Proceedi ngs of the 40th Annual Meeting of the Association for
Conput ati onal Linguistics (ACL), Philadel phia, July 2002, pp. 1-8.

Parameter Estimation for Probabilistic Finite-State Transducers

Jason Eisner
Department of Computer Science
Johns Hopkins University
Baltimore, MD, USA 21218-2691
jason@cs.jhu.edu

Abstract The entire paradigm has been generalized to

Weighted finite-state transducers suffer from the lack ofatrain\{\{elghted relations which assign a weight to each

ing algorithm. Training is even harder for transducers that haviinput, output) pair rather than simply including or

been assembled via finite-state operations such as compositigxcluding it. If these weights represent probabili-

minimization, union, concatenation, and closure, as this yiel . .

tricky parameter tying. We formulate a “parameterized FSTC}ﬁeS_ P(mput, 01_“51’“?) or P(o-ut.put | znpuz.f)., the

paradigm and give training algorithms for it, including a gen-Welghted relation is called int or conditional

era(ljl bf(;OkkelePing trick (“expectation Sergiringc?”) that cleanly(probabilistic) relation and constitutes a statistical

and efficiently computes expectations and gradients. model. Such models can be efficiently restricted,
manipulated or combined using rational operations

1 Background and Motivation as before. An artificial example will appear§a.
Rational relations on strings have become wide: The availability of toolkits for this weighted case

spread in language and speech engineering (Roc l\éohri et al., 1998; van Noord and Gerdemann,
and Schabes, 1997). Despite bounded memory thg 01) promises to unify much of statistical NLP.

) . L Xich tools make it easy to run most current ap-
are well-suited to describe many linguistic and tex- - .
. : proaches to statisticaharkup chunking normal-
tual processes, either exactly or approximately.

N i . ization, segmentatioyalignment and noisy-channel
A relation is a set of(input, output) pairs. Re- " 5e9 rallg I y

decoding' including classic models for speech

lations are more general than functions because th%(cognition (Pereira and Riley, 1997) and machine

may pairagivgn Input string with more Orfewerth"’w}ranslation (Knight and Al-Onaizan, 1998). More-
onehoutplut strl?g. ledational relati dmi over, once the models are expressed in the finite-
The class of so-calledational relations admits state framework, it is easy to use operators to tweak

a nice decl_ar_anve programming paradigm. _Sourcmem’ to apply them to speech lattices or other sets,
code describing the relation agular expressior) and to combine them with linguistic resources.

is compiled into efficient object code (in the form Unfortunately, there is a stumbling blockVhere

of a 2-tape automaton calledfaite-state trans- do the weights come from&¥ter all, statistical mod-

ducer). The object code can even be optimized fo«t—zls require supervised or unsupervised training. Cur-

ru_n'qme_ and codg size (V'.a algorithms such as OIetetréntly, finite-state practitioners derive weights using
minization and minimization of transducers).

i) . . exogenous training methods, then patch them onto
This pro.gr'ammmg p.aradlgm supports ,emc'en{ransducer arcs. Not only do these methods require
nondeterminism, including parallel processing OV€Ldditional programming outside the toolkit, but they
infinite sets of input strings, and even allows “re, o |imited to particulakinds of models and train-
verse” computation from output to input. Its unusua’ng regimens. For example, the forward-backward
flexibility for the practiced programmer stems fromalgorithm (Baum, 1972) trains only Hidden Markov

the many operations under which rational relationﬁ/lodels, while (Ristad and Yianilos, 1996) trains
are closed. It is common to define further usefuJ)nly stochastic edit distance

operations (as macros), which modify existing rela-
tions not by editing their source code but simply b
operating on them “from outside.”

In short, current finite-state toolkits include no
Xfraining algorithms, because none exist for the large
space of statistical models that the toolkits can in

*A brief version of this work, with some additional mate- rinciple describe and run.
rial, first appeared as (Eisner, 2001a). A Ieisurelyjournal-lengtgi

version with more details has been prepared and is available. *Givenoutput, find input to maximizeP (input, output).

Abstracting away from the idea of random walks,
arc weights need not be probabilities. Still, define a
path’s weight as the product of its arc weights and
the stopping weight of its final state. Thus Fig. 1a
defines a weighted relatiofiwhere f (aabb, xz) =
.0005292. This particular relation does happen to be
probabilistic (segl). It represents a joint distribu-
tion (sincezxvy f(x,y) = 1). Meanwhile, Fig. 1c
defines a conditional on&'f Zy f(z,y) =1).

