff, 1972),
entries of a conventional lexicon co-occur inby applying suitable transformations, the GIS algo-
the given sentence pair. Therefore, the weighrithm is able to handle any type of real-valued fea-
for the provided conventional dictionary can beures. To apply this algorithm, we have to solve var-
learned. The intuition is that the conventionaious practical problems.
dictionary is expected to be more reliable than The renormalization needed in Eq. 8 requires a
the automatically trained lexicon and thereforssum over a large number of possible sentences,
should get a larger weight. for which we do not know an efficient algorithm.
Hence, we approximate this sum by sampling the
e We could use lexical features, which fire if aspace of all possible sentences by a large set of

h(fi,e1) = h(ef)

certain lexical relationshipf, e) occurs: highly probable sentences. The set of considered
sentences is computed by an appropriately extended
J I version of the used search algorithm (Och et al.,
h(fi.el) = Z 0(f f) | - (Z (e, ei)) 1999) computing an approximatebest list of trans-
j=1 i=1 lations.

Unlike automatic speech recognition, we do not
have one reference sentence, but there exists a num-
ger of reference sentences. Yet, the criterion as it

e We could use grammatical features that relat X )
certain grammatical dependencies of sourcs described in Eqg. 11 allows for only one reference

and target language. For example, using afun(Er_anslatlon. Hence, we change the criterion to al-

tion &(-) that counts how many verb groups eX_Iow R, refe.rence translations 1, ... , e, g, for the
ist in the source or the target sentence, we carpntence,:

define the following feature, which is 1 if each S s

of the two sentences contains the same numbey”  —  argmax {Z = log py (ew|fs)}
of verb groups: A s=1 "5 r=1

r(fl e =o(k(f]),k(el)) (12 We use this pptjmization criterion instead of the op-
timization criterion shown in Eq. 11.

In the same way, we can introduce semantic, In addition, we might have the problem that no

features or pragmatic features such as the 0§_|ngle of the reference translations is part of the
alogue act classification best list because the search algorithm performs prun-

ing, which in principle limits the possible transla-

We can use numerous additional features that delins that can be produced given a certain input sen-
with specific problems of the baseline statistical M-ﬁence. To solve t_h'_s problem, we define for max-
system. In this paper, we shall use the first three df1UM €ntropy training each sentence as reference
these features. As additional language model, \A;éanslgtlon that has the minimal number of worq er-
use a class-based five-gram language model. THR'S with respect to any of the reference translations.

feature and the word penalty feature allow a straighg

. o ) Results
forward integration into the used dynamic program-
ming search algorithm (Och et al., 1999). As this i8\e present results on théERBMOBIL task, which
not possible for the conventional dictionary featureis a speech translation task in the domain of appoint-
we usen-best rescoring for this feature. ment scheduling, travel planning, and hotel reser-



vation (Wahlster, 1993). Table 1 shows the cor-
pus statistics of this task. We use a training cor-
pus, which is used to train the alignment template
model and the language models, a development cor-
pus, which is used to estimate the model scaling fac-
tors, and a test corpus.

of the target sentence, so that the WER mea-
sure alone could be misleading. To overcome
this problem, we introduce as additional mea-
sure the position-independent word error rate
(PER). This measure compares the words in the
two sentences ignoring the word order.

e MWER (multi-reference word error rate): For

Table 1: Characteristics of training corpus (Train),
manual lexicon (Lex), development corpus (Dev),
test corpus (Test).

] | German| English]

Train Sentences 58073
Words 519523| 549921
Singletons 3453 1698 .
Vocabulary 7939 4672
Lex Entries 12779
Ext. Vocab. 11501 \ 6867
Dev  Sentences 276
Words 3159 3438
PP (trigr. LM) - 28.1
Test Sentences 251
Words 2628 2871
PP (trigr. LM) - 30.5 .

So far, in machine translation research does not
exist one generally accepted criterion for the evalu-
ation of the experimental results. Therefore, we use
a large variety of different criteria and show that the
obtained results improve on most or all of these cri- o
teria. In all experiments, we use the following six
error criteria:

e SER (sentence error rate): The SER is com-
puted as the number of times that the generated
sentence corresponds exactly to one of the ref-

each test sentence, there is not only used a sin-
gle reference translation, as for the WER, but

a whole set of reference translations. For each
translation hypothesis, the edit distance to the
most similar sentence is calculated (NieRen et
al., 2000).

