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Abstract

Mary machinelearningmethodshave

recently been applied to natural lan-

guageprocessingasks. Among them,
the Winnow algorithm has been ar

guedto beparticularlysuitablefor NLP

problems,due to its robustnessto ir-

relevant features. However in theory

Winnonv may not corverge for non-

separabledata. To remedythis prob-

lem, a modification called regularized
Winnow hasbeenproposedin this pa-

per, we apply this nev methodto text

chunking. We shaw that this method
achieves state of the art performance
with significantlylesscomputatiorthan

previousapproaches.

1 Intr oduction

Recentlytherehasbeenconsiderablénterestin

applying machinelearning techniquesto prob-
lemsin naturallanguageprocessingOnemethod
that hasbeenquite successfuin mary applica-
tions is the SNoW architecture(Dagan et al.,

1997; Khardonet al., 1999). This architecture
is basedon the Winnow algorithm (Littlestone,
1988; Grove and Roth, 2001), which in theory
is suitablefor problemswith mary irrelevant at-

tributes. In naturallanguageprocessingpne of-

ten encountersa very high dimensionalfeature
space,althoughmost of the featuresare irrele-

vant. Thereforgherobustnes®f Winnow to high

dimensionafeaturespaceds considere@nimpor

tantreasonwhy it is suitablefor NLP tasks.
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However, the corvergenceof the Winnow al-
gorithmis only guaranteedbor linearly separable
data. In practicalNLP applications dataare of-
ten linearly non-separable.Consequentlya di-
rect applicationof Winnow may leadto numer
ical instability A remedyfor this, called regu-
larized Winnow, has beenrecently proposedin
(Zhang,2001). This methodmodifiesthe origi-
nal Winnow algorithmsothatit solvesa regular
ized optimizationproblem. It convergesbothin
thelinearly separableaseandin thelinearly non-
separablease lts numericalstabilityimpliesthat
thenew methodcanbemoresuitablefor practical
NLP problemghatmaynotbelinearly separable.

In this paperwe compareegularizedwWinnow
and Winnow algorithmson text chunking (Ab-
ney, 1991). In orderfor usto rigorously com-
pareour systemwith others,we usethe CoNLL-
2000 sharedtask dataset(Sang and Buchholz,
2000),whichis publicly availablefrom http://Icg-
www.uia.ac.be/conl2000/chunking.  An adwan-
tageof usingthis datasets that a large number
of stateof the art statisticalnaturallanguagepro-
cessingnethodshave alreadybeenappliedto the
data. Thereforewe canreadily compareour re-
sultswith otherreportedresults.

We shaw that stateof the art performancecan
be achieved by using the newly proposedregu-
larized Winnow method. Furthermore,we can
achieve this resultwith significantlylesscompu-
tation thanearliersystemsof comparablegerfor
mance.

Thepaperis organizedasfollows. In Section2,
we describethe Winnow algorithm and the reg-
ularized Winnow method. Section3 describes



the CoNLL-2000 sharedtask. In Section4, we
give adetaileddescriptionof our systemthatem-
ploys the regularizedWinnow algorithmfor text
chunking.Sections containsaxperimentalesults
for our systemon the CoNLL-2000 sharedtask.
Somefinal remarkswill begivenin Section®.

2 Winnow and regularizedWinnow for
binary classification

We review the Winnow algorithm and the reg-
ularized Winnov method. Considerthe binary
classificationproblem: to determinea labely €
{—1, 1} associateavith aninputvectorz. A use-
ful methodfor solvingthis problemis throughlin-
eardiscriminantfunctions, which consistof lin-
earcombinationsof the component®f the input
variable. Specifically we seeka weightvectorw
anda thresholdd suchthatw”z < 6 if its label
y = —1andw’z > @ if its labely = 1.

For simplicity, we shallassume&? = 0 in this
paper Therestrictiondoesnot causeproblemsin
practicesinceone canalwaysappenda constant
featureto theinputdataz, whichoffsetstheeffect
of 6.

Given a training set of labeled data
(z',yY),...,(z",y"), a numberof approaches
to finding linear discriminant functions have
beenadwancedover the years. We are especially
interestedin the Winnow multiplicative update
algorithm (Littlestone, 1988). This algorithm
updatesthe weight vector w by going through
the training datarepeatedly It is mistale driven
in the sensethat the weight vector is updated
only whenthe algorithmis not ableto correctly
classifyanexample.