This paper explains how to adjust probability dis-
Figure 1: (a) A probabilistic FST defining a joint probability tributions like that of Flg' 1a .SO as to model tra1|n|ng
distribution. (b) A smaller joint distribution. (c) A conditional data better. The algorithm improves an FST's nu-
distribution. Defining (a)=(b)(c) means that the weights in (a) meric weights while leaving its topology fixed.
can be altered by adjusting the fewer weights in (b) and (c). How many parameters are there to adjust in

This paper aims to provide a remedy through &ig. 1a? That is up to the user who built it! An
new paradigm, which we caglarameterized finite- FST model with few parameters is more constrained,
state machines It lays out a fully general approach making optimization easier. Some possibilities:
for training the weights of weighted rational rela-e Most simply, the algorithm can be asked to tune
tions. First§2 considers how to parameterize suclthe 17 numbers in Fig. 1a separately, subject to the
models, so that weights are defined in terms of urtonstraint that the paths retain total probability 1. A
derlying parameters to be learnegB asks what it more specific version of the constraint requires the
means to learn these parameters from training dat&T to remairMarkovian : each of the 4 states must
(what is to be optimized?), and notes the apparentptesent options with total probability 1 (at st&tz
formidable bookkeeping involvedi4 cuts through 15+.7+.03.+.12=1). This preserves the random-walk
the difficulty with a surprisingly simple trick. Fi- interpretation and (we will show) entails no loss of
nally, §5 removes inefficiencies from the basic algogenerality. The 4 restrictions leave fr8e params.
rithm_, making it suitgble for inclusion in an actual, gt perhaps Fig. 1a was actually obtained as
toolkit. Such a tqolklt could greatly short_en th_e dethe composition of Fig. 1b—c, effectively defin-
velopment cycle in natural language engineering. ing P(input,output) = Y, . P(input, mid) -
P(output | mid). If Fig. 1b—c are required to re-
main Markovian, they have 5 and 1 degrees of free-
Finite-state machines, including finite-state audom respectively, so now Fig. 1a has onlp&am-
tomata FSAs) and transducerd6Ts), are a kind eters totaf In general, composing machines mul-
of labeled directed multigraph. For ease and brevit§iplies their arc counts but only adds their param-
we explain them by example. Fig. 1a shows a prob&ter counts. We wish to optimize just the few un-
bilistic FST with input alphabeE = {a, b}, output derlying parameters, not independently optimize the
alphabetA = {x,z}, and all states final. It may many arc weights of the composed machine.
be regarded as a device for generating a string pair Perhaps Fig. 1b was itself obtained by the proba-
in * x A* by a random walk fronf®. Two paths bilistic regular expressiofe : p)*(b: (p +,)%
exist that generate both inpaibb and outputz: with the 3 parameterg\, u,v) = (.7,.2,.5). With

2 Transducers and Parameters

p = .1 from footnote 2, the composed machine
©a:x/.63@a:e/A07®b:€/.03@b:z/.4 _
- - - - @ 2Why does Fig. 1c have only 1 degree of freedom? The
©a:x/.63@azs/.07®bzz/.12@b:5/,1@ Markovian requirement means something different in Fig. 1c,
- B B - which defines a conditional relatioR(output | mid) rather

than a joint one. A random walk on Fig. 1¢ chooses among arcs

Each of the paths has probability .0002646, swith agiveninput label. So the arcs from staf® with input
must have total probability 1 (currently .9+.1). All other arc

the prObapi”ty of somehow generating the paiEhoices are forced by the input label and so have probability 1.
(aabb, xz) is .0002646 + .0002646 = .0005292. The only tunable value is .1 (denote it py, with .9 = 1 — p.

def

(Fig. 1a) has now been described with a total of jusP (v, z) = 3°, . P(vjw)P(w,z)P(ylz)P(z|y),

4 parameters! Here, probabilistic unio® +, F £ implemented by composing 4 machirfes.

pE + (1 — p)F means “flip au-weighted coin and There are also procedures for defining weighted
generate? if heads F if tails.” Exy &£ (AE)*(1—\) FSTs that are not probabilistic (Berstel and
means “repeatedly flip ak-weighted coin and keep Reutenauer, 1988). Arbitrary weights such as 2.7

repeatingF as long as it comes up heads.” may be assigned to arcs or sprinkled through a reg-

These 4 parameters have global effects on Fig. 1axp (to be compiled int6%" arcs). A more subtle
thanks to complex parameter tying: afgs>2.®), example is weighted FSAs that approximate PCFGs
®-2%® in Fig. 1b get respective probabilitiés — (Nederhof, 2000; Mohri and Nederhof, 2001), or
A uv and (1 — u)v, which covary withv and vary to extend the idea, weighted FSTs that approximate
oppositely withi,. Each of these probabilities in turn joint or conditional synchronousPCFGs built for
affects multiple arcs in the composed FST of Fig. 1dranslation. These are parameterized by the PCFG’s
parameters, but add or remove strings of the PCFG

