Proceedi ngs of the 40th Annual
Li ngui stics (ACL),

Conput at i onal

Meeting of the Association for
Phi | adel phia, July 2002, pp. 33-40.

Performance Issues and Error Analysis in an Open-Domain
Question Answering System

Dan Moldovan, Marius Pagca, Sanda Harabagiu and Mihai Surdeanu
Language Computer Corporation
Dallas, Texas
{moldovan,marius,sanda,mihai}@languagecomputer.com

Abstract

This paper presents an in-depth anal-
ysis of a state-of-the-art Question An-
swering system. Several scenarios are
examined: (1) the performance of each
module in a serial baseline system, (2)
the impact of feedbacks and the inser-
tion of a logic prover, and (3) the im-
pact of various lexical resources. The
main conclusion is that the overall per-
formance depends on the depth of nat-
ural language processing resources and
the tools used for answer finding.

1 Introduction

Aiming at returning brief answers in response to
natural language questions, open-domain Ques-
tion Answering (QA) systems represent an ad-
vanced application of natural language process-
ing. The global metrics used in the QA track
evaluations of the Text REtrieval Conference
(TREC) (Voorhees, 1999) allow for the overall
assessment of the QA system performance. As
part of a relentless quest to improve QA sys-
tems, it is necessary to measure not only the
global performance, but also the performance of
each individual module and other architectural
features. A detailed performance analysis indi-
cates not only that the system fails to provide an
answer but why the system failed. The perfor-
mance analysis is useful to system designers who
want to identify error sources and weak modules.

The QA literature from the last few years
reports on global performance of various sys-
tems (Abney et al., 2000; Hovy et al.,

2001). General evaluation metrics are discussed
in (Voorhees and Tice, 2000) and (Breck et al.,
2000) but, with few exceptions (Ittycheriah et
al., 2001), little is said about in-depth error anal-
ysis in QA systems.

Since most QA systems consist of modules
that are chained serially (Abney et al., 2000;
Prager et al., 2000), the overall performance is
controlled by their weakest link. In this case the
error analysis is straightforward. Our system
architecture uses several feedbacks which com-
plicates significantly the error analysis.

This paper presents an in-depth performance
analysis of a state-of-the-art QA system. Several
configurations are examined; first, the perfor-
mance of each module in a baseline chained ar-
chitecture, then, the impact of feedbacks and the
insertion of new advanced modules, and finally,
the impact of various lexical resources. Our QA
system was ranked high in the last three TREC
QA track evaluations (cf. (Voorhees, 1999)).
Therefore the results are representative to other
QA serial architectures whose internal modules
perform equivalent tasks (Abney et al., 2000) or
employ similar lexical resources and tools (Hovy
et al., 2001; Prager et al., 2000).

2 Taxonomy

The performance of a QA system is tightly cou-
pled with the complexity of questions asked and
the difficulty of answer extraction. For exam-
ple, in TREC many systems were quite success-
ful at providing correct answers to simpler, fact-
seeking questions, but failed to answer questions
that required reasoning or advanced linguistic

analysis (Voorhees, 1999). From the combined
set of 1460 evaluation questions, 70% of the par-
ticipating systems answered successfully ques-
tions like Q1013: “Where is Perth?”, but none
could find a correct answer to complex questions
such as Q1165: “What is the difference between
AM radio stations and FM radio stations?”.

Since performance is affected by the complex-
ity of question processing, we first provide a
broad taxonomy of QA systems.

2.1 Criteria

The taxonomy is based on several criteria that
play an important role in building QA systems:
(1) linguistic and knowledge resources, (2) natu-
ral language processing involved, (3) document
processing, (4) reasoning methods, (5) whether
or not answer is explicitly stated in a document,
(6) whether or not answer fusion is necessary.

