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Abstract

This paper ties up some loose ends in finite-state Optimality
Theory. First, it discusses how to perform comprehension un-
der Optimality Theory grammars consisting of finite-state con-
straints. Comprehension has not been much studied in OT; we
show that unlike production, it does not always yield a regular
set, making finite-state methods inapplicable. However, after
giving a suitably flexible presentation of OT, we show care-
fully how to treat comprehension under recent variants of OT
in which grammars can be compiled into finite-state transduc-
ers. We then unify these variants, showing that compilation is
possible if all components of the grammar are regular relations,
including the harmony ordering on scored candidates. A side
benefit of our construction is a far simpler implementation of
directional OT (Eisner, 2000).

1 Introduction

To produce language is to convert utterances from
their underlying (“deep”) form to a surface form.
Optimality Theory or OT (Prince and Smolensky,
1993) proposes to describe phonological production
as an optimization process. For an underlyingx,
a speaker purportedly chooses the surface formz
so as to maximize theharmony of the pair(x, z).
Broadly speaking,(x, z) is harmonic ifz is “easy”
to pronounce and “similar” tox. But the precise har-
mony measure depends on the language; according
to OT, it can be specified by a grammar of ranked
desiderata known as constraints.

According to OT, then, production maps each un-
derlying form to its best possible surface pronuncia-
tion. It is akin to the function that maps each childx
to his or her most flattering outfitz. Different chil-
dren look best in different clothes, and for an oddly
shaped childx, even the best conceivable outfitz
may be an awkward compromise between style and
fit—that is, between ease of pronunciation and sim-
ilarity to x.

Languagecomprehensionis production in re-
verse. In OT, it maps each outfitz to the set of chil-

∗Thanks to Kie Zuraw for asking about comprehension; to
Ron Kaplan for demanding an algebraic construction before he
believed directional OT was finite-state; and to others whose
questions convinced me that this paper deserved to be written.

drenx for whom that outfit is optimal, i.e., is at least
as flattering as any other outfitz′:

PRODUCE(x) = {z : (@z′) (x, z′) > (x, z)}
COMPREHEND(z) = {x : z ∈ PRODUCE(x)}

= {x : (@z′) (x, z′) > (x, z)}

In generalz andz′ may range over infinitely many
possible pronunciations. While the formulas above
are almost identical, comprehension is in a sense
more complex because it varies both the underlying
and surface forms. WhilePRODUCE(x) considers
all pairs(x, z′), COMPREHEND(z) must for eachx
consider all pairs(x, z′). Of course, this nested def-
inition does not preclude computational shortcuts.

This paper has three modest goals:

1. To show that OT comprehension does in fact
present a computational problem that production
does not. Even when the OT grammar is required to
be finite-state, so that production can be performed
with finite-state techniques, comprehensioncannot
in general be performed with finite-state techniques.
2. To consider recent constructions that cut through
this problem (Frank and Satta, 1998; Karttunen,
1998; Eisner, 2000; Gerdemann and van Noord,
2000). By altering or approximating the OT
formalism—that is, by hook or by crook—these con-
structions manage to compile OT grammars into
finite-state transducers. Transducers may readily be
inverted to do comprehension as easily as produc-
tion. We carefully lay out how to use them for com-
prehension in realistic circumstances (in the pres-
ence of correspondence theory, lexical constraints,
hearer uncertainty, and phonetic postprocessing).
3. To give a unified treatment in the extended finite-
state calculus of the constructions referenced above.
This clarifies their meaning and makes them easy to
implement. For example, we obtain a transparent al-
gebraic version of Eisner’s (2000) unbearably tech-
nical automaton construction for his proposed for-
malism of “directional OT.”
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The treatment shows that all the constructions
emerge directly from a generalized presentation of
OT, in which the crucial fact is that the harmony or-
dering on scored candidates is a regular relation.

2 Previous Work on Comprehension

Work focusing on OT comprehension—or even
mentioning it—has been surprisingly sparse. While
the recent constructions mentioned in§1 can easily
be applied to the comprehension problem, as we will
explain, they were motivated primarily by a desire to
pare back OT’s generative power to that of previous
rewrite-rule formalisms (Johnson, 1972).