We offer a theorem that highlights the broado leave an improper probability distribution.
applicability of these modeling techniqueés. If Fortunately for those techniques, an FST with
f(input, output) is a weighted regular relation, positive arc weights can beormalized to make it
then the following statements are equivalent: {13 jointly or conditionally probabilistic:

a joint probabilistic relation; (2 can be computed

by a Markovian FST that halts with probability 1;® An easy approach is to normalize the options at
(3) f can be expressed aspaobabilistic regexp, each state to make the FST Markovian. Unfortu-

i.e., a regexp built up from atomic expressiansh nately, the result may differ for equivalent FSTs that

(fora € LU {e},b € AU{e}) using concatenation, €xpress the same weighted relation. Undesirable
probabilistic uniont-,, and probabilistic closure,. consequences of this fact have been termed “label

For definingconditionalrelations, a good regexp Pias” (Lafferty etal., 2001). Also, in the conditional
language is unknown to us, but they can be definé®Se suclper-state normalizationis only correct if
in several other ways: (1) via FSTs as in Fig. 1c, (zgll states accept all input suffixes (since “dead ends”
by compilation of weighted rewrite rules (Mohri andleak probability mass}.

Sproat, 1996), (3) by compilation of decision tree® A better-founded approach iglobal normal-
(Sproat and Riley, 1996), (4) as a relation that peization, which simply divides eachf(x,y) by
forms contextual left-to-right replacement of input)_ ., f(2',y') (jointcase) orby_, , f(x,y’) (con-
substrings by a smaller conditional relation (Gerdeditional case). To implement the joint case, just di-
mann and van Noord, 1999Y5) by conditionaliza- vide stopping weights by the total weight of all paths
tion of a joint relation as discussed below. (which §4 shows how to find), provided this is finite.

A central technique is to define a joint relation as & the conditional case, lgtbe a copy off with the
noisy-channel model by composing a joint relation output labels removed, so thatx) finds the desired
with a cascade of one or more conditional relationgivisor; determinizey if possible (but this fails for
as in Fig. 1 (Pereira and Riley, 1997; Knight andome weighted FSAs), replace all weights with their
Graehl, 1998). The general form is illustrated byeciprocals, and compose the result wjtf

3Conceptually, the parameters represent the probabilities of °P(w, =) defines the source model, and is often an “identity
reading anothe (\); reading anothess (v); transducing top ~ FST” that requiresy = z, really just an FSA.
rather tharg (u); starting to transducg to € rather tharx (p). "We propose also using-tape automata to generalize to
“To prove (1}=>(3), expressf as an FST and apply the “branching noisy channels” (a case of dendroid distributions).
well-known Kleene-Sdiitzenberger construction (Berstel and!n >=,, . P(v|w)P(v'|w)P(w,z)P(y|z), the true transcrip-
Reutenauer, 1988), taking care to write each regexp in the cofion w can be triply constrained by observing spegandtwo
struction as a constant times a probabilistic regexp. A full proogrrorful transcription®, v*, which independently depend an
is straightforward, as are proofs of £3)2), (2)=(1). 8A corresponding problem exists in the joint case, but may
5In (4), the randomness is in the smaller relation’s choice dpe easily avoided there by first pruning non-coaccessible states.
how to replace a match. One can also get randomness through °It suffices to makey unambiguous (one accepting path per
the choice of matches, ignoring match possibilities by randomlgtring), a weaker condition than determinism. When this is not
deleting markers in Gerdemann and van Noord’s constructionpossible (as in the inverse of Fig. 1b, whose conditionaliza-

Normalization is particularly important because it ael.7
enables the use dbg-linear (maximum-entropy)
parameterizations. Here one defines each
Welgh-t, coin weight, or regexp weight in t(_arms OfFigure 2: The joint model of Fig. 1la constrained to generate
meaningfulfeatures associated by hand with thatonly inpute a(a + b)* and output= xxz.

arc, coin, etc. Each feature hastaength € R, _
and a weight is computed as the product of thds ©n demand (Mohri et al., 1998) can pay off here,