The Winnow algorithm (with positive weight)
emplaoys multiplicative update: if the linear dis-
criminantfunction misclassifieaninput training
vectorz® with truelabely’, thenwe updateeach
componenjy of theweightvectorw as:

(1)

wheren > 0 is a parametercalled the learning
rate. The initial weight vector can be taken as
w; = pj > 0, wherey is a prior which is typ-
ically choserto be uniform.
Therecanbeseveralvariantsof theWinnow al-
gorithm. Oneis calledbalancedwinnow, which

w; < wj exp(nzhy’),

is equivalentto an embeddingof the input space
into a higherdimensionakpaceas: z = [z, —z].
Thismodificationallows the positive weightWin-
now algorithmfor theaugmentednput z to have
the effect of both positve and negatve weights
for theoriginal input z.

Oneproblemof the Winnow online updateal-
gorithmis thatit maynot corverge whenthe data
arenotlinearly separableOnemaypartially rem-
edy this problemby decreasinghe learningrate
parameter, duringthe updates.However, thisis
ratherad hoc sinceit is unclearwhatis the best
wayto doso. Thereforan practicejt canbequite
difficult to implementthisideaproperly

In orderto obtaina systematicsolutionto this
problem, we shall first examine a derivation of
the Winnow algorithmin (Gentileand Warmuth,
1998),which motivatesamoregenerakolutionto
bepresentedater

Following (Gentile and Warmuth, 1998), we
consider the loss function max(—w’z?,0),
which is oftencalled“hinge loss”. For eachdata
point (z*,y*), we consideran online updaterule
suchthattheweightw®*! afterseeinghei-th ex-
ampleis givenby the solutionto
. i+l w§+1 (i+1)T i, i
ggrrll[z w; " In W—H] max (—w z'y*,0)].

J
2

J
Settingthe gradientof the above formulato zero,
we obtain
i+1
In

+ NV pi+1 = 0. 3)

In the above equation,V,,:+1 denotesthe gra-
dient (or more rigorously a subgradient)of
max(—w( DTyt 0), which takes the value

i > 0, the value —z'y® if

wt

0 if w(z’-l—l)Twz 7
w DT giyi < 0, and a value in betweenif
w DT giyi — 0. The Winnow update(1) can
beregardedasanapproximatesolutionto (3).

Although the above derivation doesnot solve
thenon-conemenceproblemof theoriginal Win-
now methodwhenthe dataarenot linearly sepa-
rable,it doesprovide valuableinsightswhich can
leadto amoresystematisolutionof the problem.
Thebasicideawasgivenin (Zhang,2001),where
theoriginalWinnow algorithmwascorvertedinto
anumericaloptimizationproblemthatcanhandle
linearly non-separabldata.



Theresultingformulationis closelyrelatedto
(2). However, insteadof looking at one example
atatime asin anonlineformulation,we incorpo-
rate all examplesat the sametime. In addition,
we adda magin conditioninto the “hinge loss”.
Specifically we seekalinearweight«w thatsolves

w; - -
i n—L +C 1—w"z'y",0)].
ngn[;wj neuj—F Zmax( w” z'y',0)]

WhereC' > 0 is agivenparametecalledthereg-
ularizationparameter The optimal solutionw of
the above optimization problem can be derived
from the solution & of the following dual opti-
mizationproblem:

axZa —Z,ujexp Za’ Lyt

st o G[O,C] (z':l,...,n).

The j-th componenbf w is givenby

= [4j €xp Z oﬂa:;yZ

A Winnow-like updaterule canbe derived for
the dual regularized Winnow formulation. At
eachdatapoint (z?, y*), we fix all oy, with k # 4,
and update«; to approximatelymaximize the
dualobjective functionalusinggradientascent:

ot —>max(min(C,ai+T}(1—wT : Z)) 0), (4)

wherew; = pjexp(d; oﬂxjy ). We updatea
andw by repeatedhygoingoverthedatafrom ¢ =
1,...,n.