2.2 Classes of questions

Class 1. QA systems capable of processing fac-
tual questions
These systems extract answers as text snippets
from one or more documents. Often the an-
swer is found verbatim in a text or as a simple
morphological variation. Typically the answers
are extracted using empirical methods relying
on keyword manipulations.

Class 2. QA systems enabling simple reason-
ing mechanisms
The characteristic of this class is that answers
are found in snippets of text, but unlike in Class
1, inference is necessary to relate the question
with the answer. More elaborate answer detec-
tion methods such as ontologies or codification
of pragmatic knowledge are necessary. Semantic
alternations, world knowledge axioms and sim-
ple reasoning methods are necessary. An exam-
ple is Q198: “How did Socrates died?” where
die has to be linked with drinking poisoned wine.
WordNet and its extensions are sometimes used
as sources of world knowledge.

Class 3. QA systems capable of answer fusion
from different documents
In this class the partial answer information is
scattered throughout several documents and an-
swer fusion is necessary. The complexity here

ranges from assembling simple lists to far more
complex questions like script questions, (e.g.
“How do I assemble a bicycle?”), or template-
like questions (“What management successions
occurred at IBM in the past year?”).

Class 4. Interactive QA systems
These systems are able to answer questions in
the context of previous interactions with the
user. As reported in (Harabagiu et al., 2001),
processing a list of questions posed in a con-
text involves complex reference resolution. Un-
like typical reference resolution algorithms that
associate anaphore with a referent, the reference
imposed by context questions requires the asso-
ciation of an anaphora from the current ques-
tion with either one of the previous questions,
answers or their anaphora.

Class 5. QA systems capable of analogical rea-
soning
The characteristic of these systems is their abil-
ity to answer speculative questions similar to:
“Is the Fed going to raise interests at their next
meeting?”; “Is the US out of recession?”; “Is the
airline industry in trouble?”.

Since most probably the answer to such ques-
tions is not explicitly stated in documents, sim-
ply because events may not have happened yet,
QA systems from this class decompose the ques-
tion into queries that extract pieces of evidence,
after which answer is formulated using reasoning
by analogy. The resources include ad-hoc knowl-
edge bases generated from mining text docu-
ments clustered by the question topic. Asso-
ciated with these knowledge sources are case-
based reasoning techniques as well as methods
for temporal reasoning, spatial reasoning and
evidential reasoning.

Table 1: Distribution of TREC questions
| Type | Number (%) |
Class 1 (factual) 985 (67.5%)
408 (27.9%)

(
Class 2 (simple-reasoning)
Class 3 (fusion - list)
(
(

25 (1.7%)
Class 4 (interactive - context) | 42 (2.9%)
Class 5 (speculative) 0 (0.0%)

Table 1 illustrates the distribution of TREC

Niagra - Niagar:% i How mu% 1966 ! Money \; | Volkswagen, | rented — rent K
Examples VOlkswangen - 1| Sent — b“g\ | | Person | bug | |invented - inventor
._Volkswagen 1 | Volkswagen' | Country __rent , {built—buid
(VLT M2 M3 M4 M5
Keyword Construction Derivation
Question —|—*pre-processing—*| of question || of expected [»| Keyword | n! Keyword
(split/bind/spell) | representatior answer type selection expansion W
System
Modules Retrieval Identification
of documents|—# PaSsag€ | w| of candidate | ANSWEr | el Answer » Answer
and passages| post—filtering answers ranking formulation
M6 M7/ M8 M9)/ M10
Examples | Volkswagen AND buq “in 1966" | 1USD 520 s ' l'renta Volkswagen\;
1 ‘ . $1 | | USD520 |

-

60 passages | ' 2 passages |
e NN ”

. bug for $1 a day" !

Figure 1: Architecture of baseline serial system (no feedbacks)

questions into the question classes. In addi-
tion to 1393 main-task questions collected from
TREC-8, TREC-9 and TREC-2001, there are
25 list questions (e.g., “Name 20 countries that
produce coffee.”) and 42 context questions (e.g.,
“How long was the Varyag?”; “How wide?”).