strengths of its featuré. It is now the strengths SiNce only part off, may be needed subsequently.)
that are the learnable parameters. This allows mean-AS training data we are given a set of observed
ingful parameter tying: if certain arcs such &¢,, (input, output) pairs, (z;,y;). These are assumed
¢ and “® share a contextual “vowel-fronting” t0 be independent random samples from a joint dis-
feature, then their weights rise and fall together witffibution of the formf;(z, y); the goal is to recover
the strength of that feature. The resulting machinthe truef. Samples need not be fully observed
must be normalized, either per-state or globally, tépartly supervised training): thug C ¥*,y; C A*
obtain a joint or a conditional distribution as de-may be given as regular sets in which input and out-
sired. Such approaches have been tried recen@yﬂl were observed to fall. For example, in ordinary
in restricted cases (McCallum et al., 2000; EisneHiMM training, z; = X* and represents a completely
2001b; Lafferty et al., 2001). hidden state sequence (cf. Ristad (1998), who allows
Normalization may be postponed and applied in@ny regular set), whilg; is a single string represent-
stead to the result of combining the FST with otheing & completely observed emission sequetice.
FSTs by composition, union, concatenation, etc. A What to optimize? Maximum-likelihood es-
simple example is a probabilistic FSA defined byiimation guessesf to be the # maximizing
normalizing the intersection of other probabilistic [; fo(xi,%:). Maximum-posterior estimation
FSASfi, f2,.... (Thisis in fact a log-linear model tries to maximizeP (0) - [, fo(z:, y;) whereP(0) is
in which the component FSAs define the featureg prior probability. In a log-linear parameterization,
stringz haslog f;(x) occurrences of featuri) for example, a prior that penalizes feature strengths
In short, weighted finite-state operators provide fr from 1 can be used to do feature selection and
language for specifying a wide variety of parameteravoid overfitting (Chen and Rosenfeld, 1999).
ized statistical models. Let us turn to their training. The EM algorithm (Dempster et al., 1977) can
maximize these functions. Roughly, the step
3 Estimation in Parameterized FSTs guesses hidden information: (f;,y;) was gener-
o _ _ ~ated from the currenfy, which FST paths stand a
We are primarily concerned with the following train-chance of having been the path used? (Guessing the
ing paradigm, novel in its generality. L&y : path also guesses the exact input and output.) The
2 x A" — R>o be ajoint probabilistic relation that \ step updates) to make those paths more likely.
is computed by a weighted FST. The FST was builgy aiternates these steps and converges to a local
by some recipe that used tiparameter vector 6. optimum. The M step’s form depends on the param-

Changingy may require us to rebuild the FST 10 geteterization and the E step serves the M step’s needs.
updated weights; this can involve composition, reg- Let f, be Fig. 1a and suppoge;, ;) = (a(a +

exp compilation, multiplication of feature strengths,b * xxz). During the E step, we restrict to paths
etc. (Lazy algorithms that compute arcs and states 8}>mpatible with this observation by computingo

tion cannot be realized by any weighted FST), one can somgy o y;, shown in Fig. 2. To find each path’s pos-

times succeed bfjrst intersectingg with a smaller regular set tarior probabilityaiven the observatiofi:;. ;). iust
in which the input being considered is known to fall. In the ex- P Y9 ("Ez, yl)’ J

treme, if each input string is fully observed (not the case if th&onditionalize: divide its raw probability by the total

input is bound by composition to the output of a one-to-manyrobability (= 0.1003) of all paths in Fig. 2.

FST), one can succeed by restrictipgo each input stringin

turn; this amounts to manually dividinf(x, y) by g(x). 1To implement an HMM by an FST, compose a probabilistic
Traditionally log(strength) values are called weights, buFSA that generates a state sequence of the HMM with a condi-

this paper uses “weight” to mean something else. tional FST that transduces HMM states to emitted symbols.

But that is not the full E step. The M step uses ltis also possible to use this EM approachds-
not individual path probabilities (Fig. 2 has infinitely criminative training , where we wish to maximize
many) but expected counts derived from the path$], P(y; | ;) and fy(x,y) is a conditional FST that
Crucially, §4 will show how the E step can accumu-definesP(y | z). The trick is to instead train a joint
late these counts effortlessly. We first explain theimodel g o fy, whereg(x;) definesP(x;), thereby
use by the M step, repeating the presentatiogPof maximizing [[, P(x;) - P(y; | ;). (Of course,
o If the parameters are the 17 weights in Fig. 1a, thé&e method of this paper can train such composi-
M step reestimates the probabilities of the arcs froons.) If z1, ...z, are fully observed, just define
each state to be proportional to tepected number €achg(z;) = 1/n. But by choosing a more gen-
of traversalsof each arc (normalizing at each stateeral model ofg, we can also handle incompletely
to make the FST Markovian). So the E step mugbservedz;: training g o fy then forcesg and fy
count traversals. This requires mapp”']g F|g 2 bacq@ COOperativer reconstruct a distribution over the
onto Fig. 1a: to traverse eith&® 2% or (9 2%, possible inputs and do discriminative training fof
in Fig. 2 is “really” to traversé® 2%, in Fig. 1a. ~ given those inputs. (Any parametersgofay be ei-
« If Fig. 1a was built by composition, the M Stepther frozen before traln_lng or op.tlr_n_lze_d along with
is similar but needs the expected traversals of tthFj' pargmeters 9b.) Afma! possibility is that each
arcs in Fig. 1b—c. This requires further unwinding of’ IS défined by grobabilisticFSA that already sup-
Fig. 1a's@ 2% @: to traverse that arc is “really” to plies a dlstrlputlon over the_ mput‘_s;_then we consider
traverse Fig. 10’6 *2.@ andFig. 1¢'s® 2%, T o.f(, o y; directly, just a§ in the joint model.
¢ If Fig. 1b was defined by the regexp given earlier Finally, note that EM is not all-purpose. It only