Learning boundsof regularizedWinnow that
are similar to the mistale boundof the original
Winnow have beengivenin (Zhang,2001). These
resultsimply that the new method,while it can
properlyhandlenon-separabléata,sharessimi-
lar theoreticaladvantagesf Winnow in thatit is
alsorobustto irrelevantfeatures.This theoretical
insight implies that the algorithmis suitablefor
NLP taskswith largefeaturespaces.

3 CoNLL-2000 chunking task

The text chunking task is to divide text into
syntactically related non-overlapping groups of
words (chunks). It is consideredan important

problemin naturallanguageprocessing. As an
exampleof text chunking,the sentence Balcor,
which has interests in real estate, said the posi-
tion isnewly created.” canbedividedasfollows:

[NP Balcor], [NP which] [VP has][NP inter
ests][PPin] [NP real estate],[VP said] [NP the
position][VP is newly created].

In this example, NP denotesnon phrase,VP
denotewverbphraseandPPdenotegprepositional
phrase.

The CoNLL-2000sharedask(SangandBuch-
holz, 2000), introducedlast year is an attempt
to set up a standarddatasetso that researchers
cancomparedifferent statisticalchunkingmeth-
ods. The dataare extractedfrom sectionsof the
PennTreebank.Thetraining setconsistsof WSJ
sectionsl5-18of the PennTreebankandthetest
setconsistsof WSJsections20. Additionally, a
part-of-speecfiPOS)tagwasassignedo eachto-
ken by a standardPOStagger(Brill, 1994)that
was trainedon the PennTreebank. ThesePOS
tagscanbe usedasfeaturesin a machinelearn-
ing basedchunkingalgorithm. SeeSection4 for
detail.

Thedatacontainselevendifferentchunktypes.
However, except for the most frequent three
types: NP (nounphrase),VP (verb phrase),and
PP (prepositionalphrase)eachof the remaining
chunkshaslessthan5% occurrencesThechunks
are representedy the following threetypes of
tags:

B-X firstword of achunkof type X
[-X non-initialword in anX chunk
O word outsideof ary chunk

A standard software program has been
provided (which is available from http://lcg-
www.uia.ac.be/conll2000/chunking) to compute
the performanceof each algorithm. For each
chunk, three figures of merit are computed:
precision(the percentagef detectedphraseghat
are correct),recall (the percentagef phrasesn
the data that are found), and the F3—; metric
which is the harmonicmeanof the precisionand
therecall. The overall precision,recalland Fig—;
metric on all chunksare also computed. The
overall Fg_; metric gives a single numberthat
canbeusedto comparedifferentalgorithms.



4 Systemdescription

4.1 Encodingof basicfeatures

An adwantageof regularizedWinnow is its robust-
nesgo irrelevantfeatures We canthusincludeas
mary featuresas possible,andlet the algorithm
itself find therelevantones.This stratgy ensures
thatwe do not missary featuresthatareimpor
tant. However, usingmorefeaturesequiresmore
memoryand slows down the algorithm. There-
fore in practiceit is still necessanto limit the
numberof featureaused.

Lettok_.,tok_c41,--.,toko, ..., tok._1,tok,
beastringof tokenizedtext (eachtokenis aword
or punctuation). We want to predictthe chunk
type of the currenttoken toky. For eachword
tok;, we let pos; denotethe associatedPOStag,
whichis assumedo begivenin the CoNLL-2000
sharedask. Thefollowing is alist of thefeatures
we useasinputto theregularizedwWinnow (where
we choose: = 2):

o first order features: tok; and pos; (1 =

,€)

e secondorderfeatures:pos; x pos; (1,7 =
—¢,...,¢, 1 < j), andpos; x tok; (i =
—Cy...,c,j=—1,0,1)

—c,...

In addition, sincein a sequentiabrocessthe
predictedchunktagst; for tok; areavailablefor
1 < 0, weincludethe following extra chunktype
features:

o first order chunk-type features: t; (i =
—Cy...,—1)

e secondorder chunk-typefeatures: t; x t;

(4,7 = —¢,...,—1,14 < j), andPOS-chunk
interactions; x pos; (i = —c,...,—1;5 =
—C,...,C).

For eachdatapoint (correspondingdo the cur
renttoken tokyp), the associatedeaturesare en-
codedasa binary vectorz, which is the input to
Winnow. Eachcomponenbf z correspondso a
possiblefeaturevaluev of a featuref in oneof
the abore featurelists. The value of the compo-
nentcorrespondso a testwhich hasvalueoneif
the correspondindeature f achievesvaluew, or
valuezeroif thecorrespondindeaturef achieves
anotherfeaturevalue.

