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Abstract

This paper introducesnew learning al-
gorithmsfor naturallanguageprocessing
basedon the perceptronalgorithm. We
show how thealgorithmscanbeefficiently
applied to exponential sized representa-
tions of parsetrees,suchasthe “all sub-
trees”(DOP) representationdescribedby
(Bod 1998), or a representationtracking
all sub-fragmentsof a taggedsentence.
Wegiveexperimentalresultsshowing sig-
nificantimprovementson two tasks:pars-
ing Wall StreetJournaltext, and named-
entity extractionfrom webdata.

1 Intr oduction

Theperceptronalgorithmis oneof theoldestalgo-
rithms in machinelearning,going back to (Rosen-
blatt 1958). It is an incredibly simplealgorithmto
implement,and yet it hasbeenshown to be com-
petitive with morerecentlearningmethodssuchas
supportvectormachines– see(Freund& Schapire
1999)for its applicationto imageclassification,for
example.

This paper describeshow the perceptronand
voted perceptronalgorithmscan be usedfor pars-
ing andtaggingproblems.Crucially, thealgorithms
canbeefficiently appliedto exponentialsizedrepre-
sentationsof parsetrees,suchasthe “all subtrees”
(DOP)representationdescribedby (Bod 1998),or a
representationtrackingall sub-fragmentsof atagged
sentence.It mightseemparadoxicalto beableto ef-
ficiently learnandapplyamodelwith anexponential
numberof features.1 Thekey toouralgorithmsis the

1Although see(Goodman1996) for an efficient algorithm
for theDOPmodel,whichwediscussin section7 of thispaper.

“kernel” trick ((CristianiniandShawe-Taylor 2000)
discusskernelmethodsat length).Wedescribehow
the inner productbetweenfeaturevectorsin these
representationscan be calculatedefficiently using
dynamic programmingalgorithms. This leadsto
polynomialtime2 algorithmsfor trainingandapply-
ing theperceptron.Thekernelswe describearere-
latedto thekernelsoverdiscretestructuresin (Haus-
sler1999;Lodhi etal. 2001).

A previous paper (Collins and Duffy 2001)
showed improvementsover a PCFGin parsingthe
ATIS task. In this paperwe show that the method
scalesto farmorecomplex domains.In parsingWall
StreetJournaltext, themethodgivesa5.1%relative
reductionin error rate over the model of (Collins
1999). In the seconddomain, detectingnamed-
entityboundariesin webdata,weshow a15.6%rel-
ative errorreduction(animprovementin F-measure
from 85.3%to 87.6%)overastate-of-the-artmodel,
a maximum-entropy tagger. This result is derived
usinga new kernel,for taggedsequences,described
in this paper. Both resultsrely on a new approach
thatincorporatesthelog-probabilityfrom abaseline
model,in additionto the“all-fragments”features.

2 Feature–Vector Representationsof Parse
Treesand TaggedSequences

This paperfocuseson the taskof choosingthecor-
rect parseor tag sequencefor a sentencefrom a
groupof “candidates”for thatsentence.Thecandi-
datesmightbeenumeratedby anumberof methods.
The experimentsin this paperusethe top � candi-
datesfrom abaselineprobabilisticmodel:themodel
of (Collins 1999) for parsing, and a maximum-
entropy taggerfor named-entityrecognition.

2i.e., polynomial in the numberof training examples,and
thesizeof treesor sentencesin trainingandtestdata.
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Thechoiceof representationis central:whatfea-
tures should be usedas evidencein choosingbe-
tweencandidates?We will usea function

�������	�
��
to denotea 
 -dimensionalfeaturevectorthatrep-

resentsa treeor taggedsequence
�

. Therearemany
possibilitiesfor

�������
. An obviousexamplefor parse

treesis to have one componentof
�������

for each
rule in a context-free grammarthat underliesthe
trees. This is the representationusedby Stochastic
Context-FreeGrammars.The featurevector tracks
the countsof rulesin the tree

�
, thusencodingthe

sufficient statisticsfor theSCFG.
Givena representation,andtwo structures

�
and� , the inner productbetweenthe structurescanbe

definedas

������������� � ��� ��� �����
� ����� �

� � � �
The ideaof inner productsbetweenfeaturevectors
is central to learning algorithmssuch as Support
VectorMachines(SVMs), andis alsocentralto the
ideasin this paper. Intuitively, the inner product
is a similarity measurebetweenobjects: structures
with similar featurevectorswill havehighvaluesfor������������� � � . Moreformally, it hasbeenobservedthat
many algorithmscan be implementedusing inner
productsbetweentraining examplesalone,without
direct accessto the featurevectorsthemselves. As
we will seein this paper, this canbecrucial for the
efficiency of learningwith certainrepresentations.
Following the SVM literature, we call a function� ����� � � of two objects

�
and � a “kernel” if it can

beshown that
�

is aninnerproductin somefeature
space

�
.