3 Serial system architecture

This section introduces the serialized architec-
ture of our QA system in which there are no
feedbacks. The complete architecture with all
the feedbacks is presented in a later section of
the paper. As shown in Figure 1, the architec-
ture consists of 10 modules performing several
natural language processing tasks.

The first five modules correspond to question
processing, the next two modules perform docu-
ment and passage processing, and the last three
modules perform answer processing.

M1 The individual question words are spell-
checked. Words like Volkswangen and Niagra are
expanded into their spelling variants Volkswa-
gen and Niagara. If necessary, questions such
as Q885: “Rotary engine cars were made by
what company?” are rephrased into a normal-
ized form where the wh-word (what) appears at
the beginning, e.g. “What company were rotary
engine cars made by?”.

M2 The
transformed

input question is parsed and
into an internal representa-

tion (Harabagiu et al., 2000) capturing question
concepts and binary dependencies between
the concepts. Stop words (e.g., prepositions
or determiners) are identified and removed
from the representation. For illustration, the
representation for Q013: “How much could you
rent a Volkswagen bug for in 1966%” captures
the binary dependency between the concepts
rent and 1966.

M3 The mapping of certain question depen-
dencies on a WordNet-based answer type hier-
archy disambiguates the semantic category of
the expected answers (Pagca and Harabagiu,
2001). For example, the dependency between
How much and rent for Q013 is exploited to de-
rive the expected answer type Money. The an-
swer type is passed to subsequent modules for
the identification of possible answers (all mone-
tary values).

M4 Based mainly on part of speech informa-
tion, a subset of the question concepts are se-
lected as keywords for accessing the underlying
document collection. A passage retrieval engine
accepts Boolean queries built from the selected
keywords, e.g. Volkswagen AND bug. The re-
trieval engine returns passages that contain all
keywords specified in the Boolean query. There-
fore keyword selection is a sensitive task. If the
wrong question word (e.g. much) is included
in the Boolean query (much AND Volkswagen

AND bug), the retrieval is insuccessful since
the passages containing the correct answers are
missed.

M5 Before the construction of Boolean queries
for actual retrieval, the selected keywords are
expanded with morphological, lexical or seman-
tic alternations. The alternations correspond to
other forms in which the question concepts may
occur in the answers. For example, rented is ex-
panded into rent.

M6 The retrieval engine returns the docu-
ments containing all keywords specified in the
Boolean queries. The documents are then fur-
ther restricted to smaller text passages where
all keywords are located in the proximity of one
another. Each retrieved passage includes addi-
tional text (extra lines) before the earliest and
after the latest keyword match. For illustration,
consider Q005: “What is the name of the man-
aging director of Apricot Computer? and the as-
sociated Boolean query Apricot AND Computer
AND director. The relevant text fragment from
the document collection is “Dr Peter Horne,
managing director of Apricot Computers”. Un-
less additional text is included in the passages,
the actual answer Peter Horne would be missed
because it occurs before all matched keywords,
namely director, Apricot and Computer.

M7 The retrieved passages are further refined
for enhanced precision. Passages that do not
satisfy the semantic constraints specified in the
question are discarded. For example, some of
the passages retrieved for Q013 do not satisfy
the date constraint 1966. Out of the 60 passages
returned by the retrieval engine for Q013, 2 pas-
sages are retained after passage post-filtering.

M8 The search for answers within the re-
trieved passages is restricted to those candidates
corresponding to the expected answer type. If
the expected answer type is a named entity such
as MONEY, the candidates ($1, USD 520) are
identified with a named entity recognizer. Con-
versely, if the answer type is a DEFINITION, e.g.
Q903: “What is autism?”, the candidates are
obtained by matching a set of answer patterns
on the passages.