For example,sinceposy is in our featurelist,
eachof the possiblePOSvaluewv of posg corre-
spondsto a componenbf z: the componenhas
value oneif posy = v (the featurevalue repre-
sentedy thecomponenis active), andvaluezero
otherwise.Similarly for a secondrderfeaturein
our featurelist suchas posy x posy, eachpos-
sible value vy x vy in the set{posy x pos;} is
representety a componentf z: the component
hasvalueoneif posy = vy andpos; = v (the
featurevaluerepresentely the components ac-
tive), andvaluezerootherwise.The sameencod-
ing is appliedto all otherfirst orderandsecond
orderfeatureswith eachpossibletestof “feature
= featurevalue” corresponds$o a uniguecompo-
nentin z.

Clearly in this representationthe high order
featuresareconjunctionfeatureghatbecomeac-
tive whenall of their componentare active. In
principle, one may alsoconsiderdisjunctionfea-
turesthatbecomeactive whensomeof their com-
ponentsare active. However, suchfeaturesare
not consideredn this work. Note thatthe above
representatiofeadsto a sparsebput very largedi-
mensionalvector This explainswhy we do not
include all possiblesecondorder featuressince
thiswill quickly consumamorememorythanwe
canhandle.

Also the abore list of featuresare not neces-
sarily the bestavailable. We only includedthe
moststraight-forvard featuresand pairwise fea-
tureinteractionsOnemighttry evenhigherorder
featuredo obtainbetterresults.

SinceWinnow is relatively robustto irrelevant
featuresijt is usuallyhelpful to provide the algo-
rithm with as mary featuresas possible,andlet
the algorithm pick up relevant ones. The main
problemthat prohibits us from using more fea-
turesin the Winnow algorithm is memory con-
sumption(mainlyin training). Thetime complex-
ity of the Winnow algorithmdoeshot dependon
the numberof featuresput ratheron the average
numberof non-zerofeaturesper data, which is
usuallyquitesmall.

Dueto thememoryproblem,in ourimplemen-
tation we have to limit the numberof token fea-
tures(wordsor punctuation}o 5000: we sortthe
tokensby theirfrequenciesn thetrainingsetfrom
highfrequeny to low frequeny; wethentreatto-



kensof rank 5000 or higher asthe sametoken.
Sincethe number5000 is still reasonablytarge,
this restrictionis relatively minor.

There are possibleremediesto the memory
consumptiorproblem,althoughwe have notim-
plementecthemin our currentsystem. One so-
lution comesfrom noticingthatalthoughthefea-
ture vector is of very high dimension,most di-
mensionsareempty Thereforeonemay createa
hashtablefor thefeaturesyhich cansignificantly
reducethe memoryconsumption.

4.2 Usingenhancedlinguistic features

We were interestedin determiningif additional
featureswith morelinguistic contentwould lead
to even better performance. The ESG (English
Slot Grammar)systemin (McCord, 1989)is not
directly comparabldo the phrasestructuregram-
marimplicit in the WSJtreebank.ESGis a de-
pendeng grammarin which eachphrasehasa
headand dependentlementsgachmarked with
asyntacticrole. ESGnormally producesnultiple
parsesor asentencehut hasthecapability which
we used,to outputonly the highestranked parse,
where rank is determinedby a system-defined
measure.

There are a number of incompatibilities be-
tween the treebankand ESG in tokenization,
whichhadto becompensatefbr in orderto trans-
fer the syntacticrole featurego the tokensin the
standardtraining and test sets. We also trans-
ferred the ESG part-of-speechcodes (different
from thosein the WSJ corpus)and madean at-
temptto attachB-PR B-NP andI-NP tagsasin-
ferredfrom the ESGdependengstructure.n the
end,thelattertwo tagsdid not prove useful. ESG
is also very fast, parsing several thousandsen-
tenceson an IBM RS/6000in a few minutesof
clocktime.