3 Algorithms

3.1 Notation

Thissectionformalizestheideaof linearmodelsfor
parsingor tagging. The methodis relatedto the
boostingapproachto ranking problems(Freundet
al. 1998), the Markov RandomField methodsof
(Johnsonet al. 1999),andtheboostingapproaches
for parsingin (Collins 2000). The set-upis asfol-
lows:�

Training datais a set of exampleinput/output
pairs. In parsingthe training examplesare  �! � �#" �%$

whereeach! � is asentenceandeach
" �

is thecorrect
treefor thatsentence.�

We assumesomeway of enumeratinga setof
candidatesfor a particularsentence.We use

� �'&
to

denotethe ( ’ th candidatefor the ) ’ th sentencein
training data,and * � ! � �+�  � � � �#� �-, .�.�. $ to denote
thesetof candidatesfor ! � .�

Without lossof generalitywe take
� � � to bethe

correctcandidatefor ! � (i.e.,
� � � �/" � ).�

Eachcandidate
� �0&

is representedby a feature
vector

����� �0& �
in the space


��
. The parametersof

the model are also a vector 1 � 
��
. The out-

put of the modelon a training or testexample ! is243658792;:=<?>A@CB-DFE 1 ���������
.

Thekey question,having definedarepresentation�
, is how to settheparameters1 . We discussone

methodfor settingtheweights,theperceptronalgo-
rithm, in thenext section.

3.2 The Perceptron Algorithm

Figure1(a)shows theperceptronalgorithmapplied
to therankingtask. Themethodassumesa training
setasdescribedin section3.1,anda representation�

of parsetrees.Thealgorithmmaintainsa param-
etervector 1 , which is initially set to be all zeros.
The algorithmthenmakes a passover the training
set,only updatingtheparametervectorwhenamis-
take is madeon an example. The parametervec-
tor updateis very simple,involving addingthe dif-
ferenceof the offending examples’representations
( 1 � 1HG ����� � � �JIK����� �'& � in the figure). Intu-
itively, this updatehasthe effect of increasingthe
parametervaluesfor featuresin thecorrecttree,and
downweightingtheparametervaluesfor featuresin
thecompetitor.

See(CristianiniandShawe-Taylor 2000)for dis-
cussionof the perceptronalgorithm, including an
overview of varioustheoremsjustifying this way of
settingtheparameters.Briefly, theperceptronalgo-
rithm is guaranteed3 to find a hyperplanethat cor-
rectly classifiesall training points, if sucha hyper-
planeexists(i.e.,thedatais “separable”).Moreover,
thenumberof mistakesmadewill below, providing
that the datais separablewith “large margin”, and

3To find sucha hyperplanethealgorithmmustbe run over
the trainingsetrepeatedlyuntil no mistakesaremade.Theal-
gorithmin figure1 includesjust a singlepassover the training
set.



(a) Define: (b)Define:L ������� 1 �A�������
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& ECQ � P
& �R����� � � ���A�������SIT����� �'& ���A�������6�

Initialization: Setparameters1 �VU
Initialization: SetdualparametersQ � P

& �VU
For ) �XW .�.�. � For ) �YW .�.�. �( � 243658792;: & ���#Z0Z0Z [4\ L ��� �'& � ( � 24365C792;: & ���#Z0Z0Z [4\ M ��� �'& �

If
� (^]�YWA�

Then 1 � 1_G ����� � � �SI`����� �'& � If
� (^]�YWA�

Then Q �'& � Q �'& G W
Output on test sentence! : Output on test sentence! :24365C792;: <a>�@CB�D%E L ����� . 243b5C792;: <?>A@aB�D%E M ����� .