Fosler (1996) noted the existence of the OT com-
prehension task and speculated that it might suc-
cumb to heuristic search. Smolensky (1996) pro-
posed to solve it by optimizing theunderlyingform,

COMPREHEND(z) ?= {x : (@x′) (x′, z) > (x, z)}

Hale and Reiss (1998) pointed out in response that
any comprehension-by-optimization strategy would
have to arrange for multiple optima: after all, phono-
logical comprehension is a one-to-many mapping
(since phonological production is many-to-one).1

The correctness of Smolensky’s proposal (i.e.,
whether it really computesCOMPREHEND) depends
on the particular harmony measure. It can be made
to work, multiple optima and all, if the harmony
measure is constructed with both production and
comprehension in mind. Indeed, for any phonology,
it is trivial to design a harmony measure that both
production and comprehension optimize. (Just de-
fine the harmony of(x, z) to be 1 or 0 according
to whether the mappingx 7→ z is in the language!)
But we are really only interested in harmony mea-
sures that are defined by OT-style grammars (rank-
ings of “simple” constraints). In this case Smolen-
sky’s proposal can be unworkable. In particular,§4
will show that afinite-stateproduction grammar in
classical OT need not be invertible byanyfinite-state
comprehension grammar.

1Hale & Reiss’s criticism may be specific to phonology
and syntax. For some phenomena in semantics, pragmatics,
and even morphology, Blutner (1999) argues for aone-to-one
form-meaning mapping in which marked forms express marked
meanings. He deliberately usesbidirectional optimization to
rule out many-to-one cases: roughly speaking, an(x, z) pair is
grammatical for him only ifz is optimal givenx andvice-versa.

3 A General Presentation of OT

This section (graphically summarized in Fig. 1) lays
out a generalized version of OT’s theory of produc-
tion, introducing some notational and representa-
tional conventions that may be useful to others and
will be important below. In particular, all objects
are represented as strings, or as functions that map
strings to strings. This will enable us to use finite-
state techniques later.

The underlying form x andsurface form z are
represented as strings. We often refer to these strings
asinput andoutput. Following Eisner (1997), each
candidate(x, z) is also represented as a stringy.

The notation(x, z) that we have been using so far
for candidates is actually misleading, since in fact
the candidatesy that are compared encode more than
justx andz. They also encode a particular alignment
or correspondencebetweenx andz. For example,
if x = abdip andz = a[di][bu] , then a typical
candidate would be encoded

y = aab0[d di i][p b0u]

which specifies thata corresponds toa, b was
deleted (has no surface correspondent), voicelessp
surfaces as voicedb, etc. The harmony ofy might
depend on this alignment as well as onx andz (just
as an outfit might fit worse when worn backwards).

Because we are distinguishing underlying and
surface material by using disjoint alphabetsΣ =
{a,b, . . .} and∆ = {[ , ] ,a,b, . . .},2 it is easy to
extract the underlying and surface forms (x andz)
from y.

Although the above example assumes thatx and
z are simple strings of phonemes and brackets, noth-
ing herein depends on that assumption. Autoseg-
mental representations too can be encoded as strings
(Eisner, 1997).

In general, an OT grammar consists of 4 com-
ponents: a constraint ranking, a harmony ordering,
and generating and pronouncing functions. The con-
straint ranking is the language-specific part of the
grammar; the other components are often supposed
to be universal across languages.

Thegenerating function GEN maps anyx ∈ Σ∗

to the (nonempty) set of candidatesy whose under-
lying form is x. In other words, GEN just inserts

2An alternative would be to distinguish them by odd and
even positions in the string.



x︸︷︷︸
underlying form x∈Σ∗

GEN−→ Y0(x) C1−→ Y1(x) C2−→ Y2(x) · · · Cn−→ Yn(x)︸ ︷︷ ︸
sets of candidates y∈(Σ∪∆)∗

PRON−→Z(x)︸ ︷︷ ︸
set of surface forms z∈∆∗

whereYi−1(x) Ci−→ Yi(x) really meansYi−1(x)︸ ︷︷ ︸
y∈(Σ∪∆)∗

Ci−→ Ȳi(x)
prune−→ optimal subset of̄Yi(x)︸ ︷︷ ︸

ȳ∈(Σ∪∆∪{?})∗

delete ?−→ Yi(x)︸ ︷︷ ︸
y∈(Σ∪∆)∗

Figure 1: This paper’s view of OT production. In the second line,Ci inserts?’s into candidates; then the candidates with suboptimal
starrings are pruned away, and finally the?’s are removed from the survivors.

arbitrary substrings from∆∗ amongst the charac-
ters ofx, subject to any restrictions on what consti-
tutes a legitimate candidatey.3 (Legitimacy might
for instance demand thaty’s surface materialz have
matched, non-nested left and right brackets, or even
thatz be similar tox in terms of edit distance.)