It might seemoddto usea parseroutputasin-
putto amachindearningsystento find syntactic
chunks.As notedabove, ESGor ary otherparser
normallyproducesnary analyseswhereasn the
kind of applicationsfor which chunkingis used,
e.g.,information extraction, only one solutionis
normally desired. In addition, due to mary in-
compatibilitiesbetweenESG andWSJtreebank,
lessthan 80% of ESG generatedsyntacticrole
tagsarein agreementwith WSJ chunks. How-

ever, the ESGsyntacticrole tagscanberegarded
asfeaturedn a statisticalchunler. Anotherview

is that the statisticalchunler canbe regardedas
amachingearnedtransformatiorthatmapseSG
syntacticrole tagsinto WSJchunks.

We denoteby f; the syntacticrole tag associ-
atedwith token tok;. Eachtagtakesoneof 138
possiblevalues.Thefollowing featuresareadded
to our system.

o first orderfeatures:f; (i = —c, . ..

,€)

e secondorderfeatures:self interactionsf; x
fi (G, = —c,...,c, i < j), anditerations
with POS-tagsf; x pos; (4,7 = —c,...,c).

4.3 Dynamic programming

In text chunking,we predicthiddenstateqchunk
types) basedon a sequenceof obsered states
(text). This resembleshidden Markov models
where dynamic programminghas been widely
emplo/ed. Our approachis relatedto ideasde-
scribedin (PuryakanokandRoth,2001). Similar
methodshave alsoappearedn othernaturallan-
guageprocessingsystemgfor example,in (Ku-
dohandMatsumoto2000)).

Given input vectorsz consistingof features
constructedas above, we apply the regularized
Winnow algorithmto train linearweightvectors.
Sincethe Winnow algorithmonly producespos-
itive weights, we emplg/ the balancedversion
of Winnow with z being transformedinto z =
[z,—1,—z,1]. As explainedearlier the constant
term is usedto offset the effect of thresholdé.
Oncea weightvectorw = [wy,04,w_,0_] is
obtainedweletw = wy —w_andf =60, —0_.
The predictionwith anincomingfeaturevectorz
isthenL(w,z) = L(%,%) = wlz — 6.

SinceWinnow only solvesbinaryclassification
problems,we train onelinear classifierfor each
chunktype. In this way, we obtaintwenty-three
linear classifierspnefor eachchunktypet. De-
noteby w! theweightassociateavith typet, then
astraight-forvard methodto classifyanincoming
datumis to assignthe chunktag asthe onewith
thehighestscoreL(w', z).

However, thereare constraintgn ary valid se-
guenceof chunktypes:if the currentchunkis of
typel-X, thenthepreviouschunktypecanonly be
eitherB-X orI-X. Thisconstraintanbeexplored



to improve chunkingperformanceWe denoteby
V the setof all valid chunk sequencegthat is,
the sequenceatisfiesthe abose chunktype con-
straint).

Let tok,...,tok,, be the sequenceof tok-
enizedtext for which we would like to find the
associateghunktypes.Letzy, ..., z,, betheas-
sociatedeaturevectorsfor thistext sequencelet
t1,...,tn beasequencef potentialchunktypes
thatis valid: {t1,...,t,} € V. In our system,
we find the sequencef chunktypesthat hasthe
highestvalueof overall truncatedscoreas:

7 N _ I
{t1,.- . tm} —arg{tl,nfn)ie‘/ZL w', z;),
where
L'(w', z;) = min(1, max(—1, L(w", z;))).

Thetruncationontotheintenal [—1, 1] is to make
surethatno single point contritutestoo muchin
thesummation.

Theoptimizationproblem

max

LI
{tly tm}EV Z w .Z‘Z

can be solved by using dynamic programming.

We build atableof all chunktypesfor everytoken
tok;. For eachfixed chunktypet, .1, we definea
value

k+1

ZL' wh ) Ti)-

It is easyto verify thatwe have thefollowing re-
cursion:

Sty
( +1) {tlﬂ tk,tk-{—l}ev

S(tk_H) = Ll(wtk+1,$k+1) + S(tk).

5)
We alsoassumethe initial condition S(tg) = 0
for all t5. Usingthisrecursionye caniterateover
k =0,1,...,m, andcomputeS(tx,1) for each
potentialchunktypety 1.

Obsere thatin (5), zx+1 dependsn the pre-
vious chunk-typesty,...,t 11— (Wherec =
2). In our implementation, these chunk-
types used to create the current feature vec-
tor zy.; are determined as follows. We

max
{tk ,tk+1 }EV

let {, = argmax, S(t¢), and let #_; =
alg MaXy, . {te_ife—i+1}€V S(te—;) for @ =
1,...c.