Figure1: a) Theperceptronalgorithmfor rankingproblems.b) Thealgorithmin dualform.

this translatesto guaranteesabouthow the method
generalizesto test examples. (Freund& Schapire
1999) give theoremsshowing that the voted per-
ceptron(avariantdescribedbelow) generalizeswell
evengivennon-separabledata.

3.3 The Algorithm in Dual Form

Figure 1(b) shows an equivalent algorithm to the
perceptron,an algorithm which we will call the
“dual form” of the perceptron. The dual-form al-
gorithm doesnot store a parametervector 1 , in-
steadstoringa setof dual parameters,Q � P

&
for ) �W .�.�. � � ( �dc .�.�. � � . Thescorefor a parse
�

is de-
finedby thedualparametersas

M �����e� �B � P
& E Q

�
P
& �R����� � � ���A�������SIT����� �'& ���A�������6�

This is in contrastto
L ������� 1 �4�������

, thescorein
theoriginalalgorithm.

In spite of these differences the algorithms
give identical results on training and test exam-
ples: to see this, it can be verified that 1 �N � P

& Q � P
& �f����� � � ��IT����� �0& �#� , andhencethat M �������L �����

, throughouttraining.
The importantdifferencebetweenthealgorithms

lies in theanalysisof their computationalcomplex-
ity. Say g is the size of the training set, i.e.,g � N � � � . Also, take 
 to be the dimensional-
ity of the parametervector 1 . Thenthe algorithm
in figure 1(a) takes h � gi
 � time.4 This follows be-
cause

L �����
mustbecalculatedfor eachmemberof

the training set,andeachcalculationof
L

involvesh � 
 � time. Now saythe time taken to computethe
4If thevectorsjlk-mon aresparse,then p canbetakento bethe

numberof non-zeroelementsof j , assumingthatit takes qrk-pAn
time to addfeaturevectorswith qrk-pAn non-zeroelements,or to
take innerproducts.

innerproductbetweentwo examplesis s . Therun-
ning timeof thealgorithmin figure1(b) is h � g � s � .
This follows becausethroughoutthe algorithmthe
numberof non-zerodual parametersis boundedby� , andhencethecalculationof M ����� takesat mosth � � s � time. (Notethatthedualform algorithmruns
in quadratictimein thenumberof trainingexamples� , becausegut � .)

The dual algorithmis thereforemoreefficient in
caseswhere� swvxv/
 . This might seemunlikely to
be thecase– naively, it would beexpectedthat the
time to calculatethe inner product

���������a��� � � be-
tweentwo vectorsto be at least h � 
 � . But it turns
out that for somehigh-dimensionalrepresentations
the inner product can be calculatedin much bet-
ter than h � 
 � time,makingthedual form algorithm
moreefficient thantheoriginalalgorithm.Thedual-
form algorithmgoesbackto (Aizermanet al. 64).
See(Cristianini and Shawe-Taylor 2000) for more
explanationof thealgorithm.

3.4 The VotedPerceptron

(Freund& Schapire1999)describea refinementof
the perceptronalgorithm, the “voted perceptron”.
They give theorywhich suggeststhat thevotedper-
ceptronis preferablein casesof noisy or unsepara-
ble data.The trainingphaseof thealgorithmis un-
changed– thechangeis in how themethodisapplied
to testexamples.Thealgorithmin figure1(b)canbe
consideredto build aseriesof hypothesesMJy ����� , for"��YW .�.�. � , where M y is definedas

M y ������� �B ��z y P
& E Q

�
P
& �R����� � � �����������SIT����� �'& �����������6�

MJy is thescoringfunctionfrom thealgorithmtrained
on just thefirst

"
trainingexamples.Theoutputof a

modeltrainedonthefirst
"
examplesfor asentence!
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Figure2: a)An exampleparsetree.b)Thesub-treesof theNP

covering the man. Thetreein (a) containsall of thesesubtrees,

aswell asmany others.

is {|y � ! �}� 24365�792;: <a>�@CB�D%E MJy ����� . Thusthetraining
algorithmcanbeconsideredto constructasequence
of � models, { � .�.�. { [ . On a testsentence! , each
of these� functionswill return its own parsetree,{ y � ! � for

"+�~W .�.�. � . The votedperceptronpicks
themostlikely treeasthatwhich occursmostoften
in theset  ;{ � � ! ��� {

, � ! � .�.�. { [ � ! � $ .
Note that MJy is easily derived from MJy�� � ,

through the identity MJy ����� � MJy�� � ����� GN [;�& � , Q y P
& �f����� y � ���A��������IT����� y

& ���A�������6�
. Be-

causeof this the voted perceptroncan be imple-
mentedwith thesamenumberof kernelcalculations,
andhenceroughlythesamecomputationalcomplex-
ity, astheoriginalperceptron.