M9 Each candidate answer receives a rele-
vance score according to lexical and proximity

features such as distance between keywords, or
the occurrence of the candidate answer within
an apposition. The candidates are sorted in de-
creasing order of their scores.

M10 The system selects the candidate answers
with the highest relevance scores. The final an-
swers are either fragments of text extracted from
the passages around the best candidate answers,
or they are internally generated.

4 FError analysis for the baseline
serial system

4.1 Performance experiments

The system was tested on 1460 questions col-
lected from TREC-8, 9 and TREC-2001. An-
swers were extracted from a 3 Gbyte text collec-
tion containing about 1 million documents from
sources such as Los Angeles Times and Wall
Street Journal. Each answer has 50 bytes.

The accuracy was measured by the Mean Re-
ciprocal Rate (MRR) metric used by NIST in
the TREC QA evaluations (Voorhees, 1999).
The reciprocal ranking basically assigns a num-
ber equal to 1/R where R is the rank of the
correct answer. Only the first 5 answers are con-
sidered, thus R is less or equal to 5. When the
system does not return a correct answer in top 5,
the precision score for that question is zero. The
overall system precision is the mean of the indi-
vidual scores. System answers were measured
against correct answers provided by NIST.

4.2 Module errors

The inspection of internal traces, at various
checkpoints inserted after each module from Fig-
ure 1, reveals the system errors for each evalua-
tion question. The goal in this experiment is to
identify the earliest module in the chain (from
left to right) that prevents the system to find
the right answer, i.e. causes the error.

As shown in Table 2, question pre-processing
is responsible for 7.1% of the errors distributed
among module M1 (1.9%) and M2 (5.3%). Most
errors in module M2 are due to incorrect parsing
(4.5%). Two of the ten modules (M3 and M5)
account for more than half of the errors. The
failure of either module makes it hard (or impos-

Table 2: Distribution of errors per system module

‘ Module ‘ Module definition

| Errors (%) |

(M1) | Keyword pre-processing (split/bind/spell check) 1.9
(M2) | Construction of internal question representation 5.2
(M3) | Derivation of expected answer type 36.4
(M4) | Keyword selection (incorrectly added or excluded) 8.9
(M5) | Keyword expansion desirable but missing 25.7
(M6) | Actual retrieval (limit on passage number or size) 1.6
(M7) | Passage post-filtering (incorrectly discarded) 1.6
(M8) | Identification of candidate answers 8.0
(M9) | Answer ranking 6.3
(M10) | Answer formulation 44

sible) for subsequent modules to perform their
task. Whenever the derivation of the expected
answer type (module M3) fails, the set of candi-
date answers identified in the retrieved passages
is either empty in 28.2% of the cases (when the
answer type is unknown) or contains the wrong
entities for 8.2% (when the answer type is incor-
rect). If the keywords used for passage retrieval
are not expanded with the semantically related
forms occurring in the answers (module M5), the
relevant passages are missed.

The selection of keywords from the internal
question representation (module M4) coupled
with the keyword expansion (module M5) gen-
erate 34.6% of the errors. Both these modules
affect the output of passage retrieval, since the
set of retrieved passages depends on the Boolean
queries built and submitted to the retrieval en-
gine by the QA system.

Modules M6 and M7 are responsible for the
retrieval of passages where answers may actually
occur. Their combined errors is 3.2%. In module
M6 there are parameters to control the number
of retrieved documents and passages, as well as
the size of each passage.

Answer processing is done in modules M8
through M10. When the expected answer type
is correctly detected, the identification of the
candidate answers (module M8) produces 8.0%
errors. 3.1% errors are due to named entity
recognition (incomplete dictionaries) and 4.9%
are due to spurious answer pattern matching.
Modules M9 and M10 fail to rank the correct

answer within the top 5 returned in 10.7% of
the cases. Module M9 fails if the correct an-
swer candidate is not ranked within the top 5,
whereas M10 fails if the returned answer string
is incomplete, namely it does not fit within 50
bytes.