After the computationof all S(tx) for k& =
0,1,...,m, we determinethe best sequence
{t1,...,tm} as follows. We assign #,, to
the chunk type with the largest value of
S(tm). Eachchunktype #,,_1,...,%; is then
determinedfrom the recursion (5) as {, =

argmaxy ., i ey S(tx).
5 Experimental results

Experimentatesultsreportedn this sectionwere
obtainedby usingC' = 1, anda uniform prior of
w; = 0.1. We let thelearningraten = 0.01, and
ran the regularizedWinnow updateformula (4)
repeatedlythirty timesoverthetrainingdata.The
algorithmis not very sensitve to theseparame-
ter choices. Someother aspectsof the system
design(suchas dynamicprogramming features
used,etc) have moreimpacton the performance.
However, dueto the limitation of spacewe will
notdiscusgheirimpactin detalil.

Table 1 gives resultsobtainedwith the basic
features.Thisrepresentatiogivesatotal number
of 3.8 x 108 binaryfeatures However, thenumber
of non-zerofeaturesper datumis 48, which de-
terminesthe time compleity of our system.The
trainingtime on a400MhzPentiummachinerun-
ning Linux is aboutsixteenminutes,which cor
respondsto lessthan one minute per catayory.
Thetime usingthedynamicprogrammingo pro-
duce chunk predictions,excluding tokenization,
is lessthantensecondsThereareabout7 x 10*
non-zerolinear weight componentsper chunk-
type,whichcorrespondso asparsityof morethan
98%. Mostfeaturesarethusirrelevant.

All previous systemsachievzing a similar per
formanceare significantly more comple. For
example, the previous bestresultin the litera-
turewasachieved by acombinatiorof 231kernel
supportvectormachinegKudohandMatsumoto,
2000)with anoverall F3_; valueof 93.48. Each
kernel supportvector machineis computation-
ally significantly more expensve than a corre-
spondingWinnow classifier andthey usean or-
der of magnitudemore classifiers. This implies
thattheir systemshouldbe ordersof magnitudes
moreexpensve thanours. This point canbe ver-



ified from theirtrainingtime of aboutoneday on
a 500Mhz Linux machine. The previously sec-
ondbestsystemwasa combinationof five differ-
ent WPDV models,with an overall F3_; value
of 93.32 (van Halteren,2000). This systemis
again more comple than the regularized Win-
now approachwe propose(their bestsingleclas-
sifier performances Fz—; = 92.47). The third
bestperformancewas achiezed by using combi-
nationsof memory-basednodels,with an over
all Fg—; valueof 92.50. The restof the eleven
reportedsystemsemployed a variety of statisti-
caltechniquesuchasmaximumentrogy, Hidden
Markov models, and transformationbasedrule
learners. Interestedreadersare referredto the
summarnypaperSangandBuchholz,2000)which
containghereferenceto all systembeingtested.

tic featurescan enhancehe performanceof the
system.In addition,sinceregularizedwinnow is
ableto pick uprelevantfeaturesautomaticallywe
caneasilyintegratedifferentfeaturesnto oursys-
temin a systematiavay without concerningour-
seheswith the semanticof thefeatures.There-
sultingoverall F3—; valueof 94.13 is appreciably
betterthanary previoussystem.Theoverallcom-
plexity of thesystemis still quitereasonableThe
total numberof featuress about4.2 x 10°, with
88 nonzerdeaturedor eachdatapoint. Thetrain-
ing time is aboutthirty minutes,andthe number
of non-zeronveightcomponentgerchunk-types
about8 x 10%.

testdata precision| recall | Fg_;
ADJP 79.45 | 72.37| 75.75
ADVP 81.46 | 80.14| 80.79
CONJP| 4545 | 55.56| 50.00
INTJ | 100.00 | 50.00| 66.67
LST 0.00 | 0.00 | 0.00
NP 93.86 | 93.95| 93.90
PP 96.87 | 97.76| 97.31
PRT 80.85 | 71.70| 76.00
SBAR 87.10 | 87.10| 87.10
VP 93.69 | 93.75| 93.72
all 93.53 | 93.49| 93.51