4 A TreeKernel

Wenow considerarepresentationthattracksall sub-
treesseenin training data,the representationstud-
ied extensively by (Bod 1998). Seefigure 2 for
an example. Conceptuallywe begin by enumer-
ating all tree fragmentsthat occur in the training
data

W .�.�. 
 . Note that this is doneonly implicitly.
Eachtree is representedby a 
 dimensionalvector
wherethe ) ’ th componentcountsthenumberof oc-
curencesof the ) ’ th treefragment.Definethefunc-
tion �

� �����
to bethenumberof occurencesof the ) ’ th

treefragmentin tree
�

, sothat
�

is now represented
as
����������� � � ������� �

, ������� .�.�. � � � �����#� . Note that 

will behuge(agiventreewill haveanumberof sub-
treesthat is exponentialin its size). Becauseof this
we aim to designalgorithmswhosecomputational
complexity is independentof 
 .

The key to our efficient use of this representa-
tion is adynamicprogrammingalgorithmthatcom-
putesthe inner productbetweentwo examples

� �
and

� ,
in polynomial (in the size of the treesin-

volved), ratherthan h � 
 � , time. The algorithm is
describedin (Collins andDuffy 2001),but for com-
pletenesswe repeatit here. We first definethe set
of nodesin trees

� � and
� ,

as � � and � , respec-
tively. We definethe indicatorfunction � � � � � to beW

if sub-tree) is seenrootedat node � and0 other-
wise. It follows that �

� ��� � ��� N [a� >4� � � � � � � � and

�
� ��� , �}� N [8� >4� � � � � � , � . Thefirst stepto efficient

computationof the inner product is the following
property:�i�f� ����� �i�f� , ��� N �?� � �R� ��� � � �f� , �� N � � N [?� >4� ��� � ��� ����� � N [ � >4� � � � �f� , ���� N [?� >8� � N [ � >8� � N � � � �f� ��� � � �f� , �� N [?� >8� � N [ � >8� ��� ��� �A� � , �
where we define � � � � � � , ��� N � � � � � � � � � � � , � .
Next, we notethat � � � � � � , � canbe computedef-
ficiently, dueto thefollowing recursive definition:�

If the productionsat � � and � , are different� � � � � � , ���VU .�
If theproductionsat � � and � , arethesame,and� � and � , arepre-terminals,then � � � � � � , ���YW

.5�
Elseif theproductionsat � � and � , arethesame

and � � and � , arenotpre-terminals,

� � � � � � , ��� [4�
B [?� E�& ��� ��W G�� ��  � � � � � ( ���6  � � �

, � ( �#�b�¡�
where�  8� � � � is thenumberof childrenof � � in the
tree;becausetheproductionsat � � / � , arethesame,
we have �  4� � � �¢� �  8� � , � . The ) ’ th child-nodeof� � is

  � � � � � ) � .Toseethatthisrecursivedefinitionis correct,note
that � � � � � � , ��� N � � � � � � � � � � � , � simply counts
the number of common subtrees that are found
rootedat both � � and � , . The first two casesare
trivially correct. The last, recursive, definition fol-
lows becausea commonsubtreefor � � and � , can
be formed by taking the productionat � � / � , , to-
getherwith a choice at eachchild of simply tak-
ing the non-terminalat that child, or any one of
the commonsub-treesat that child. Thusthereare

5Pre-terminalsarenodesdirectlyabovewordsin thesurface
string,for exampletheN, V, andD symbolsin Figure2.
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Figure 3: a) A taggedsequence.b) Example“fragments”

of the taggedsequence:the taggingkernel is sensitive to the

countsof all suchfragments.��W GT� ��  � )�£�
 � � � � ) ���6  � )�£�
 � �
, � ) �#�#� possiblechoices

at the ) ’ th child. (Notethatasimilar recursionis de-
scribedby Goodman(Goodman1996),Goodman’s
application being the conversion of Bod’s model
(Bod 1998)to anequivalentPCFG.)