BLEU score: This score measures the precision
of unigrams, bigrams, trigrams and fourgrams
with respect to a whole set of reference trans-
lations with a penalty for too short sentences
(Papineni et al., 2001). Unlike all other eval-
uation criteria used here, BLEU measures ac-
curacy, i.e. the opposite of error rate. Hence,
large BLEU scores are better.

SSER (subjective sentence error rate): For a
more detailed analysis, subjective judgments

by test persons are necessary. Each trans-
lated sentence was judged by a human exam-
iner according to an error scale from 0.0 to 1.0

(Niel3en et al., 2000).

IER (information item error rate): The test sen-
tences are segmented into information items.
For each of them, if the intended information
is conveyed and there are no syntactic errors,
the sentence is counted as correct (NieRen et
al., 2000).

erence translations used for the maximum en- |n the following, we present the results of this ap-
tropy training. proach. Table 2 shows the results if we use a direct

e WER (word error rate): The WER is compute
as the minimum number of substitution, inser-
tion and deletion operations that have to be pe

dtranslation model (Eqg. 6).
As baseline features, we use a normal word tri-
gram language model and the three component mod-

formed to convert the generated sentence int%ls of the alignment templates. The first row shows

the target sentence.

the results using only the four baseline features with
A = --- = M\ = 1. The second row shows the

e PER (position-independent WER): A short-result if we train the model scaling factors. We see a
coming of the WER s the fact that it requiressystematic improvement on all error rates. The fol-
a perfect word order. The word order of anlowing three rows show the results if we add the
acceptable sentence can be different from thatord penalty, an additional class-based five-gram



Table 2. Effect of maximum entropy training for alignment template approach (WP: word penalty feature,
CLM: class-based language model (five-gram), MX: conventional dictionary).

objective criteria [%0] subjective criteria [%]
SER| WER | PER| MWER | BLEU || SSER|  IER
Baselinef,, = 1) 86.9| 42.8 | 33.0| 37.7 43.9 | 35.9 39.0
ME 81.7| 40.2 | 28.7| 34.6 49.7 | 325 34.8
ME+WP 80.5| 38.6 | 26.9| 324 54.1 || 29.9 32.2
ME+WP+CLM 78.1| 38.3 269 321 55.0 | 29.1 30.9
ME+WP+CLM+MX | 77.8 | 38.4 | 26.8| 31.9 55.2 || 28.8 30.9
e o — Table 3: Resulting model scaling factors of maxi-
088 s MECWPHCLM - 1 mum entropy training for alignment templates;:

trigram language model},: alignment template
model, A\3: lexicon model,\4: alignment model
(normalized such thgt} _, A\, = 4).

ME | +WP | +CLM | +MX
A1 [ 086|098 | 0.75 | 0.77
Ao [ 233|205 224 | 2.24
A3 | 058| 0.72| 0.79 | 0.75
Aq 0.22| 0.25| 0.23 | 0.24

sentence error rate (SER)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 WP . 2.6 3.03 | 2.78
number of iterations CLM . . 033 034
MX . . . 2.92

Figure 3: Test error rate over the iterations of the

GIS algorithm for maximum entropy training of

alignment templates. gested by (Papineni et al., 1997; Papineni et al.,
1998). They train models for natural language un-

i . derstanding rather than natural language translation.
language model and the conventional dictionary feqh contrast to their approach, we include a depen-

tures. We observe improved error rates for using th(’j"ence on the hidden variable of the translation model

wor(_j_penalty and the class-based language mOCIeliﬂsthe direct translation model. Therefore, we are
additional features.

able to use statistical alignment models, which have

Figure 3 show how the sentence error rate (SER)yeny shown to be a very powerful component for
on the test corpus improves during the iterations (gtatistical machine translation systems

the GIS algorithm. We see th"?‘t thg sentence error speech recognition, training the parameters of
rates converges after abotfi00 iterations. We do

== o the acoustic model by optimizing the (average) mu-
not observe significant overfitting.

_ . tual information and conditional entropy as they are
Table 3 shows the resulting normalized modejjefined in information theory is a standard approach

scaling factors. Multlpllymg each model scaling fac'(BahI et al., 1986; Ney, 1995). Combining various

tor by a constant positive value does not affect thﬁrobabilistic models for speech and language mod-

decision rule. We see that adding new features algﬁng has been suggested in (Beyerlein, 1997: Peters
has an effect on the other model scaling factors. 5 Klakow, 1999).

