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Abstract 

We show that it is possible to learn the 
contexts for linguistic operations which 
map a semantic representation to a 
surface syntactic tree in sentence 
realization with high accuracy. We cast 
the problem of learning the contexts for 
the linguistic operations as 
classification tasks, and apply 
straightforward machine learning 
techniques, such as decision tree 
learning. The training data consist of 
linguistic features extracted from 
syntactic and semantic representations 
produced by a linguistic analysis 
system. The target features are extracted 
from links to surface syntax trees. Our 
evidence consists of four examples from 
the German sentence realization system 
code-named Amalgam: case 
assignment, assignment of verb position 
features, extraposition, and syntactic 
aggregation 

1 Introduction 

The last stage of natural language generation, 
sentence realization, creates the surface string 
from an abstract (typically semantic) 
representation. This mapping from abstract 
representation to surface string can be direct, or it 
can employ intermediate syntactic representations 
which significantly constrain the output. 
Furthermore, the mapping can be performed 
purely by rules, by application of statistical 
models, or by a combination of both techniques. 

Among the systems that use statistical or 
machine learned techniques in sentence 

realization, there are various degrees of 
intermediate syntactic structure. Nitrogen 
(Langkilde and Knight, 1998a, 1998b) produces a 
large set of alternative surface realizations of an 
input structure (which can vary in abstractness). 
This set of candidate surface strings, represented 
as a word lattice, is then rescored by a word-
bigram language model, to produce the best-
ranked output sentence. FERGUS (Bangalore and 
Rambow, 2000), on the other hand, employs a 
model of syntactic structure during sentence 
realization. In simple terms, it adds a tree-based 
stochastic model to the approach taken by the 
Nitrogen system. This tree-based model chooses a 
best-ranked XTAG representation for a given 
dependency structure. Possible linearizations of 
the XTAG representation are generated and then 
evaluated by a language model to pick the best 
possible linearization, as in Nitrogen. 

In contrast, the sentence realization system 
code-named Amalgam (A Machine Learned 
Generation Module) (Corston-Oliver et al., 2002; 
Gamon et al., 2002b) employs a series of 
linguistic operations which map a semantic 
representation to a surface syntactic tree via 
intermediate syntactic representations. The 
contexts for most of these operations in Amalgam 
are machine learned. The resulting syntactic tree 
contains all the necessary information on its leaf 
nodes from which a surface string can be read.  

The goal of this paper is to show that it is 
possible to learn accurately the contexts for 
linguistically complex operations in sentence 
realization. We propose that learning the contexts 
for the application of these linguistic operations 
can be viewed as per-operation classification 
problems. This approach combines advantages of 
a linguistically informed approach to sentence 
realization with the advantages of a machine 
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learning approach. The linguistically informed 
approach allows us to deal with complex linguistic 
phenomena, while machine learning automates the 
discovery of contexts that are linguistically 
relevant and relevant for the domain of the data. 
The machine learning approach also facilitates 
adaptation of the system to a new domain or 
language. Furthermore, the quantitative nature of 
the machine learned models permits finer 
distinctions and ranking among possible solutions. 

To substantiate our claim, we provide four 
examples from Amalgam: assignment of case, 
assignment of verb position features, 
extraposition, and syntactic aggregation. 

2 Overview of Amalgam 

Amalgam takes as its input a sentence-level 
semantic graph representation with fixed lexical 
choices for content words (the logical form graph 
of the NLPWin system – see (Heidorn, 2000)). 
This representation is first degraphed into a tree, 
and then gradually augmented by the insertion of 
function words, assignment of case and verb 
position features, syntactic labels, etc., and 
transformed into a syntactic surface tree. A 
generative statistical language model establishes 
linear order in the surface tree (Ringger et al., in 
preparation), and a surface string is generated 
from the leaf nodes. Amalgam consists of eight 
stages. We label these ML (machine-learned 
context) or RB (rule-based). 
Stage 1 Pre-processing (RB): 

 degraphing of the semantic representation 
 retrieval of lexical information 

Stage 2 Flesh-out (ML): 
 assignment of syntactic labels 
 insertion of function words 
 assignment of case and verb position 

features 
Stage 3 Conversion to syntactic tree (RB): 

 introduction of syntactic representation 
for coordination 

 splitting of separable prefix verbs based 
on both lexical information and 
previously assigned verb position features 

 reversal of heads (e.g., in quantitative 
expressions) (ML) 