. : o . : faximizes probabilistic objective functions, and
traversing@-22,@ is in turn “really” just evidence P)

. . .even there it is not necessarily as fast as (say) conju-
that theA-coin came up heads. To learn the weights y (say))

\ b countexpected headstaifsr each coin gate gradient. For this reason, we will also show be-
Vol Py P " low how to compute the gradient g§(x;, y;) with

o If arc probabilities (or ever\, v, i, p) have 10g- yegpect tay, for an arbitrary parameterized FS7.
linear parameterization, then the E step must COMye remark without elaboration that this can help
IOhUteC = %Z €Cf($z‘,yfz'), Wlhfefe ec(x,y) r:i(;notes optimize task-related objective functions, such as
the expected vector o tot.a eature couralong a S 2, (P y)®) Sy Plaiy)?) - error(y, vi).
random path infy whose(input, output) matches
(z,y). The M step then treatsas fixed,observed 4 The E Step: Expectation Semirings
data and adjust@ until the predictedvector of to- _ _ _ _
tal feature counts equals using Improved Itera- |trémains to devise appropriate E steps, which looks
tive Scaling (Della Pietra et al., 1997; Chen andather daunting. Each path in Fig. 2 weaves together
Rosenfeld, 1999%2 For globally normalized, joint Parameters from other machines, which we must un-
models, the predicted vector ds;(2*, A*). If the tangle and tally. In the 4-coin parameterization, path
log-linear probabilities are conditioned on the statéd “%©®%%@ %@ %< a-"% @ must yield up a
and/or the input, the predicted vector is harder to deector (H, T\, H,,,T,,, H,, T, H,, T,) that counts
scribe (though usually much easier to compdfe). observed heads and tails of the 4 coins. This non-
12|s is itself iterative; to avoid nested loops, run only one it_trIVIaIIy Wo_rks _OUt t0(4,1,0,1,1,1, _1’ 2). For,Other
eration at each M step, giving a GEM algorithm (Riezler, 1999)parameterizations, the path must instead yield a vec-
Alternatively, discard EM and use gradient-based optimizatiortgor of arc traversal counts or feature counts.
3For per-state conditional normalization, 18t , be the set ; ;
of arcs from statg with input symbola € ¥; their weights are Comp““”g a count vec’to_r for One path is hard
normalized to sum to 1. Besides computinghe E step must €nough, but itis the E step’s job to find the expected

count the expected numbey; ., of traversals of arcs in each yglue of this vector—an average over the infinitely
Dj.a. Then the predicted vector givéris 3~ , d;.o - (expected

feature counts on a randomly chosen ardin,). Per-state log-linear model ofP(v | u) for u € ¥, v € A’™. Then the
joint normalization (Eisner, 200168.2) is similar but drops the predicted count vector contributed byis 3°, 3", /. P(u |
dependence on. The difficult case is global conditional nor- z;,y:) - ecx(u, A™). The termy_, P(u | z:,y:) computes the
malization. It arises, for example, when training a joint modekxpected count of each € X'*. It may be found by a variant
of the form fo = --- (g o he) - - -, Wherehy is a conditional of §4 in which path values are regular expressions aVér

many pathsr through Fig. 2 in proportion to their V-expectation semiring (R>o x V, &, ®,*):
posterior probabilitied(x | x;,y;). The results for
all (z;,y;) are summed and passed to the M step. (P1,v1) ® (p2,v2
Abstractly, let us say that each pathas notonly — (p; 1) @ (p2,v2) = (p1 +p2,v1 +v2) (3)
a probability P(7) € [0, 1] but also avalue val(w e o def . a s
inr;vector zpa(cé)f , wLich]counts the arcs, feeftu)res, it pr defined, (p,v)" = (p, pvp") (4)
or coin flips encountered along path The value of |f an arc has probability and valuev, we give it
a path is thesumof the values assigned to its arcsthe weight(p, pv), so that our invariant (see above)
The E step must return thexpected valueof the holds if IT consists of a single length-0 or length-1
unknown path that generatéd;, y;). For example, path. The above definitions are designed to preserve
if every arc had value 1, then expected value woulgyr invariant as we build up larger paths and path-
be expected path length. Lettibdenote the set of sets.w lets us concatenate (e.g.) simple pathsr,
paths inz; o fy o y; (Fig. 2), the expected value's to get a longer patr with P(r) = P(m)P()

) = (pip2, p1v2 + v1p2) (2)
) def

and val(w) = wval(m) + val(me). The defini-
P 1
E[val(n) | z;,yi] = Lnen (72va () (1) tion of ® guarantees that path's weight will be
2 ren P(7) (P(m), P(m) - val(m)). @ lets us take the union of