6 Related Work 7 Conclusions

The use of direct maximum entropy translation modwe have presented a framework for statistical MT
els for statistical machine translation has been sufpr natural languages, which is more general than the



widely used source-channel approach. It allows & N. Darroch and D. Ratcliff. 1972. Generalized itera-
baseline MT system to be extended easily by adding tive scaling for log-linear modelsAnnals of Mathe-
new feature functions. We have shown that a base- Matical Statistics43:1470-1480.

line statistical MT system can be significantly im-B. H. Juang, W. Chou, and C. H. Lee. 1995. Statisti-
proved using this framework. cal and discriminative methods for speech recognition.

e ; i« INA. J. R. Ayuso and J. M. L. Soler, editorSpeech
_ There are two possible mterpretgtlons for a statis Recognition and Coding - New Advances and Trends
tical MT system structured according to the source- gpringer Verlag, Berlin, Germany.

channel approach, hence including a model for
Pr(e{) and a model forPr(f{]e{). We can inter- H- Ney. 1995. On the probabilistic-interpretation of

. . . . neural-network classifiers and discriminative training
pretitas an approximation to the Bayes decision rule criteria. IEEE Trans. on Pattern Analysis and Machine

in Eg. 2 or as an instance of a direct maximum en- |ntelligence 17(2):107—-119, February.

tropy model with feature functioneg Pr(e!) and _

log Pr(f{|e]). As soon as we want to use model>: NiéBen, F. J. Och, G. Leusch, and H. Ney. 2000.
. o . An evaluation tool for machine translation: Fast eval-

scaling factors, we can only do this in a theoretically |,ation for MT research. IProc. of the Second Int.

justified way using the second interpretation. Yet, Conf.on Language Resources and Evaluation (LREC)

the main advantage comes from the large number of pages 39-45, Athens, Greece, May.

addltlon_al p053|b|I|_t|es that we obtain by using thg- J. Och, C. Tillmann, and H. Ney. 1999. Improved

second interpretation. alignment models for statistical machine translation.
An important open problem of this approach is In Proc. of the Joint SIGDAT Conf. on Empirical Meth-

the handling of complex features in search. An in- ©ds in Natural Language Processing and Very Large

¢ fi tion is t ith feat that Corpora, pages 20-28, University of Maryland, Col-

eresting question is to come up with features that |o e park. MD, June.

allow an efficient handling using conventional dy-

namic programming search algorithmsl K. A. Paplnenl, S. Roukos, and R. T. Ward. 1997.

. Lo . . Feature-based language understanding European
In addition, it might be promising to optimize the Conf. on Speech Communication and Technglogy

parameters directly with respect to the error rate of pages 1435-1438, Rhodes, Greece, September.
the MT system as is suggested in the field of pattern

. i K. A. Papineni, S. Roukos, and R. T. Ward. 1998. Max-
and speech recognition (Juang et al., 1995; &ehl imum likelihood and discriminative training of direct

and Ney, 2001). translation models. IfProc. Int. Conf. on Acoustics,
Speech, and Signal Processimpages 189-192, Seat-
tle, WA, May.

References

K. A. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. 2001.

L. R. Bahl, P. F. Brown, P. V. de Souza, and R. L. Mer- Bleu: a method for automatic evaluation of machine

cer. 1986. Maximum mutual information estimation translation. Technical Report RC22176 (W0109-022),

of hidden markov model parameters. Rroc. Int. IBM Research Division, Thomas J. Watson Research
Conf. on Acoustics, Speech, and Signal Processing Center, Yorktown Heights, NY, September.

ages 49-52, Tokyo, Japan, April. :
pag 4 P P J. Peters and D. Klakow. 1999. Compact maximum en-

A. L. Berger, S. A. Della Pietra, and V. J. Della tropylangugge models. Proc. pftheIEEEWorkshop
Pietra. 1996. A maximum entropy approach to nat- on Automatic Speech Recognition and Understanding

ural language processingomputational Linguistics Keystone, CO, December.

22(1):39-72, March. R. Schliter and H. Ney. 2001. Model-based MCE bound

. L . to the true Bayes’ errorlEEE Signal Processing Let-
P. Beyerlein. 1997. Discriminative model combina- ters 8(5):131-133, May.

tion. In Proc. of the IEEE Workshop on Automatic
Speech Recognition and Understandipgges 238— W. Wahlster. 1993. Verbmobil: Translation of face-to-
245, Santa Barbara, CA, December. face dialogs. IrProc. of MT Summit IVpages 127—
135, Kobe, Japan, July.
P. F. Brown, S. A. Della Pietra, V. J. Della Pietra, and
R. L. Mercer. 1993. The mathematics of statistical
machine translation: Parameter estimati@Qomputa-
tional Linguistics 19(2):263—-311.