Stage 4 Movement: 
 extraposition (ML) 
 raising, wh movement (RB) 

Stage 5 Ordering (ML): 
 ordering of constituents and leaf nodes in 

the tree 
Stage 6 Surface cleanup (ML): 

 lexical choice of determiners and relative 
pronouns 

 syntactic aggregation 
Stage 7 Punctuation (ML) 
Stage 8 Inflectional generation (RB) 

All machine learned components, with the 
exception of the generative language model for 
ordering of constituents (stage 5), are decision tree 
classifiers built with the WinMine toolkit 
(Chickering et al., 1997; Chickering, nd.). There 
are a total of eighteen decision tree classifiers in 
the system. The complexity of the decision trees 
varies with the complexity of the modeled task. 
The number of branching nodes in the decision 
tree models in Amalgam ranges from 3 to 447. 

3 Data and feature extraction 

The data for all of the models were drawn from a 
set of 100,000 sentences from technical software 
manuals and help files. The sentences are 
analyzed by the NLPWin system, which provides 
a syntactic and logical form analysis. Nodes in the 
logical form representation are linked to the 
corresponding syntactic nodes, allowing us to 
learn contexts for the mapping from the semantic 
representation to a surface syntax tree. The data is 
split 70/30 for training versus model parameter 
tuning. For each set of data we built decision trees 
at several different levels of granularity (by 
manipulating the prior probability of tree 
structures to favor simpler structures) and selected 
the model with the maximal accuracy as 
determined on the parameter tuning set. All 
models are then tested on data extracted from a 
separate blind set of 10,000 sentences from the 
same domain. For both training and test, we only 
extract features from sentences that have received 
a complete, spanning parse: 85.14% of the 
sentences in the training and parameter tuning set, 
and 84.59% in the blind test set fall into that 
category. Most sentences yield more than one 
training case. 

We attempt to standardize as much as possible 
the set of features to be extracted. We exploit the 
full set of features and attributes available in the 
analysis, instead of pre-determining a small set of 



potentially relevant features (Gamon et al., 
2002b). This allows us to share the majority of 
code between the individual feature extraction 
tasks. More importantly, it enables us to discover 
new linguistically interesting and/or domain-
specific generalizations from the data. Typically, 
we extract the full set of available analysis 
features of the node under investigation, its parent 
and its grandparent, with the only restriction being 
that these features need to be available at the stage 
where the model is consulted at generation run-
time. This provides us with a sufficiently large 
structural context for the operations. In addition, 
for some of the models we add a small set of 
features that we believe to be important for the 
task at hand, and that cannot easily be expressed 
as a combination of analysis features/attributes on 
constituents. Most features, such as lexical 
subcategorization features and semantic features 
such as [Definite] are binary. Other features, such 
as syntactic label or semantic relation, have as 
many as 25 values. Training time on a standard 
500MHz PC ranges from one hour to six hours. 

4 Assignment of case 

In German sentence realization, proper 
assignment of morphological case is essential for 
fluent and comprehensible output. German is a 
language with fairly free constituent order, and the 
identification of functional roles, such as subject 
versus object, is not determined by position in the 
sentence, as in English, but by morphological 
marking of one of the four cases: nominative, 
accusative, genitive or dative. In Amalgam, case 
assignment is one of the last steps in the Flesh-out 
stage (stage 2). Morphological realization of case 
can be ambiguous in German (for example, a 
feminine singular NP is ambiguous between 
accusative and nominative case). Since the 
morphological realization of case depends on the 
gender, number and morphological paradigm of a 
given NP, we chose to only consider NP nodes 
with unambiguous case as training data for the 
model1. As the target feature for this model is 

                                                      
1 Ideally, we should train the case assignment model on 
a corpus that is hand-disambiguated for case. In the 
absence of such a corpus, though, we believe that our 
approach is linguistically justified. The case of an NP 
depends solely on the syntactic context it appears in. 

morphological case, it has four possible values for 
the four cases in German. 