The denominator of equation (1) is the total probtwo disjoint pathsets, arfidcomputes infinite unions.
ability of all accepting paths im; o f oy;. Butwhile ~ To compute (1) now, we only need the total
computing this, we will also compute the numeratotveight?; of accepting paths im; o f o y; (Fig. 2).
The idea is to augment the weight data structure withhis can be computed with finite-state methods: the
expectation information, so each weight records Bachingexz;)o fo(y; x) is a version that replaces
probability and a vector counting the parametersll input:output labels with : €, so it maps(e, €) to
that contributed to that probability. We will enforcethe same total weight. Minimizing it yields a one-
an invariant: the weight ofany pathsetIl must state FST from which; can be read directly!
be (X, e P(7), > rer P(m) val(r)) € Rsg x V, ' The oj[r'ler _“magic_al" proper_ty of the expecta-
from which (1) is trivial to compute. tion semiring is that it automatically keeps track of

Berstel and Reutenauer (1988) give a sufficientljhe tangled parameter counts. For instance, recall
general finite-state framework to allow this: weightghat traversing®*%@© should have the same ef-
may fall in any setk (instead ofR). Multiplica- fect as traversingoththe underlying arc§)~% (@
tion and addition are replaced by binary operationand ® *5®. And indeed, if the underlying arcs
® and® on K. Thus® is used to combine arc have valuesv; and vz, then the composed arc
weights into a path weight ang is used to com- ©->5© gets weight(p1, p1v1) ® (pa2, pave) =
bine the weights of alternative paths. To sum ovep1p2, p1p2(vi +v2)), just as if it had value; + vs.
infinite sets of cyclic paths we "iLSO need a closurg,me concrete examples of values may be useful:
operatiorr, interpreted as” = Do F *The usual " o 14 count traversals of the arcs of Figs. 1b—c, num-
finite-state algorithms w_o_rk '1t5K ,®,®,") has the ber these arcs and let atbave value:,, the/th basis
structure of arlosed semining= .. vector. Then thé™ element ofval(7) counts the ap-

Ordinary probabilities fall in the semiring pearances of ar¢in path, or underlying pathr.

*\ 16 H :
(R>0,+, x,*).7> Our novel weights fall in a novel e Aregexp of formE+,, F — pE+(1—u)F should

(iﬂ:;r(mal der;vatil(()n)?/fp(%):zﬁ)P(n | (%y%z,al(ﬂ) :‘ be weighted au, ey)E + (1 — . (1 — p)eps1)F
- T, Ti, Yi) val(m Tiy Yi = - Ti,Yi . ..

m)P(r)val(r))/ S P(zi,y; | ©)P(x); now observe that 1N the new semiring. Then elemeritsandk + 1 of
P(z;,y: |) = 1 or 0 according to whether € II. val(7) count the heads and tails of thecoin.

15 Y X 20 .
That is: (K, ®) is a monoid (i.e.® : K x K — K is : P ,
associative) with identity. (K, @) is acommutativemonoid e Fora gIObaI Iog-Ilnear parameterization, an arc's

with identity 0. ® distributes overd from both sides) @ k = Vvalue is a vector specifying the arc’s features. Then

k®0=0andk” =19k k” = 1O k" @ k. Forfinite-state ya](7) counts all the features encountered alang

composition, commutativity of is needed as well.
Really we are manipulating weighted relations,

'®The closure operation is defined fpre [0,1) asp™ = _ on
1/(1 — p), so cycles with weights if0, 1) are allowed. not FSTs. We may combine FSTs, or determinize

or minimize them, with any variant of the semiring-(Mohri, 2002). Efficient hardware implementation is
weighted algorithms? As long as the resulting FST also possible via chip-level parallelism (Rote, 1985).
computes the right weighted relation, the arranges In many cases of interedf; is an acyclic grapl%Q
ment of its states, arcs, and labels is unimportant. Then Tarjan’s method computes); for eachj in

The same semiring may be used to compute gradbpologically sorted order, thereby findirg in a
ents. We would like to find (;, y;) and its gradient |inear number ofp and ® operations. For HMMs
with respect tad, where fj is real-valued but need (footnote 11)7; is the familiar trellis, and we would
not be probabilistic. Whatever procedures are uséi#te this computation of; to reduce to the forward-
to evaluatefy (z;, y;) exactly or approximately—for backward algorithm (Baum, 1972). But notice that
example, FST operations to compjfgfollowed by it has no backward pass. In place of pushing cumu-
minimization of (e x x;) o fg o (y; x e)—can simply |ative probabilities backward to the arcs, it pushes
be applied over the expectation semiring, replacingumulative arcs (more generally, valuesli for-
each weightp by (p, Vp) and replacing the usual ward to the probabilities. This is slower because
arithmetic operations witb, ®, etc!® (2)—(4) pre- our & and @ are vector operations, and the vec-
serve the gradient ((2) is the derivative product rulejors rapidly lose sparsity as they are added together.
so this computation yield§fy (z;, vi), V fo(wi,v:)). We therefore reintroduce a backward pass that lets