A constraint ranking is simply a sequence
C1, C2, . . . Cn of constraints. Let us take each
Ci to be a function thatscores candidatesy by
annotating them with violation marks?. For ex-
ample, a NODELETE constraint would mapy =
aab0c 0[d di i][p b0u] to ȳ =NODELETE(y) =
aab?0c?0[d di i][p b0u] , inserting a? after each
underlying phoneme that does not correspond to any
surface phoneme. This unconventional formulation
is needed for new approaches that care about the ex-
act location of the ?’s. In traditional OT only the
numberof ?’s is important, although the locations
are sometimes shown for readability.

Finally, OT requires aharmony ordering �
on scored candidates̄y ∈ (Σ ∪ ∆ ∪ {?})∗. In
traditional OT, ȳ is most harmonic when it con-
tains the fewest?’s. For example, among candi-
dates scored by NODELETE, the most harmonic
ones are the ones with the fewest deletions; many
candidates may tie for this honor.§6 considers
other harmony orderings, a possibility recognized
by Prince and Smolensky (1993) (� corresponds to
their H-EVAL ). In general� may be apartial or-
der: two competing candidates may be equally har-
monic or incomparable (in which case both can
survive), and candidates with different underlying
forms never compete at all.

Production under such a grammar is a matter of
successive filteringby the constraintsC1, . . . Cn.
Given an underlying formx, let

Y0(x) = GEN(x) (1)
3It is never reallynecessaryfor GEN to enforce such restric-

tions, since they can equally well be enforced by the top-ranked
constraintC1 (see below).

Yi(x) = {y ∈ Yi−1(x) : (2)

(@y′ ∈ Yi−1(x)) Ci(y′) � Ci(y)}

The set of optimal candidates is nowYn(x). Ex-
tractingz from eachy ∈ Yn(x) gives the setZ(x)
or PRODUCE(x) of acceptable surface forms:

Z(x) = {PRON(y) : y ∈ Yn(x)} ⊆ ∆∗ (3)

PRON denotes the simplepronunciation function
that extractsz from y. It is the counterpart to GEN:
just as GEN fleshes outx ∈ Σ∗ into y by inserting
symbols of∆, PRON slims y down toz ∈ ∆∗ by
removing symbols ofΣ.

Notice thatYn ⊆ Yn−1 ⊆ . . . ⊆ Y0. The only
candidatesy ∈ Yi−1 that survive filtering byCi are
the ones thatCi considers most harmonic.

The above notation is general enough to handle
some of the important variations of OT, such as
Paradigm Uniformity and Sympathy Theory. In par-
ticular, one can define GEN so that each candidate
y encodes not just an alignment betweenx andz,
but an alignment amongx, z, and some other strings
that are neither underlying nor surface. These other
strings may represent the surface forms for other
members of the same morphological paradigm, or
intermediate throwaway candidates to whichz is
sympathetic. Production still optimizesy, which
means that it simultaneously optimizesz and the
other strings.

4 Comprehension in Finite-State OT

This section assumes OT’s traditional harmony or-
dering, in which the candidates that survive filtering
byCi are the ones into whichCi inserts fewest?’s.

Much computational work on OT has been con-
ducted within a finite-state framework (Ellison,
1994), in keeping with a tradition of finite-state
phonology (Johnson, 1972; Kaplan and Kay, 1994).4

4The tradition already included (inviolable) phonological



Finite-state OT is a restriction of the formal-
ism discussed above. It specifically assumes that
GEN, C1, . . . Cn, and PRON are all regular relations,
meaning that they can be described by finite-state
transducers. GEN is a nondeterministic transducer
that maps eachx to multiple candidatesy. The other
transducers map eachy to a singleȳ or z.