4.3 Resource errors

The second set of experiments consists of dis-
abling the main natural language resources used
in the QA system, namely the access to Word-
Net and the named entity recognizer, to as-
sess their impact on the overall answer accuracy.
Note that the parser is an integral part of our
question processing model and therefore it is im-
practical to disable it.

Denote with b the baseline system perfor-
mance when all resources are enabled. The pre-
cision score (MRR) drops to 0.59b if WordNet
is disabled. The derivation of the answer type
(module M3) and keyword expansion (module
M5) from Figure 1 are the two modules that
are most influenced by WordNet. For exam-
ple, the WordNet noun hierarchies specify that
the concept pilot is a specialization of aviator,
which in turn is a kind of person. The answer
type for Q037: “What was the name of the US
helicopter pilot shot down over North Korea?”
is Person. The system cannot derive the an-
swer type correctly unless it has access to Word-
Net hierarchies because the ambiguous question
stem What alone does not provide any clue as to
what the expected answer type is. A closer anal-

A Precision (MRR)
[INp =50

0.421
0.42- 0.419
% Np 200 0.4147

NN o
oo p =500 0.400 0.400

' 0.3927
0.39- .
038 0376

0 374
0.3749
0.36

Figure 2: Impact of maximum number of docu-
ments and passages processed

Np

50 200

ysis shows that the performance drop is more
significant for the What questions. When Word-
Net is disabled, the MRR. for the What questions
drops to 0.37b as compared to 0.59b for the en-
tire set. This result indicates that the availabil-
ity of lexico-semantic information becomes more
important for difficult questions.

By disabling the named entity recognizer, the
answer processing lacks the semantic informa-
tion necessary to identify candidate answers.
Loose approximations for the candidate answers
are computed based strictly on keywords match-
ing. In this case the precision drops to 0.32b.

5 Impact of system parameters

The quantitative performance of the QA system
is largely dependent on the amount of text re-
trieved from the document collection; the more
text is retrieved the better the chance of finding
the answer. However, practical QA systems can-
not afford to apply time consuming NLP tech-
niques (especially parsing) to very large amounts
of text. Retrieval parameters are used to provide
trade-offs between the amount of text passed
into the answer processing module and the accu-
racy of the extracted answers. The QA system
has the following retrieval parameters:

e Np - the maximum number of documents
retrieved from a sub-collection (default
value 200 for each of 12 sub-collections); !

!The passage retrieval engine manages the TREC doc-
ument collection as a set of 12 separate sub-collections

A Precision (MRR)
Exec time (sec)

0621 /

04/

—O— precision
- time
/ 0401 }

ﬁ, | C9387
% Sp

i i i i i
+3 +6 +10 20 40

(nr. extra lines)

Figure 3: Impact of passage size on precision
and execution time

e Np - the maximum number of passages pro-
cessed to identify candidate answers (de-
fault value 500).

e Sp - the size allowance for each re-
trieved passage (default value 10 lines be-
fore the earliest and after the latest keyword
match);

When Np and Np are set to smaller values,
the execution time is lower but relevant docu-
ments and passages may be missed. Figure 2
illustrates the impact of the parameters Np and
Np on the precision computed over the entire set
of 1460 test questions. The higher the number
of documents retrieved, the higher the precision
score. It is apparent that Np has a relatively
smaller impact on the precision than Np. This
is due to the fact that the retrieved passages are
re-ordered based on a set of lexical features, such
that the identification of the candidate answers
is performed on the top Np re-ordered passages.

Figure 3 shows the possible trade-off between
overall precision and execution time as a func-
tion of the passage size Sp. Interestingly, the
highest precision score occurs for the default set-
ting, £10. When Sp is smaller, the answers are
missed because they do not fit in the retrieved
passages. When Sp is larger, the actually rel-
evant text fragments are submerged in a large
amount of text. Consequently the answer rank-
ing module (M9 from Figure 1) sorts through a
very large number of candidate answers, and it

does not always rank the correct answers within
the top 5 returned.