4.1 Features in the case assignment 
model 

For each data point, a total of 712 features was 
extracted. Of the 712 features available to the 
decision tree building tools, 72 were selected as 
having predictive value in the model. The selected 
features fall into the following categories: 

•  syntactic label of the node, its parent and 
grandparent 

•  lemma (i.e., citation form) of the parent, 
and lemma of the governing preposition 

•  subcategorization information, including 
case governing properties of governing 
preposition and parent 

•  semantic relation of the node itself to its 
parent, of the parent to its grandparent, 
and of the grandparent to its great-
grandparent 

•  number information on the parent and 
grandparent 

•  tense and mood on the parent and 
grandparent 

•  definiteness on the node, its parent and 
grandparent 

•  the presence of various semantic 
dependents such as subject, direct and 
indirect objects, operators, attributive 
adjuncts and unspecified modifiers on the 
node and its parent and grandparent 

•  quantification, negation, coordination on 
the node, the parent and grandparent 

•  part of speech of the node, the parent and 
the grandparent 

•  miscellaneous semantic features on the 
node itself and the parent 

4.2 The case assignment model 

The decision tree model for case assignment 
has 226 branching nodes, making it one of the 
most complex models in Amalgam. For each 
nominal node in the 10,000 sentence test set, we 
compared the prediction of the model to the 
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morphological case compatible with that node. 
The previously mentioned example of a singular 
feminine NP, for example, would yield a “correct“ 
if the model had predicted nominative or 
accusative case (because the NP is 
morphologically ambiguous between accusative 
and nominative), and it would yield an “incorrect“ 
if the model had predicted genitive or dative. This 
particular evaluation setup was a necessary 
compromise because of the absence of a hand-
annotated corpus with disambiguated case in our 
domain. The caveat here is that downstream 
models in the Amalgam pipeline that pick up on 
case as one of their features rely on the absolute 
accuracy of the assigned case, not the relative 
accuracy with respect to morphological 
ambiguity. Accuracy numbers for each of the four 
case assignments are given in Table 1. Note that it 
is impossible to give precision/recall numbers, 
without a hand-disambiguated test set. The 
baseline for this task is 0.7049 (accuracy if the 
most frequent case (nominative) had been 
assigned to all NPs). 

Table 1. Accuracy of the case assignment model. 

Value Accuracy 
Dat 0.8705 
Acc 0.9707 
Gen 0.9457 
Nom 0.9654 
overall 0.9352 

5 Assignment of verb position 
features 

One of the most striking properties of German is 
the distributional pattern of verbs in main and 
subordinate clauses. Most descriptive accounts of 
German syntax are based on a topology of the 
German sentence that treats the position of the 
verb as the fixed frame around which other 
syntactic constituents are organized in relatively 
free order (cf. Eisenberg, 1999; Engel, 1996). The 
position of the verb in German is non-negotiable; 
errors in the positioning of the verb result in 
gibberish, whereas most permutations of other 
constituents only result in less fluent output. 

Depending on the position of the finite verb, 
German sentences and verb phrases are classified 
as being “verb-initial”, “verb-second” or “verb-

final”. In verb-initial clauses (e.g., in imperatives), 
the finite verb is in initial position. Verb-second 
sentences contain one constituent preceding the 
finite verb, in the so-called “pre-field”. The finite 
verb is followed by any number of constituents in 
the “middle-field”, and any non-finite verbs are 
positioned at the right periphery of the clause, 
possibly followed by extraposed material or 
complement clauses (the “post-field”). Verb-final 
clauses contain no verbal element in the verb-
second position: all verbs are clustered at the right 
periphery, preceded by any number of constituents 
and followed only by complement clauses and 
extraposed material. 