These finite-state assumptions were proposed
(in a different and slightly weaker form) by
Ellison (1994). Their empirical adequacy has been
defended by Eisner (1997).

In addition to having the right kind of power lin-
guistically, regular relations are closed under vari-
ous relevant operations and allow (efficient) parallel
processing of regular sets of strings. Ellison (1994)
exploited such properties to give a production algo-
rithm for finite-state OT. Givenx and a finite-state
OT grammar, he used finite-state operations to con-
struct the setYn(x) of optimal candidates, repre-
sented as a finite-state automaton.

Ellison’s construction demonstrates thatYn is al-
ways a regular set. Since PRON is regular, it follows
thatPRODUCE(x) = Z(x) is also a regular set.

We now show thatCOMPREHEND(z), in con-
strast, neednot be a regular set. LetΣ = {a,b},
∆ = {[ , ] ,a,b, . . .} and suppose that GEN allows
candidates like the ones in§3, in which parts of the
string may be bracketed between[ and] . The cru-
cial grammar consists of two finite-state constraints.
C2 penalizesa’s that fall between brackets (by in-
serting? next to each one) and also penalizesb’s
that fall outside of brackets. It is dominated byC1,
which penalizes brackets that do not fall at either
edge of the string. Note that this grammar is com-
pletely permissive as to the number and location of
surface characters other than brackets.

If x contains morea’s thanb’s, thenPRODUCE(x)
is the set̂∆∗ of all unbracketed surface forms, where
∆̂ is ∆ minus the bracket symbols. Ifx contains
fewer a’s than b’s, then PRODUCE(x) = [ ∆̂∗] .
And if a’s andb’s appear equally often inx, then
PRODUCE(x) is the union of the two sets.

Thus, while thex-to-z mapping is not a regular
relation under this grammar, at leastPRODUCE(x)
is a regular set for eachx—just as finite-state OT

constraints, notably Koskenniemi’s (1983) two-level model,
which like OT used finite-state constraints on candidatesy that
encoded an alignment between underlyingx and surfacez.

guarantees. But for any unbracketedz ∈ ∆̂∗, such
asz = abc , COMPREHEND(z) is not regular: it is
the set of underlying strings with # ofa’s≥ # of b’s.

This result seems to eliminate any hope of han-
dling OT comprehension in a finite-state frame-
work. It is interesting to note that both OT and
current speech recognition systems construct finite-
state models of production and define comprehen-
sion as the inverse of production. Speech recog-
nizers do correctly implement comprehension via
finite-state optimization (Pereira and Riley, 1997).
But this is impossible in OT because OT has a more
complicated production model. (In speech recog-
nizers, the most probable phonetic or phonological
surface form is not presumed to have suppressed its
competitors.)

One might try to salvage the situation by barring
constraints likeC1 orC2 from the theory as linguis-
tically implausible. Unfortunately this is unlikely
to succeed. Primitive OT (Eisner, 1997) already re-
stricts OT to something like a bare minimum of con-
straints, allowing just two simple constraint families
that are widely used by practitioners of OT. Yet even
these primitive constraints retain enough power to
simulate any finite-state constraint. In any case,C1

andC2 themselves are fairly similar to “domain”
constraints used to describe tone systems (Cole and
Kisseberth, 1994). WhileC2 is somewhat odd in
that it penalizes two distinct configurations at once,
one would obtain the same effect by combining three
separately plausible constraints:C2 requiresa’s be-
tween brackets (i.e., in a tone domain) to receive sur-
face high tones,C3 requiresb’s outside brackets to
receive surface high tones, andC4 penalizes all sur-
face high tones.5

Another obvious if unsatisfying hack would im-
pose heuristic limits on the length ofx, for exam-
ple by allowing the comprehension system to return
the approximationCOMPREHEND(z) ∩ {x : |x| ≤
2 · |z|}. This set is finite and hence regular, so per-

5Since the surface tones indicate the total number ofa’s and
b’s in the underlying form,COMPREHEND(z) is actually a finite
set in this version, hence regular. But the non-regularity argu-
ment does go through if the tonal information inz is not avail-
able to the comprehension system (as when reading text with-
out diacritics); we cover this case in§5. (One can assume that
some lower-ranked constraints require a special suffix before] ,
so that the bracket information need not be directly available to
the comprehension system either.)



haps it can be produced by some finite-state method,
although the automaton to describe the set might be
large in some cases.