6 Impact of Feedbacks

The results presented in previous sections cor-
respond to the serialized baseline architecture
from Figure 1. That architecture is in fact a
simplified version of our system which uses sev-
eral feedbacks to boost the overall performance.

As shown in Figure 4, the architecture with
feedbacks extends the serialized architecture in
several ways. Keyword expansion (module M5)
is enhanced to include lexico-semantic alterna-
tions from WordNet. A new module for logic
proving and justification of the answers is in-
serted before answer ranking. In addition, three
loops become an integral part of the system:
the passage retrieval loop (loop 1); the lexico-
semantic loop (loop 2); and the logic proving
loop (loop 3).

As part of loop 1, the Q/A system adjusts
Boolean queries before passing them to the re-
trieval engine. If the output from the retrieval
engine is too small, a keyword is dropped and
retrieval resumed. If the output is too large,
a keyword is added and a new iteration started,
until the output size is neither too large, nor too
small. When lexico-semantic connections from
the question to the retrieved passages are not
possible, loop 2 is triggered. Question keywords
are replaced with WordNet-based alternations
and retrieval is resumed. Loop 3 relies on a logic
prover that verifies the unifications between the
question and logic forms. When the unifications
fail, the keywords are expanded with semanti-
cally related alternations and retrieval resumes.

Table 3: Impact of feedbacks on precision

Feedback Precision | Incremental

added (MRR) | enhancement

none 0.421=b 0%

Passage retrieval | 0.468=b; b+11%
(loop 1)

Lexico-semantic | 0.542=by b1+15%
(loop 2)

Proving (loop 3) | 0.572=b; ba+5%

Table 3 illustrates the impact of the retrieval
loops on the answer accuracy. The knowledge
brought into the question answering process by
lexico-semantic alternations has the highest in-
dividual contribution, followed by the mecha-
nism of adding/dropping keywords.

The insertion of the logic proving module adds
a new complexity layer to answer processing, en-
abling more trade-offs between processing com-
plexity and answer accuracy. Table 4 shows the
overall precision for four different settings. The
first setting, direct extraction, corresponds to the
simplest QA system that does not use any NLP
techniques or resources. The answers are ex-
tracted from the start of each passage, and re-
turned in the order in which the passages were
retrieved. The precision is only 0.028. When
the NLP techniques are enabled, with the ex-
ception of the derivation of the expected answer
type, the precision improves from 0.028 to 0.150.
The answer accuracy is still limited because the
candidate answers cannot be properly identified
without knowing their semantic category (per-
sons, cities and so forth). If the derivation of
the expected answer type is also enabled, the
precision score changes to 0.468. Finally, when
all feedbacks are enabled the highest overall pre-
cision of 0.572 is achieved. Comparatively, the
answer processing modules of other QA systems
usually span over levels 2 and 3 from Table 4.

Table 4: Performance of answer processing

Answer processing Modules | Precision

complexity level used (MRR)

(1) Direct extraction M1-M6, 0.028
M10

(2) Lexical matching M1-M7, 0.150
M9-M10

(3) Semantic matching | M1-M10 0.468

(4) Feedbacks enabled | all 0.572

The final precision scores for TREC-8, TREC-
9 and TREC-2001 are respectively 0.555, 0.580,
and 0.570. Therefore the precision did not vary
much in spite of the higher degree of difficulty.
This is due to the increased use of natural lan-

M5
+ lexico—sem [
alternations

M1+M2 |,
+M3+M4 |]

Question— M6

=

M7 + M8 |] Logic | »| M9+ M10

proving

—® Answer

Loop 2

Loop 1

Loop 3

Figure 4: Architecture with feedbacks

guage processing in our system.