It is clear from the identity
����� � �¢������� , �Y�N [a� P [ � � � � � � �

, �
, and the recursive definition of� � � � � � , � , that
����� � ���a����� , � canbe calculatedinh �6¤ � � ¤-¤ � , ¤0� time: the matrix of � � � � � � , � values

canbefilled in, thensummed.6

Since there will be many more tree fragments
of larger size – say depth four versusdepth three
– it makes sense to downweight the contribu-
tion of larger tree fragmentsto the kernel. This
can be achieved by introducing a parameter

U v¥ ¦ W
, and modifying the base case and re-

cursive case of the definitions of � to be re-
spectively � � � � � � , � � ¥

and � � � � � � , � �¥J§ [4� B [ � E& ��� ��W G¨� ��  � � � � � ( ���6  � � �
, � ( �#�#� . This cor-

respondsto a modified kernel
����� � �+������� , �_�N � ¥ D � ©6ª \ �

� ��� � � �
� ��� , �

where!«)F¬a­ � is thenumberof
rules in the ) ’ th fragment. This is roughly equiva-
lent to having aprior thatlargesub-treeswill beless
usefulin thelearningtask.

5 A TaggingKernel

The secondproblemwe consideris tagging,where
eachword in a sentenceis mappedto oneof a finite
setof tags.Thetagsmight representpart-of-speech
tags,named-entityboundaries,basenoun-phrases,
or otherstructures.In theexperimentsin this paper
we considernamed-entityrecognition.

6This canbea pessimisticestimateof theruntime. A more
usefulcharacterizationis thatit runsin timelinearin thenumber
of membersk-® �#¯ ® � n�°+± ��² ± � suchthat theproductionsat® � and ® � arethesame.In our datawe have foundthenumber
of nodeswith identicalproductionsto beapproximatelylinear
in thesizeof thetrees,sotherunningtime is alsocloseto linear
in thesizeof thetrees.

A taggedsequenceis a sequenceof word/state
pairs

�u�  «³ ��´ ! � .�.�. ³ [=´ ! [ $ where ³ � is the ) ’ th
word, and ! � is the tag for that word. The par-
ticular representationwe consideris similar to the
all sub-treesrepresentationfor trees. A tagged-
sequence“fragment” is a subgraphthat containsa
subsequenceof statelabels,whereeachlabel may
or maynot containtheword below it. Seefigure3
for anexample.Eachtaggedsequenceis represented
by a 
 dimensionalvectorwherethe ) ’ th component

�
� �����

countsthe numberof occurrencesof the ) ’ th
fragmentin

�
.

The inner productunderthis representationcan
becalculatedusingdynamicprogrammingin avery
similar way to the tree algorithm. We first define
the set of statesin taggedsequences

� � and
� ,

as� � and � , respectively. Each statehasan asso-
ciated label and an associatedword. We define
the indicator function � � � � � to be

W
if fragment )

is seenwith left-moststateat node � , and0 other-
wise. It follows that �

� ��� � ��� N [ � >4� � � � � � � � and

�
� ��� , �x� N [ � >4� � � � � � , � . As before,somesimple

algebrashows that�i�f� ����� �i�f� , ��� N [a� >8� � N [ � >4� ��� �f� �A� � , �
where we define � � � � � � , ��� N � � � � � � � � � � � , � .
Next, for any givenstate� � � � � define � ­�µ "¶� � � �
to be the stateto the right of � � in the structure� � . An analogousdefinition holds for � ­«µ "�� � , � .
Then � � � � � � , � can be computedusing dynamic
programming,dueto a recursive definition:�

If the statelabels at � � and � , are different� � � � � � , ���VU .�
If the statelabelsat � � and � , are the same,

but the words at � � and � , are different, then� � � � � � , ���YW G·� � � ­�µ "¶� � � ��� � ­�µ "¶� � , �#� .�
Else if the state labels at � � and � , are the

same,andthewordsat � � and � , arethesame,then� � � � � � , ���Kc G c¹¸ � � � ­�µ "¶� � � ��� � ­«µ "�� � , �#� .
Therearea coupleof usefulmodificationsto this

kernel. Oneis to introducea parameter
U v ¥º¦�W

which penalizeslarger substructures. The recur-
sive definitions are modfied to be � � � � � � , �d�W G ¥ � � � ­«µ "�� � � ��� � ­«µ "�� � , �#� and � � � � � � , ���Kc GcC¥ � � � ­�µ "¶� � � ��� � ­«µ "�� � , �#� respectively. This gives
aninnerproduct