Recent efforts to force OT into a fully finite-state
mold are more promising. As we will see, they iden-
tify the problem as the harmony ordering�, rather
than the space of constraints or the potential infini-
tude of the answer set.

5 Regular-Relation Comprehension

Since COMPREHEND(z) need not be a regular set
in traditional OT, a corollary is thatCOMPREHEND

and its inversePRODUCEare not regular relations.
That much was previously shown by Markus Hiller
and Paul Smolensky (Frank and Satta, 1998), using
similar examples.

However, at leastsomeOT grammars ought to de-
scribe regular relations. It has long been hypothe-
sized that all human phonologies are regular rela-
tions, at least if one omits reduplication, and this is
necessarily true of phonologies that were success-
fully described with pre-OT formalisms (Johnson,
1972; Koskenniemi, 1983).

Regular relations are important for us because
they are computationally tractable. Any regular rela-
tion can be implemented as a finite-state transducer
T , which can be inverted and used for comprehen-
sion as well as production.PRODUCE(x) = T (x) =
range(x ◦ T ), andCOMPREHEND(z) = T−1(z) =
domain(T ◦ z).

We are therefore interested in compiling OT
grammars into finite-state transducers—by hook or
by crook. §6 discusses how; but first let us see how
such compilation is useful in realistic situations.

Any practical comprehension strategy must rec-
ognize that the hearer does not really perceive the
entire surface form. After all, the surface form con-
tains phonetically invisible material (e.g., syllable
and foot boundaries) and makes phonetically imper-
ceptible distinctions (e.g., two copies of a tone ver-
sus one doubly linked copy). How to comprehend in
this case?

The solution is to modify PRON to “go all the
way”—to delete not only underlying material but
also phonetically invisible material. Indeed, PRON

can also be made to perform any purely phonetic
processing. Each outputz of PRODUCEis now not a

phonological surface form but a string of phonemes
or spectrogram segments. So long as PRON is a reg-
ular relation (perhaps a nondeterministic or prob-
abilistic one that takes phonetic variation into ac-
count), we will still be able to constructT and use it
for production and comprehension as above.6

How about the lexicon? When the phonology can
be represented as a transducer,COMPREHEND(z) is
a regular set. It contains all inputsx that could have
produced outputz. In practice, many of these in-
puts are not in the lexicon, nor are they possible
novel words. One should restrict to inputs that ap-
pear in the lexicon (also a regular set) by intersecting
COMPREHEND(z) with the lexicon. For novel words
this intersection will be empty; but one can find the
possible underlying forms of the novel word, for
learning’s sake, by intersectingCOMPREHEND(z)
with a larger (infinite) regular set representing all
forms satisfying the language’s lexical constraints.

There is an alternative treatment of the lexicon.
GEN can be extended “backwards” to incorporate
morphology just as PRON was extended “forwards”
to incorporate phonetics. On this view, the input
x is a sequence of abstract morphemes, and GEN

performs morphological preprocessing to turnx into
possible candidatesy. GEN looks up each abstract
morpheme’s phonological string∈ Σ∗ from the lex-
icon,7 then combines these phonological strings by
concatenation or template merger, then nondeter-
ministically inserts surface material from∆∗. Such
a GEN can plausibly be built up (by composition)
as a regular relation from abstract morpheme se-
quences to phonological candidates. This regularity,
as for PRON, is all that is required.

Representing a phonology as a transducerT has
additional virtues. T can be applied efficiently
to any input stringx, whereas Ellison (1994) or
Eisner (1997) requires a fresh automaton construc-
tion for eachx. A nice trick is to buildT without

6Pereira and Riley (1997) build a speech recognizer by com-
posing a probabilistic finite-state language model, a finite-state
pronouncing dictionary, and a probabilistic finite-state acoustic
model. These three components correspond precisely to the in-
put to GEN, the traditional OT grammar, and PRON, so we are
simply suggesting the same thing in different terminology.