Tablel: Our chunkpredictionresults:with basic
features

Theabove comparisonimpliesthattheregular
ized Winnow approachachiees stateof the art
performancewith significant less computation.
The succes®f this methodrelieson regularized
Winnow's ability to tolerateirrelevant features.
This allows us to usea very large featurespace
andlet thealgorithmto pick therelevantones.In
addition, the algorithmpresentedn this paperis
simple. Unlike someotherapproachesthereis
little ad hoc engineeringtuning involved in our
system. This simplicity allows otherresearchers
to reproduceour resultseasily

In Table2, we reportthe resultsof our system
with the basicfeaturesenhancedy using ESG
syntacticroles, shaving that usingmorelinguis-

testdatal precision| recall | Fg_;
ADJP | 8222 | 72.83| 77.24
ADVP | 81.06 |81.06| 81.06
CONJP| 50.00 | 44.44| 47.06
INTJ | 100.00 | 50.00| 66.67
LST 0.00 0.00 | 0.00
NP 94.45 | 94.36| 94.40
PP 97.64 | 98.07| 97.85
PRT 80.41 | 73.58| 76.85
SBAR | 91.17 | 88.79| 89.96
VP 94.31 | 94.59| 94.45
all 94.24 | 94.01| 94.13

Table2: Our chunkpredictionresults: with en-
hancedeatures

It is alsointerestingto compareheregularized
Winnow resultswith thoseof the original Win-
now method. We only reportresultswith the ba-
sic linguistic featuresin Table 3. In this exper
iment, we usethe samesetupasin the regular
ized Winnow approach.We startwith a uniform
prior of u; = 0.1, andlet the learningrate be
n = 0.01. The Winnow update(1) is performed
thirty timesrepeatedlyverthedata. Thetraining
time is aboutsixteenminutes,which is approxi-
mately the sameas that of the regularizedWin-
now method.

Clearly regularized Winnow method has in-
deed enhancedhe performanceof the original
Winnowv method. The impraovementis more or
lessconsistenbverall chunktypes.It canalsobe
seenthat the improvementis not dramatic. This
is nottoo surprisingsincethedatais very closeto



linearly separableEvenon thetestsetthe multi-

classclassificationaccurayg is around96%. On

average the binary classificatioraccurag on the
training set(notethatwe train onebinary classi-
fier for eachchunktype)is closeto 100%. This
meansthat the training datais closeto linearly
separable.Sincethe benefitof regularizedWin-

now is more significantwith noisy data,the im-

provementin this caseis not dramatic. We shall

mentionthatfor someothermorenoisyproblems
whichwe have testedon, theimprovementof reg-

ularizedWinnow methodover the original Win-

now methodcanbe muchmoresignificant.

testdatal precision| recall | Fjg—;
ADJP | 73.54 | 71.69| 72.60
ADVP | 80.83 | 78.41| 79.60
CONJP| 54.55 | 66.67| 60.00
INTJ | 100.00 | 50.00| 66.67
LST 0.00 0.00 | 0.00
NP 93.36 | 93.52| 93.44
PP 96.83 | 97.11| 96.97
PRT 83.13 | 65.09| 73.02
SBAR | 82.89 | 86.92| 84.85
UCP 0.00 0.00 | 0.00
VP 93.32 | 93.24| 93.28
all 92.77 | 92.93| 92.85

Table 3: Chunk predictionresultsusing original
Winnow (with basicfeatures)

6 Conclusion

In this paper we describeda text chunkingsys-
temusingregularizedWinnow. Sinceregularized
Winnow is robust to irrelevant features,we can
constructa very high dimensionalfeaturespace
andlet the algorithmpick up theimportantones.
We have shavn that stateof the art performance
canbe achieved by usingthis approach.Further
more,the methodwe proposeis computationally
more efficient than all other systemsreportedin
the literaturethat achieved performancecloseto
ours. Our systemis alsorelatively simplewhich
doesnot involve muchengineeringuning. This
meanghatit will be relatively easyfor otherre-
searcherto implementandreproduceourresults.
Furthermorethe succes®f regularizedwWinnow
in text chunkingsuggestghat the methodmight

be applicableto otherNLP problemswhereit is
necessaryo uselarge featurespacedo achieve
goodperformance.
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