7 Conclusions

The main conclusion is that the overall per-
formance of QA systems is directly related to
the depth of natural language processing re-
sources and the tools used for answer finding.
As shown in Table 4, the performance of infor-
mation retrieval techniques is significantly en-
hanced when lexico-semantic information is fully
exploited throughout the answer finding process.

Table 2 illustrates that the performance bot-
tlenecks of our QA system are due to two mod-
ules, namely the derivation of the expected an-
swer type and the keyword expansion. The bot-
tlenecks are not specific to our QA system but
reflect the limitations of current QA technolo-
gies. Question answering systems perform bet-
ter when the relevant passages and the candi-
date answers are clearly defined in the ques-
tions. The main problem is the lack of powerful
schemes and algorithms for modeling complex
questions in order to derive as much information
as possible, and for performing a well-guided
search through thousands of text documents.

The lexico-semantic information imported in
the QA system through the retrieval feedbacks
brings consistent improvements over serial pro-
cessing. Per-component errors are spread uni-
formly over the first four classes of question com-
plexities, indicating how our system improved
over the years.

References

S. Abney, M. Collins, and A. Singhal. 2000. Answer
extraction. In Proceedings of the 6th Applied Natural
Language Processing Conference (ANLP-2000), pages
296-301, Seattle, Washington.

E. Breck, J. Burger, L. Ferro, L. Hirschman, D. House,
M. Light, and I. Mani. 2000. How to evaluate your

question answering system every day ... and still get
real work done. In Proceedings of the 2nd Conference
on Language Resources and Evaluation (LREC-2000),
Athens, Greece.

S. Harabagiu, M. Pagca, and S. Maiorano. 2000. Exper-
iments with open-domain textual question answering.
In Proceedings of the 18th International Conference
on Computational Linguistics (COLING-2000), Saar-
brucken, Germany.

S. Harabagiu, D. Moldovan, M. Pagca, M. Surdeanu,
R. Mihalcea, R. Girju, V. Rus, F. Lacidtusu P.
Morarescu, and R. Bunescu. 2001. Answering com-
plex, list and context questions with lcc’s question-
answering server. In Proceedings of the 10th Text
REtrieval Conference (TREC-2001), Gaithersburg,
Maryland. NIST.

E. Hovy, L. Gerber, U. Hermjakob, C.Y. Lin, and
D. Ravichandran. 2001. Toward semantics-based an-
swer pinpointing. In Proceedings of the Human Lan-
guage Technology Conference (HLT-2001), San Diego,
California.

A. Tttycheriah, M. Franz, W. Zhu, and A. Ratna-
parkhi. 2001. Question answering using maximum-
entropy components. In Proceedings of the 2nd Meet-
ing of the North American Chapter of the Association
for Computational Linguistics (NAACL-2001), Pitts-
burgh, Pennsylvania.

M. Pagca and S. Harabagiu. 2001. The informative role
of WordNet in open-domain question answering. In
Proceedings of the 2nd Meeting of the North American
Chapter of the Association for Computational Linguis-
tics (NAACL-01), Workshop on WordNet and Other
Lexzical Resources: Applications, Extensions and Cus-
tomizations, Pittsburgh, Pennsylvania, June.

J. Prager, E. Brown, A. Coden, and D. Radev. 2000.
Question answering by predictive annotation. In
Proceedings of the 23rd International Conference on
Research and Development in Information Retrieval
(SIGIR-2000), pages 184-191, Athens, Greece.

E.M. Voorhees and D.M. Tice. 2000. Building a
question-answering test collection. In Proceedings of
the 28rd International Conference on Research and
Development in Information Retrieval (SIGIR-2000),
pages 200—207, Athens, Greece.

E.M. Voorhees. 1999. The TREC-8 Question Answer-
ing track report. In Proceedings of the 8th Text RE-
trieval Conference (TREC-8), pages 77-82, Gaithers-
burg, Maryland. NIST.