. o . us avoid® and ® when computing; (so they are

5 Removing Inefficiencies needed only to construct}). This speedup also
Now for some important remarks on efficiency: ~ Works for cyclic graphs and for anly. Write w;y,
as (pjk, vjr), and letwy, = (pj,vj,) denote the

C tingt; i inst f th -k) . .
° -OmMpUting?; 1S an Instance of the Wel-Known weight of the edge fronj to £.1° Then it can be

algebraic path problem (Lehmann, 1977; Tarjan,
g P P (J shown thatwg,, = (pon,zj7kp[]jv]1-kpkn). The for-

1981a). Lefl;; = x; ;. Thent; is the total semir- i
) ziofoy ! ! ward and backward probabilitiepy; andpy,,, can

ing weightwy,, of paths inT; from initial state O to b ted usi inal laebrai th f
final staten (assumed WLOG to be unique and un- € computed using single-source algebraic path for

: . o :
weighted). It is wasteful to compute as suggested the S|m.pler semlranR, +x,")—or equwalgntly,

; L . by solving a sparse linear system of equations over
earlier, by minimizing e xx;)o fo(y; x€), since then

the real work is done by aeclosure step (Mohri, R a much-studied proplem al(n) spaceO(nm)

. . . time, and faster approximations (Greenbaum, 1997).
2002) that implements thal-pairs version of alge- T } o
braic path, whereas all we need is #iegle-source ® A Viterbi variant of the expectation semiring ex-

version. Ifn andm are the number of states andStS: replace (3) withf(py > pa, (p1,v1), (P2, v2))-
edges? then both problems ar@(n?) in the worst Here, the forward and backward probabilities can be

case, but the single-source version can be solved f8MPuted in time onhO(m + nlogn) (Fredman
essentiallyO(m) time for acyclic graphs and other @nd Tarjan, 1987)k-best variants are also possible.

reducible flow g_raphs (Tarjan, 1981b). For a geng piscussion

eral grapHhr’;, Tarjan (1981b) shows how to partition

into “hard” subgraphs that localize the cyclicity orWe have exhibited a training algorithm for param-
irreducibility, then run theD(n?3) algorithm on each eterized finite-state machines. Some specific conse-
subgraph (thereby reducingto as little as 1), and quences that we believe to be novel are (1) an EM al-
recombine the results. The overhead of partitioningorithm for FSTs with cycles and epsilons; (2) train-
and recombining is essentially ondy(m). ing algorithms for HMMs and weighted contextual

e For speeding up th®(n3) problem on subgraphs, edit distance that work on incomplete data; (3) end-

one can use an approximate relaxation techniqd@'end training of noisy channel cascades, so that it
is not necessary to have separate training data for

Eisner (submitted) develops fast minimization algorlthmseach machine in the cascade (cf. Knight and Graehl,

that work for the real and-expectation semirings.

“*Division and subtraction are also possible:(p, v) = 21 z; andy; are acyclic (e.g., fully observed strings), and
(—=p,—v) an(_:i(p, 11')_'1 =(p*, —p‘l_up‘_l). Divisionis com- £ (or rather its FST) has ne: ¢ cycles, then composition will
monly used in definingy (for normalization). “unroll” f into an acyclic machine. If only; is acyclic, then

¥Multiple edges fromyj to k are summed into a single edge. the composition is still acyclic if domairf) has noe cycles.

1998), although such data could also be used; (Kevin Knight and Yaser Al-Onaizan. 1998. Translation
training of branching noisy channels (footnote 7): With finite-state devices. IRroc. of AMTA

O - oy . ~Kevin Knight and Jonathan Graehl. 1998. Machine
(5) discriminative training with incomplete data; (6) transliteration.Computational Linguistic24(4).

training of conditional MEMMs (McCallum et al., J. Lafferty, A. McCallum, and F. Pereira. 2001. Con-
2000) and conditional random fields (Lafferty et al., ditional random fields: Probabilistic models for seg-

menting and labeling sequence daaoc. of ICML
20\?\/1) on uanunlciel(j sequencils: h ial f D. J. Lehmann. 1977. Algebraic structures for transitive
e are particularly interested In the potential 1o .|qre Theoretical Computer Scieno#(1):59—76.

quickly building statistical models that incorporateA. McCallum, D. Freitag, and F. Pereira. 2000. Maxi-
linguistic and engineering insights. Many models of mum entropy Markov models for information extrac-

interest can be constructed in our paradigm, withoy ti&gﬁrﬁ‘%ﬁgg&"%‘tﬁg’d@mgf sz'go'\fL' g%é;?;% pproxi-

having to write new code. Bringing diverse models mation of context-free grammars through transforma-
into the same declarative framework also allows one tion. In J.-C. Junqua and G. van Noord, edopust-

to apply new optimization methods, objective func-NI nfss '”MLahngua%eRa_”ﬁ Sgesech Ttecgggwef-ﬁ_ ot
. " . ehryar Mohri and Richard Sproat. . An efficien
tions, a”‘?' finite state.algorlthms.to all of them.. . compiler for weighted rewrite rules. Rroc. of ACL