During the Flesh-out stage in Amalgam, a 
decision tree classifier is consulted to make a 
classification decision among the four verb 
positions: “verb-initial”, “verb-second”, “verb-
final”, and “undefined”. The value “undefined” 
for the target feature of verb position is extracted 
for those verbal constituents where the local 
syntactic context is too limited to make a clear 
distinction between initial, second, or final 
position of the verb. The number of “undefined” 
verb positions is small compared to the number of 
clearly established verb positions: in the test set, 
there were only 690 observed cases of 
“undefined” verb position out of a total of 15,492 
data points. At runtime in Amalgam, verb position 
features are assigned based on the classification 
provided by the decision tree model. 

5.1 Features in the verb position model 

For each data point, 713 features were extracted. 
Of those features, 41 were selected by the decision 
tree algorithm. The selected features fall into the 
following categories: 

•  syntactic label of the node and the parent 
•  subcategorization features 
•  semantic relations of the node to its parent 

and of the parent node to its parent 
•  tense and mood features 
•  presence of empty, uncontrolled subject 
•  semantic features on the node and the 

parent 

5.2 The verb position model 

The decision tree model for verb position has 
115 branching nodes. Precision, recall and F-



measure for the model are given in Table 2. As a 
point of reference for the verb position classifier, 
assigning the most frequent value (second) of the 
target feature yields a baseline score of 0.4240. 

Table 2. Precision, recall, and F-measure for the verb 
position model. 

Value Precision Recall F-measure 
Initial 0.9650 0.9809 0.9729 
Second 0.9754 0.9740 0.9743 
Final 0.9420 0.9749 0.9581 
Undefined 0.5868 0.3869 0.4663 
Overall 
accuracy 

0.9491 

6 Extraposition 

In both German and English it is possible to 
extrapose clausal material to the right periphery of 
the sentence (extraposed clauses underlined in the 
examples below): 
Relative clause extraposition: 

English: A man just left who had come to 
ask a question. 
German: Der Mann ist gerade 
weggegangen, der gekommen war, um 
eine Frage zu stellen. 

Infinitival clause extraposition: 
English: A decision was made to leave the 
country. 
German: Eine Entscheidung wurde 
getroffen, das Land zu verlassen. 

Complement clause extraposition: 
English: A rumour has been circulating 
that he is ill. 
German: Ein Gerücht ging um, dass er 
krank ist. 

Extraposition is not obligatory like other types 
of movement (such as Wh-movement). Both 
extraposed and non-extraposed versions of a 
sentence are acceptable, with varying degrees of 
fluency. 

The interesting difference between English and 
German is the frequency of this phenomenon. 
While it can easily be argued that English 
sentence realization may ignore extraposition and 
still result in very fluent output, the fluency of 
sentence realization for German will suffer much 
more from the lack of a good extraposition 
mechanism. We profiled data from various 
domains (Gamon et al. 2002a) to substantiate this 

linguistic claim (see Uszkoreit et al. 1998 for 
similar results). In the technical domain, more 
than one third of German relative clauses are 
extraposed, as compared to a meagre 0.22% of 
English relative clauses. In encyclopaedia text 
(Microsoft Encarta), approximately every fifth 
German relative clause is extraposed, compared to 
only 0.3% of English relative clauses. For 
complement clauses and infinitival clauses, the 
differences are not as striking, but still significant: 
in the technical and encyclopaedia domains, 
extraposition of infinitival and complement 
clauses in German ranges from 1.5% to 3.2%, 
whereas English only shows a range from 0% to 
0.53%. 

We chose to model extraposition as an iterative 
movement process from the original attachment 
site to the next higher node in the tree (for an 
alternative one-step solution and a comparison of 
the two approaches see (Gamon et al., 2002a)). 
The target feature of the model is the answer to 
the yes/no question “Should the clause move from 
node X to the parent of node X?”. 