7Nondeterministically in the case of phonologically condi-
tioned allomorphs:INDEFINITE APPLE 7→ {Λæpl, ænæpl} ⊆
Σ∗. This yields competing candidates that differ even in their
underlying phonological material.



PRON and apply it to all conceivablex’s in paral-
lel, yielding the complete set of all optimal candi-
datesYn(Σ∗) =

⋃
x∈Σ∗ Yn(x). If Y andY ′ denote

the sets of optimal candidates under two grammars,
then(Y ∩ ¬Y ′) ∪ (Y ′ ∩ ¬Y ) yields the candidates
that are optimal under only one grammar. Applying
GEN−1 or PRON to this set finds the regular set of
underlying or surface forms that the two grammars
would treat differently; one can then look for empir-
ical cases in this set, in order to distinguish between
the two grammars.

6 Theorem on Compiling OT

Why are OT phonologies not always regular re-
lations? The trouble is that inputs may be arbi-
trarily long, and so may accrue arbitrarily large
numbers of violations. Traditional OT (§4) is
supposed to distinguish all such numbers. Con-
sider syllabification in English, which prefers
to syllabify the long inputbi bambam. . .bam︸ ︷︷ ︸

k copies

as [bi][bam][bam] . . . [bam] (with k codas)
rather than[bib][am][bam] . . . [bam] (with
k + 1 codas). NOCODA must therefore distinguish
annotated candidates̄y with k ?’s (which are opti-
mal) from those withk + 1 ?’s (which are not). It
requires a(≥ k + 2)-state automaton to make this
distinction by looking only at the?’s in ȳ. And if k
can be arbitrarily large, then nofinite-state automa-
ton will handle all cases.

Thus, constraints like NOCODA do not allow an
upper bound onk for all x ∈ Σ∗. Of course, the min-
imal number of violationsk of a constraint is fixed
giventhe underlying formx, which is useful in pro-
duction.8 But comprehension is less fortunate: we
cannotboundk given only the surface formz. In
the grammar of§4, COMPREHEND(abc ) included
underlying forms whose optimal candidates had ar-
bitrarily large numbers of violationsk.

Now, in most cases, theeffectof an OT gram-
mar can be achieved without actually counting any-
thing. (This is to be expected since rewrite-rule

8Ellison (1994) was able to construct PRODUCE(x) from x.
One can even build a transducer for PRODUCEthat is correct on
all inputs that can achieve≤ K violations and returns∅ on other
inputs (signalling that the transducer needs to be recompiled
with increasedK). Simply use the construction of (Frank and
Satta, 1998; Karttunen, 1998), composed with a hard constraint
that the answer must have≤ K violations.

grammars were previously written for the same
phonologies, and they did not use counting!) This
is possible despite the above arguments because
for some grammars, the distinction between opti-
mal and suboptimal̄y can be made by looking at
the non-? symbols inȳ rather than trying to count
the ?’s. In our NOCODA example, a surface sub-
string such as . . .ib ?][a . . . might signal that̄y is
suboptimal because it contains an “unnecessary”
coda. Of course, the validity of this conclusion
depends on the grammar and specifically the con-
straintsC1, . . . Ci−1 ranked above NOCODA, since
whether that coda is really unnecessary depends on
whetherȲi−1 also contains the competing candidate
. . . i][ba . . . with fewer codas.

But as we have seen, some OT grammars do have
effects that overstep the finite-state boundary (§4).
Recent efforts to treat OT with transducers have
therefore tried to remove counting from the formal-
ism. We now unify such efforts by showing that they
all modify the harmony ordering�.
§4 described finite-state OT grammars as ones

where GEN, PRON, and the constraints are regular
relations. We claim thatif the harmony ordering�
is also a regular relation on strings of(Σ∪∆∪{?})∗,
then the entire grammar (PRODUCE) is also regular.

We require harmony orderings to becompatible
with GEN: an ordering must treat̄y′, ȳ as incompa-
rable (neither is� the other) if they were produced
from different underlying forms.9

To make the notation readable let us denote the�
relation by the letterH. Thus, a transducer forH
accepts the pair(ȳ′, ȳ) if ȳ′ � ȳ.