N � ¥ D � ©6ª \ �
� ��� � � �

� ��� , �
where!«)F¬a­ �

is thenumberof statelabelsin the ) th fragment.
Anotherusefulmodificationis asfollows. Define



MODEL » 40Words(2245sentences)
LR LP CBs ¼ CBs ½ CBs

CO99 88.5% 88.7% 0.92 66.7% 87.1%
VP 89.1% 89.4% 0.85 69.3% 88.2%

MODEL » 100Words(2416sentences)
LR LP CBs ¼ CBs ½ CBs

CO99 88.1% 88.3% 1.06 64.0% 85.1%
VP 88.6% 88.9% 0.99 66.5% 86.3%

Figure4: ResultsonSection23of theWSJTreebank.LR/LP

= labeledrecall/precision.CBs = averagenumberof crossing

bracketspersentence.0 CBs, ½ CBs arethepercentageof sen-

tenceswith 0 or »�½ crossingbrackets respectively. CO99is

model2 of (Collins 1999).VP is thevotedperceptronwith the

treekernel.¾ )f¿ � � ³ � � ³ , � for words ³ � and ³ , to be
W

if ³ � �³ , , U otherwise.Define
¾ )�¿ , � ³ � � ³ , � to be

W
if ³ �

and ³ , sharethe sameword features, 0 otherwise.
For example,

¾ )f¿ , might be definedto be 1 if ³ �
and ³ , are both capitalized: in this case

¾ )f¿ , is
a loosernotion of similarity than the exact match
criterion of

¾ )f¿ � . Finally, the definition of � can
bemodifiedto:�

If labelsat � ��´ � , aredifferent, � � � � � � , ���VU .�
Else � � � � � � , �e���W G U .ÁÀ ¾ )f¿ � � ³ � � ³ , � G U .ÁÀ ¾ )�¿ , � ³ � � ³ , �#�¸���W G ¥Â¸ � � � ­�µ "�� � � ��� � ­�µ "¶� � , �#�#�

where ³ � , ³ , are the words at � � and � , respec-
tively. This inner product implicitly includesfea-
tureswhich trackword features,andthuscanmake
betteruseof sparsedata.

6 Experiments

6.1 Parsing Wall StreetJournal Text

We used the samedata set as that describedin
(Collins 2000). The PennWall StreetJournaltree-
bank(Marcuset al. 1993)wasusedastrainingand
test data. Sections2-21 inclusive (around40,000
sentences)were usedas training data, section23
wasusedasthe final testset. Of the 40,000train-
ing sentences,the first 36,000were usedto train
theperceptron.Theremaining4,000sentenceswere
usedas developmentdata,and for tuning parame-
tersof thealgorithm.Model2 of (Collins1999)was
usedto parseboththetrainingandtestdata,produc-
ing multiple hypothesesfor eachsentence.In or-
der to gain a representative setof training data,the
36,000trainingsentenceswereparsedin 2,000sen-
tencechunks,eachchunkbeingparsedwith amodel

trainedon theremaining34,000sentences(this pre-
ventedthe initial model from being unrealistically
“good” on thetrainingsentences).The4,000devel-
opmentsentenceswereparsedwith a modeltrained
on the 36,000training sentences.Section23 was
parsedwith amodeltrainedonall 40,000sentences.

Therepresentationwe useincorporatestheprob-
ability from the original model, as well as the
all-subtreesrepresentation. We introduce a pa-
rameter Ã which controls the relative contribu-
tion of the two terms. If Ä ����� is the log prob-
ability of a tree

�
under the original probability

model, and
�������Å� � � � ������� �

, ������� .�.�. � � � �����#� is
the featurevector under the all subtreesrepresen-
tation, then the new representationis

� , �����H��fÆ ÃÇÄ ������� � � ������� �
, ������� .�.�. � � � �����#� , and the inner

productbetweentwo examples
�

and � is
� , �����È�� , � � ��� ÃÇÄ ����� Ä � � � G �������o����� � � . Thisallows the

perceptronalgorithmto usetheprobabilityfrom the
originalmodelaswell asthesubtreesinformationto
ranktrees.Wewould thusexpectthemodelto do at
leastaswell astheoriginal probabilisticmodel.