6.1 Features in the extraposition model 

The tendency of a clause to be extraposed depends 
on properties of both the clause itself (e.g., some 
notion of “heaviness”) and the current attachment 
site. Very coarse linguistic generalizations are that 
a relative clause tends to be extraposed if it is 
sufficiently “heavy” and if it is followed by verbal 
material in the same clause. Feature extraction for 
this model reflects that fact by taking into 
consideration features on the extraposition 
candidate, the current attachment site, and 
potential next higher landing site. This results in a 
total of 1168 features. Each node in the parent 
chain of an extraposable clause, up to the actual 
attachment node, constitutes a single data point 

During the decision tree building process, 60 
features were selected as predictive. They can be 
classified as follows: 
General feature: 

•  overall sentence length 
Features on the extraposable clause: 

•  presence of verb-final and verb-second 
ancestor nodes 

•  “heaviness” both in number of characters 
and number of tokens 



•  various linguistic features in the local 
context (parent node and grandparent 
node): number and person, definiteness, 
voice, mood, transitivity, presence of 
logical subject and object, presence of 
certain semantic attributes, coordination, 
prepositional relations 

•  syntactic label 
•  presence of modal verbs 
•  prepositional relations 
•  transitivity 

Features on the attachment site 
•  presence of logical subject 
•  status of the parent and grandparent as a 

separable prefix verb 
•  voice and presence of modal verbs on the 

parent and grandparent 
•  presence of arguments and transitivity 

features on the parent and grandparent 
•  number, person and definiteness; the same 

on parent and grandparent 
•  syntactic label; the same on the parent and 

grandparent 
•  verb position; the same on the parent 
•  prepositional relation on parent and 

grandparent 
•  semantic relation that parent and 

grandparent have to their respective 
parent node 

6.2 The extraposition model 

During testing of the extraposition model, the 
model was consulted for each extraposable clause 
to find the highest node to which that clause could 
be extraposed. In other words, the target node for 
extraposition is the highest node in the parent 
chain for which the answer to the classification 
task “Should the clause move from node X to the 
parent of node X?” is “yes” with no interceding 
“no” answer. The prediction of the model was 
compared with the actual observed attachment site 
of the extraposable clause to yield the accuracy 
figures shown in Table 3. The model has 116 
branching nodes. The baseline for this task is 
calculated by applying the most frequent value for 
the target feature (“don't move”) to all nodes. The 
baseline for extraposition of infinitival and 
complement clauses is very high. The number of 
extraposed clauses of both types in the test set 

(fifteen extraposed infinitival clauses and twelve 
extraposed complement clauses) is very small, so 
it comes as no surprise that the model accuracy 
ranges around the baseline for these two types of 
extraposed clauses. 

Table 3. Accuracy of the extraposition model. 

Extraposable clause Accuracy Baseline 
RELCL 0.8387 0.6093 
INFCL 0.9202 0.9370 
COMPCL 0.9857 0.9429 
Overall 0.8612 0.6758 

7 Syntactic aggregation 

Any sentence realization component that 
generates from an abstract semantic representation 
and strives to produce fluent output beyond simple 
templates will have to deal with coordination and 
the problem of duplicated material in 
coordination. This is generally viewed as a sub-
area of aggregation in the generation literature 
(Wilkinson, 1995; Shaw, 1998; Reape and 
Mellish, 1999; Dalianis and Hovy, 1993). In 
Amalgam, the approach we take is strictly intra-
sentential, along the lines of what has been called 
conjunction reduction in the linguistic literature 
(McCawley, 1988). While this may seem a fairly 
straightforward task compared to inter-sentential, 
semantic and lexical aggregation, it should be 
noted that the cross-linguistic complexity of the 
phenomenon makes it much less trivial than a first 
glance at English would suggest. In German, for 
example, position of the verb in the coordinated 
VPs plays an important role in determining which 
duplicated constituent can be omitted. 

The target feature for the classification task is 
formulated as follows: “In which coordinated 
constituent is the duplicated constituent to be 
realized?”. There are three values for the target 
feature: “first”, “last”, and “middle”. The third 
value (“middle”) is a default value for cases where 
neither the first, nor the last coordinated 
constituent can be identified as the location for the 
realization of duplicated constituents. At 
generation runtime, multiple realizations of a 
constituent in coordination are collected and the 
aggregation model is consulted to decide on the 
optimal position in which to realize that 
constituent. The constituent in that position is 



retained, while all other duplicates are removed 
from the tree. 