The construction is inductive.Y0 = GEN is reg-
ular by assumption. IfYi−1 is regular, then so isYi
since (as we will show)

Yi = (Ȳi ◦ ¬range(Ȳi ◦H)) ◦D (4)

where Ȳi
def= Yi−1 ◦ Ci and mapsx to the set of

starred candidates thatCi will prune;¬ denotes the
complement of a regular language; andD is a trans-
ducer that removes all?’s. ThereforePRODUCE =
Yn ◦ PRON is regular as claimed.

9For example, the harmony ordering of traditional OT is
{(ȳ′, ȳ) : ȳ′ has the same underlying form as, but contains
fewer ?’s than, ȳ}. If we were allowed to drop the same-
underlying-form condition then the ordering would become reg-
ular, and then our claim would falsely imply that all traditional
finite-state OT grammars were regular relations.



It remains to derive (4). Equation (2) implies

Ci(Yi(x)) = {ȳ ∈ Ȳi(x) : (@ȳ′ ∈ Ȳi(x)) ȳ′ � ȳ} (5)

= Ȳi(x)− {ȳ : (∃ȳ′ ∈ Ȳi(x)) ȳ′ � ȳ} (6)

= Ȳi(x)−H(Ȳi(x)) (7)
One can readH(Ȳi(x)) as “starred candidates that
are worse than other starred candidates,” i.e., subop-
timal. The set difference (7) leaves only the optimal
candidates. We now see

(x, ȳ) ∈ Yi ◦ Ci ⇔ ȳ ∈ Ci(Yi(x)) (8)

⇔ ȳ ∈ Ȳi(x), ȳ 6∈ H(Ȳi(x)) [by (7)] (9)

⇔ ȳ ∈ Ȳi(x), (@z)ȳ ∈ H(Ȳi(z)) [see below](10)

⇔ (x, ȳ) ∈ Ȳi, ȳ 6∈ range(Ȳi ◦H) (11)

⇔ (x, ȳ) ∈ Ȳi ◦ ¬range(Ȳi ◦H) (12)

thereforeYi ◦ Ci = Ȳi ◦ ¬range(Ȳi ◦H) (13)

and composing both sides withD yields (4). To jus-
tify (9) ⇔ (10) we must show when̄y ∈ Ȳi(x) that
ȳ ∈ H(Ȳi(x)) ⇔ (∃z)ȳ ∈ H(Ȳi(z)). For the⇒
direction, just takez = x. For⇐, ȳ ∈ H(Ȳi(z))
means that(∃ȳ′ ∈ Ȳi(z))ȳ′ � ȳ; but thenx = z
(giving ȳ ∈ H(Ȳi(x))), since if not, our compatibil-
ity requirement onH would have madēy′ ∈ Ȳi(z)
incomparable with̄y ∈ Ȳi(x).

Extending the pretty notation of (Karttunen,
1998), we may use (4) to define a left-associative
generalized optimality operator ooH :

Y ooH C
def= (Y ◦C◦¬range(Y ◦C◦H))◦D (14)

Then for any regular OT grammar,PRODUCE=

GEN ooH C1 ooH C2 · · · ooH Cn ◦ PRON

and can be inverted to getCOMPREHEND. More
generally, different constraints can usefully be ap-
plied with differentH ’s (Eisner, 2000).

The algebraic construction above is inspired by a
version that Gerdemann and van Noord (2000) give
for a particular variant of OT. Their regular expres-
sions can be used to implement it, simply replacing
theiradd_violation by ourH.

Typically, H ignores surface characters when
comparing starred candidates. SoH can be written
aselim (∆)◦G◦elim (∆)−1 whereelim (∆) is a
transducer that removes all characters of∆. To sat-
isfy the compatibility requirement onH, G should
be a subset of the relation(Σ| ? |(ε : ?)|(? : ε))∗.10

10This transducer regexp says to map any symbol inΣ∪ {?}
to itself, or insert or delete?—and then repeat.

We now summarize the main proposals from the
literature (see§1), propose operator names, and cast
them in the general framework.

• Y o C: Inviolable constraint (Koskenniemi,
1983; Bird, 1995), implemented by composition.

• Y o+ C: Counting constraint (Prince and
Smolensky, 1993): more violations is more dishar-
monic. No finite-state implementation possible.