The algorithm in figure 1(b) was appliedto the
problem,with theinnerproduct

� , ��������� , � � � used
in the definition of M ����� . The algorithm in 1(b)
runsin approximatelyquadratictime in thenumber
of training examples. This madeit somewhat ex-
pensive to run thealgorithmoverall 36,000training
sentencesin onepass.Instead,webroke thetraining
setinto 6 chunksof roughlyequalsize,andtrained
6 separateperceptronson thesedatasets. This has
the advantageof reducingtraining time, both be-
causeof the quadraticdependenceon training set
size,andalsobecauseit is easyto train the6 models
in parallel. Theoutputsfrom the6 runson testex-
ampleswerecombinedthroughthevotingprocedure
describedin section3.4.

Figure4 shows the resultsfor the votedpercep-
tron with the treekernel. The parametersÃ and

¥
were set to

U . c and
U .ÁÉ respectively through tun-

ing on the developmentset. The methodshows
a
U .ÁÊCË absolute improvement in average preci-

sionandrecall (from 88.2%to 88.8%on sentences¦ W�U8U
words), a 5.1% relative reduction in er-

ror. Theboostingmethodof (Collins 2000)showed
89.6%/89.9%recall andprecisionon rerankingap-
proachesfor the samedatasets(sentenceslessthan
100 wordsin length). (Charniak2000)describesa



different methodwhich achieves very similar per-
formanceto (Collins 2000). (Bod 2001)describes
experimentsgiving 90.6%/90.8%recall and preci-
sion for sentencesof lessthan40 words in length,
usingtheall-subtreesrepresentation,but usingvery
differentalgorithmsandparameterestimationmeth-
odsfrom theperceptronalgorithmsin thispaper(see
section7 for morediscussion).

6.2 Named–Entity Extraction

Over a periodof a yearor sowe have hadover one
million wordsof named-entitydataannotated.The
datais drawn from webpages,theaimbeingto sup-
port a question-answeringsystemover webdata.A
numberof categoriesareannotated:the usualpeo-
ple, organizationandlocationcategories,aswell as
lessfrequentcategoriessuchasbrand-names,scien-
tific terms,event titles (suchasconcerts)andsoon.
As a result,we createda trainingsetof 53,609sen-
tences(1,047,491words), and a test set of 14,717
sentences(291,898words).

The taskwe consideris to recover named-entity
boundaries.We leave therecovery of thecategories
of entitiesto aseparatestageof processing.Weeval-
uatedifferentmethodson thetaskthroughprecision
and recall.7 The problemcanbe framedas a tag-
ging task– to tageachwordasbeingeitherthestart
of an entity, a continuationof an entity, or not to
be part of an entity at all. As a baselinemodelwe
useda maximumentropy tagger, very similar to the
onedescribedin (Ratnaparkhi1996).Maximumen-
tropy taggershave beenshown to be highly com-
petitive on a numberof taggingtasks,suchaspart-
of-speechtagging(Ratnaparkhi1996),andnamed-
entity recognition(Borthwick et. al 1998). Thus
the maximum-entropy taggerwe usedrepresentsa
seriousbaselinefor the task. We useda feature
set which includedthe current,next, and previous
word; the previous two tags;variouscapitalization
andotherfeaturesof thewordbeingtagged(thefull
featuresetis describedin (Collins2002a)).

As a baselinewe trained a model on the full
53,609sentencesof training data,anddecodedthe
14,717sentencesof test datausing a beamsearch

7If a methodproposesÌ entitieson the test set, and Í of
thesearecorrectthentheprecisionof a methodis Î�¼�¼�ÏÑÐlÍ#ÒfÌ .
Similarly, if Ó is thenumberof entitiesin thehumanannotated
versionof thetestset,thentherecallis Î#¼�¼�ÏÔÐÕÍ�Ò6Ó .