To avoid local maxima, one might try determinis-m. Mohri, F. Pereira, and M. Riley. 1998. A rational de-

tic annealing (Rao and Rose, 2001), or randomized sign for a weighted finite-state transducer librergc-
methods, or place a prior ¢h Another extension is __ ture Notes in Computer Sciendet36.

t0 adiust th hin®ool b del M. Mohri. 2002. Generic epsilon-removal and input
0 adjust the machin®pology say by model merg- epsilon-normalization algorithms for weighted trans-

ing (Stolcke and Omohundro, 1994). Such tech- ducers.nt. J. of Foundations of Comp. Scl(13)..
niques build on our parameter estimation method. Mark-Jan Nederhof. = 2000. Practical experiments

The key algorithmic ideas of this paper extend with regular approximation of context-free languages.
L . Computational Linguistic26(1).
from forward-backward-style to inside-outside-stylg-gmando C. N. Pereira and Michael Riley. 1997. Speech

methods. For example, it should be possible to do recognition by composition of weighted finite au-
end-to-end training of a weighted relation defined tomata. In E. Roche and Y. Schabes, eBimite-State

by an interestingly parameterized synchronous CF& 'ﬁgg‘;%%elz r%%isés.in%glPrDeifé rﬁw?r:?st;{cl:c;%g alx\{lwﬁé aled

composed with tree transducers and then FSTs. design of hidden Markov movel speech recognizers.
In IEEE Trans. on Speech and Audio ProcessB(@).
References Stefan Riezler. 1999.Probabilistic Constraint Logic

: : : _ Programming Ph.D. thesis, Universit Tubingen.
L. E. Baum. 1972. An inequality and associated MaXe 'Ristad and P. Yianilos. 1996. Learning string edit

imization technique in statistical estimation of proba- distance. Tech. Report CS-TR-532-96, Princeton.

bilistic functions of a Markov procestequalities 3. ; ; il
; E. Ristad. 1998. Hidden Markov models with finite state
Jean Berstel and Christophe Reutenauer. 18&8ional supervision. In A. Kornai, edExtended Finite State

Series and their LanguageSpringer-Verlag. : . .
Models of LanguageCambridge University Press.
Stanley F. Chen and Ronald Rosenfeld. 1999. A Gaug, 4, e Rochge a%d Yves gchabes e%j/itors 1997
sian prior for smoothing maximum entropy models. i ' '

.) Finite-State Language ProcessinglIT Press.
Technical Report CMU-CS-99-108, Carnegie Mellon.~ : :
S. Della Pietra, V. Della Pietra, and J. Lafferty. 1997.Gunter Rote. 1985. A systolic array algorithm for the

Inducing features _of random fieIdEEEE Transactions 2:gﬁ)b rggcmp;JEn%rggl(%;r.ll(gsffzrtlegst paths; matrix inver-
A OP” Is)attern Anall\}llgl\s/l aEd.I\gachlge[)lntgll||%erg®(4l)é77 Richard Sproat and Michael Riley. 1996. Compilation of
- P. Dempster, N. M. Laird, and D. B. Rubin. * weighted finite-state transducers from decision trees.
Maximum likelihood from incomplete dataviathe EM |, proceedings of the 34th Annual Meeting of the ACL
algorithm. J. Royal Statist. Soc. Ser, 89(1):1-38. Andreas Stolcke and Stephen M. Omohundro. 1994,
Jason Eisner. 2001a. Expectation semirings: Flexible' gegt first model merging for hidden Markov model in-
EM for finite-state transducers. In G. van Noord, ed., 4, «tion. Tech. Report ICSI TR-94-003, Berkeley, CA.
Proc. of the ESSLLI Workshop on Finite-State Methodgopert Endre Tarjan. 1981a. A unified approach to path
in Natural Language Processingxtended abstract. — yroplems.Journal of the ACM28(3):577-593, July.
Jason Eisner. 2001Smoothing a Probabilistic Lexicon Rohert Endre Tarjan. 1981b. Fast algorithms for solving
via Syntactic TransformationsPh.D. thesis, Univer- path problemsJ. of the ACM 28(3):594-614, July.

sity of Pennsylvania. G. van Noord and D. Gerdemann. 2001. An extendible
D. Gerdemann and G. van Noord. 1999. Transducers yegylar expression compiler for finite-state approaches
from rewrite rules with backreferencéoc. of EACL in natural language processing. Awtomata Imple-

Anne Greenbaum. 1997terative Methods for Solving mentationno. 22 in Springer Lecture Notes in CS.
Linear SystemsSoc. for Industrial and Applied Math. ’