7.1 Features in the syntactic aggregation 
model 

A total of 714 features were extracted for the 
syntactic aggregation model. Each instance of 
coordination which exhibits duplicated material at 
the semantic level without corresponding 
duplication at the syntactic level constitutes a data 
point. 

Of these features, 15 were selected as 
predictive in the process of building the decision 
tree model: 

•  syntactic label and syntactic label of the 
parent node 

•  semantic relation to the parent of the 
duplicated node, its parent and grandparent 

•  part of speech of the duplicated node 
•  verb position across the coordinated node 
•  position of the duplicated node in 

premodifiers or postmodifiers of the parent 
•  coordination of the duplicated node and 

the grandparent of the duplicated node 
•  status of parent and grandparent as a 

proposition 
•  number feature on the parent 
•  transitivity and presence of a direct object 

on the parent 

7.2 The syntactic aggregation model 

The syntactic aggregation model has 21 branching 
nodes. Precision, recall and F-measure for the 
model are given in Table 4. As was to be expected 
on the basis of linguistic intuition, the value 
“middle” for the target feature did not play any 
role. In the test set there were only 2 observed 
instances of that value. The baseline for this task 
is 0.8566 (assuming “first” as the default value). 

Table 4. Precision, recall, and F-measure for the 
syntactic aggregation model. 

Value Precision Recall F-measure 
last 0.9191 0.9082 0.9136 
first 0.9837 0.9867 0.9851 
middle 0.0000 0.0000 0.0000 
overall 
accuracy 

0.9746 

8 Conclusion and future research 

We have demonstrated on the basis of four 
examples that it is possible to learn the contexts 
for complex linguistic operations in sentence 
realization with high accuracy. We proposed to 
standardize most of the feature extraction for the 
machine learning tasks to all available linguistic 
features on the node, and its parent and 
grandparent node. This generalized set of features 
allows us to rapidly train on new sets of data and 
to experiment with new machine learning tasks. 
Furthermore, it prevents us from focusing on a 
small set of hand-selected features for a given 
phenomenon; hence, it allows us to learn new (and 
unexpected) generalizations from new data. 

We have found decision trees to be useful for 
our classification problems, but other classifiers 
are certainly applicable. Decision trees provided 
an easily accessible inventory of the selected 
features and some indication of their relative 
importance in predicting the target features in 
question. Although our exposition has focused on 
the preferred value (the mode) predicted by the 
models, decision trees built by WinMine predict a 
probability distribution over all possible target 
values. For a system such as Amalgam, built as a 
pipeline of stages, this point is critical, since 
finding the best final hypothesis requires the 
consideration of multiple hypotheses and the 
concomitant combination of probabilities assigned 
by the various models in the pipeline to all 
possible target values. For example, our 
extraposition model presented above depends 
upon the value of the verb-position feature, which 
is predicted upstream in the pipeline. Currently, 
we greedily pursue the best hypothesis, which 
includes only the mode of the verb-position 
model’s prediction. However, work in progress 
involves a search that constructs multiple 
hypotheses incorporating each of the predictions 
of the verb-position model and their scores, and 
likewise for all other models. 

We have found the combination of knowledge-
engineered linguistic operations with machine-
learned contexts to be advantageous. The 
knowledge-engineered choice of linguistic 
operations, allows us to deal with complex 
linguistic phenomena. Machine learning, on the 
other hand, automates the discovery of general 
and domain-specific contexts. This facilitates 



adaptation of the system to a new domain or even 
to a new language. 

It should also be noted that none of the learned 
models can be easily replaced by a rule. While 
case assignment, for example, depends to a high 
degree on the lexical properties of the governing 
preposition or governing verb, other factors such 
as semantic relations, etc., play a significant role, 
so that any rule approaching the accuracy of the 
model would have to be quite complex.  

We are currently adapting Amalgam to the task 
of French sentence realization, as a test of the 
linguistic generality of the system. Initial results 
are encouraging. It appears that much of the 
feature extraction and many of the linguistic 
operations are reusable. 
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