P R F

Max-Ent 84.4% 86.3% 85.3%
Perc. 86.1% 89.1% 87.6%
Imp. 10.9% 20.4% 15.6%

Figure5: Resultsfor themax-entandvotedperceptronmeth-

ods. “Imp.” is the relative error reductiongiven by usingthe

perceptron.Öw× precision,ØÂ× recall, Ùw× F-measure.

which keepsthe top 20 hypothesesat eachstageof
a left-to-right search.In training the votedpercep-
tron we split the training data into a 41,992sen-
tencetraining set, and a 11,617sentencedevelop-
mentset. The trainingsetwassplit into 5 portions,
andin eachcasethe maximum-entropy taggerwas
trainedon 4/5 of the data,thenusedto decodethe
remaining1/5. In this way the whole training data
wasdecoded.The top 20 hypothesesundera beam
search,togetherwith their log probabilities,werere-
coveredfor eachtrainingsentence.In asimilarway,
amodeltrainedonthe41,992sentencesetwasused
to produce20 hypothesesfor eachsentencein the
developmentset.

As in theparsingexperiments,thefinal kernelin-
corporatesthe probability from the maximum en-
tropy tagger, i.e.

� , �����È�o� , � � �Ú� ÃÇÄ ����� Ä � � � G�������r�Û��� � � where Ä ����� is the log-likelihood of
�

underthetaggingmodel,
�������S�;��� � � is thetagging

kernel describedpreviously, and Ã is a parameter
weighting the two terms. The other free parame-
ter in thekernelis

¥
, whichdetermineshow quickly

largerstructuresaredownweighted.In runningsev-
eral training runs with different parametervalues,
andthentestingerror rateson thedevelopmentset,
the bestparametervalueswe found were Ã �ÜU . c ,¥_�ÝU .ÁÀ . Figure 5 shows resultson the test data
for the baselinemaximum-entropy tagger, and the
votedperceptron.Theresultsshow a15.6%relative
improvementin F-measure.

7 Relationship to Previous Work

(Bod 1998)describesquitedifferentparameteresti-
mationandparsingmethodsfor theDOP represen-
tation. Themethodsexplicitly dealwith theparam-
etersassociatedwith subtrees,with sub-samplingof
treefragmentsmakingthecomputationmanageable.
Even after this, Bod’s methodis left with a huge
grammar: (Bod 2001) describesa grammarwith



over 5 million sub-structures.The methodrequires
searchfor the 1,000mostprobablederivationsun-
der this grammar, usingbeamsearch,presumablya
challengingcomputationaltaskgiventhesizeof the
grammar. In spite of theseproblems,(Bod 2001)
gives excellent results for the methodon parsing
Wall StreetJournaltext. Thealgorithmsin thispaper
have a differentflavor, avoiding theneedto explic-
itly dealwith featurevectorsthat trackall subtrees,
andalsoavoiding theneedto sumover anexponen-
tial numberof derivationsunderlyingagiventree.

(Goodman1996) gives a polynomial time con-
versionof a DOP model into an equivalent PCFG
whosesize is linear in the size of the training set.
Themethodusesa similar recursionto thecommon
sub-treesrecursiondescribedin this paper. Good-
man’s methodstill leaves exact parsingunder the
modelintractable(becauseof theneedto sumover
multiple derivationsunderlyingthe sametree),but
hegivesanapproximationto finding themostprob-
abletree,whichcanbecomputedefficiently.

From a theoreticalpoint of view, it is difficult to
find motivation for the parameterestimationmeth-
ods usedby (Bod 1998) – see(Johnson2002) for
discussion. In contrast,the parameterestimation
methodsin thispaperhave astrongtheoreticalbasis
(see(Cristianini andShawe-Taylor 2000)chapter2
and(Freund& Schapire1999)for statisticaltheory
underlyingtheperceptron).

For relatedwork on the voted perceptronalgo-
rithm appliedto NLP problems,see(Collins 2002a)
and(Collins 2002b). (Collins 2002a)describesex-
perimentson the samenamed-entitydatasetas in
thispaper, but usingexplicit featuresratherthanker-
nels. (Collins 2002b)describeshow the votedper-
ceptroncanbeusedto trainmaximum-entropy style
taggers,andalsogivesa morethoroughdiscussion
of the theory behind the perceptronalgorithm ap-
plied to rankingtasks.
AcknowledgementsMany thanksto JackMinisi for
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