• Y oo C: Binary approximation (Karttunen,
1998; Frank and Satta, 1998). All candidates with
any violations are equally disharmonic. Imple-
mented byG = (Σ∗(ε : ?)Σ∗)+, which relates un-
derlying forms without violations to the same forms
with violations.

• Y oo3 C: 3-bounded approximation (Karttunen,
1998; Frank and Satta, 1998). Likeo+ , but all
candidates with≥ 3 violations are equally dishar-
monic.G is most easily described with a transducer
that keeps count of the input and output?’s so far, on
a scale of 0, 1, 2,≥ 3. Final states are those whose
output count exceeds their input count on this scale.

• Y o⊂ C: Matching or subset approximation
(Gerdemann and van Noord, 2000). A candidate is
more disharmonic than another if it has stars in all
the same locations and some more besides.11 Here
G = ((Σ|?)∗(ε : ?)(Σ|?)∗)+.

• Y o> C: Left-to-right directional evaluation (Eis-
ner, 2000). A candidate is more disharmonic than
another if in the leftmost position where they differ
(ignoring surface characters), it has a?. This revises
OT’s “do only when necessary” mantra to “do only
when necessary and then as late as possible” (even
if delaying?’s means sufferingmoreof them later).
HereG = (Σ|?)∗((ε : ?)|((Σ : ?)(Σ|?)∗)). Unlike
the other proposals, here two forms can both be op-
timal only if they have exactly the same pattern of
violations with respect to their underlying material.

• Y <o C: Right-to-left directional evaluation.
“Do only when necessary and then asearlyas possi-
ble.” HereG is the reverse of theG used in o> .

The novelty of the matching and directional pro-
posals is their attention towherethe violations fall.
Eisner’s directional proposal (o>, <o) is the only

11Many candidates are incomparable under this ordering, so
Gerdemann and van Noord also showed how to weaken the no-
tation of “same location” in order to approximateo+ better.



(a) x =bantodibo

[ban][to][di][bo]
[ban][ton][di][bo]
[ban][to][dim][bon]
[ban][ton][dim][bon]

(b) NOCODA

ban?to di bo

ban?to ?di bo

ban?to di ?bo?

ban?to ?di ?bo?

(c) C1 NOCODA

*! *

☞ **

***!

***!*

(d) C1 σ1 σ2 σ3 σ4

*! *

* *!

☞ * * *

* *! * *

Figure 2: Counting vs. directionality. [Adapted from (Eisner, 2000).]C1 is some high-ranked constraint that kills the most faithful
candidate; NOCODA dislikes syllable codas. (a) Surface material of the candidates. (b) Scored candidates forG to compare.
Surface characters but not?’s have been removed byelim (∆). (c) In traditional evaluationo+ ,G counts the?’s. (d) Directional
evaluation o> gets a different result, as if NOCODA were split into 4 constraints evaluating the syllables separately. More
accurately, it is as if NOCODA were split into one constraint per underlying letter, counting the number of?’s right after that letter.

one defended on linguistic as well as computational
grounds. He argues that violation counting (o+) is
a bug in OT rather than a feature worth approximat-
ing, since it predicts unattested phenomena such as
“majority assimilation” (Bakovíc, 1999; Lombardi,
1999). Conversely, he argues that comparing viola-
tions directionally is not a hack but a desirable fea-
ture, since it naturally predicts “iterative phenom-
ena” whose description in traditional OT (via Gener-
alized Alignment) is awkward from both a linguistic
and a computational point of view. Fig. 2 contrasts
the traditional and directional harmony orderings.

Eisner (2000) proved thato> was a regular op-
erator for directionalH, by making use of a rather
different insight, but that machine-level construction
was highly technical. The new algebraic construc-
tion is simple and can be implemented with a few
regular expressions, as for any otherH.

7 Conclusion

See the itemized points in§1 for a detailed summary.
In general, this paper has laid out a clear, general
framework for finite-state OT systems, and used it to
obtain positive and negative results about the under-
studied problem of comprehension. Perhaps these
results will have some bearing on the development
of realistic learning algorithms.

The paper has also established sufficient condi-
tions for a finite-state OT grammar to compile into a
finite-state transducer. It should be easy to imagine
new variants of OT that meet these conditions.
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