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Abstract

Many machinelearningmethodshave
recently been applied to natural lan-
guageprocessingtasks. Among them,
the Winnow algorithm has been ar-
guedto beparticularlysuitablefor NLP
problems,due to its robustnessto ir-
relevant features. However in theory,
Winnow may not converge for non-
separabledata. To remedythis prob-
lem, a modificationcalled regularized
Winnow hasbeenproposed.In this pa-
per, we apply this new methodto text
chunking. We show that this method
achieves stateof the art performance
with significantlylesscomputationthan
previousapproaches.

1 Intr oduction

Recentlytherehasbeenconsiderableinterestin
applying machinelearning techniquesto prob-
lemsin naturallanguageprocessing.Onemethod
that hasbeenquite successfulin many applica-
tions is the SNoW architecture(Dagan et al.,
1997; Khardonet al., 1999). This architecture
is basedon the Winnow algorithm (Littlestone,
1988; Grove and Roth, 2001), which in theory
is suitablefor problemswith many irrelevant at-
tributes. In naturallanguageprocessing,oneof-
ten encountersa very high dimensionalfeature
space,althoughmost of the featuresare irrele-
vant.Thereforetherobustnessof Winnow to high
dimensionalfeaturespaceis consideredanimpor-
tantreasonwhy it is suitablefor NLP tasks.

However, the convergenceof the Winnow al-
gorithmis only guaranteedfor linearly separable
data. In practicalNLP applications,dataareof-
ten linearly non-separable.Consequently, a di-
rect applicationof Winnow may lead to numer-
ical instability. A remedyfor this, called regu-
larized Winnow, has beenrecently proposedin
(Zhang,2001). This methodmodifiesthe origi-
nal Winnow algorithmsothat it solvesa regular-
ized optimizationproblem. It convergesboth in
thelinearlyseparablecaseandin thelinearlynon-
separablecase.Its numericalstability impliesthat
thenew methodcanbemoresuitablefor practical
NLP problemsthatmaynotbelinearlyseparable.

In this paper, we compareregularizedWinnow
and Winnow algorithmson text chunking (Ab-
ney, 1991). In order for us to rigorously com-
pareour systemwith others,we usetheCoNLL-
2000 sharedtask dataset(Sang and Buchholz,
2000),whichis publicly availablefrom http://lcg-
www.uia.ac.be/conll2000/chunking. An advan-
tageof using this datasetis that a large number
of stateof theart statisticalnaturallanguagepro-
cessingmethodshave alreadybeenappliedto the
data. Thereforewe canreadily compareour re-
sultswith otherreportedresults.

We show that stateof the art performancecan
be achieved by using the newly proposedregu-
larized Winnow method. Furthermore,we can
achieve this resultwith significantlylesscompu-
tation thanearliersystemsof comparableperfor-
mance.

Thepaperis organizedasfollows. In Section2,
we describethe Winnow algorithmand the reg-
ularized Winnow method. Section3 describes



the CoNLL-2000sharedtask. In Section4, we
give adetaileddescriptionof oursystemthatem-
ploys the regularizedWinnow algorithmfor text
chunking.Section5 containsexperimentalresults
for our systemon the CoNLL-2000sharedtask.
Somefinal remarkswill begivenin Section6.

2 Winnow and regularizedWinnow for
binary classification

We review the Winnow algorithm and the reg-
ularized Winnow method. Considerthe binary
classificationproblem: to determinea label ������
	��
	��

associatedwith aninputvector � . A use-
ful methodfor solvingthisproblemis throughlin-
eardiscriminantfunctions,which consistof lin-
earcombinationsof thecomponentsof the input
variable.Specifically, we seeka weightvector �
anda threshold� suchthat ��������� if its label��� �
	 and ��������� if its label � � 	 .

For simplicity, we shall assume�!�#" in this
paper. Therestrictiondoesnot causeproblemsin
practicesinceonecanalwaysappenda constant
featureto theinputdata� , whichoffsetstheeffect
of � .

Given a training set of labeled data$ ��% � �&%(' �*)*)*)+�+$ �-, � �.,/' , a numberof approaches
to finding linear discriminant functions have
beenadvancedover theyears.We areespecially
interestedin the Winnow multiplicative update
algorithm (Littlestone, 1988). This algorithm
updatesthe weight vector � by going through
the training datarepeatedly. It is mistake driven
in the sensethat the weight vector is updated
only whenthe algorithmis not able to correctly
classifyanexample.

The Winnow algorithm(with positive weight)
employs multiplicative update: if the linear dis-
criminantfunctionmisclassifiesan input training
vector �&0 with true label �.0 , thenwe updateeach
component1 of theweightvector � as:

�32546�32�798.: $<; � 02 � 0 ' � (1)

where
;>= " is a parametercalled the learning

rate. The initial weight vector can be taken as�32��@?-2 = " , where ? is a prior which is typ-
ically chosento beuniform.

Therecanbeseveralvariantsof theWinnow al-
gorithm. Oneis calledbalancedWinnow, which

is equivalentto anembeddingof the input space
into a higherdimensionalspaceas: A�!�CB � �*� �-D .
ThismodificationallowsthepositiveweightWin-
now algorithmfor theaugmentedinput A� to have
the effect of both positive and negative weights
for theoriginal input � .

Oneproblemof theWinnow onlineupdateal-
gorithmis thatit maynotconvergewhenthedata
arenot linearlyseparable.Onemaypartiallyrem-
edy this problemby decreasingthe learningrate
parameter

;
during theupdates.However, this is

ratherad hoc sinceit is unclearwhat is the best
wayto doso.Thereforein practice,it canbequite
difficult to implementthis ideaproperly.

In orderto obtaina systematicsolutionto this
problem,we shall first examinea derivation of
theWinnow algorithmin (GentileandWarmuth,
1998),whichmotivatesamoregeneralsolutionto
bepresentedlater.

Following (Gentile and Warmuth, 1998), we
consider the loss function E F�8 $G� �����&0H�.0 � "I' ,
which is oftencalled“hinge loss”. For eachdata
point

$ � 0 � � 0 ' , we consideran online updaterule
suchthattheweight �50KJL% afterseeingthe M -th ex-
ampleis givenby thesolutionto

E NKOPRQTSVU BXW 2 � 0KJL%2 Y O � 0KJL%2Z � 02\[
; E F�8 $G� �
] 0KJL%_^`� � 0 � 0 � "I'aD )

(2)
Settingthegradientof theabove formulato zero,
we obtain

Y O �50KJL%� 0 [
;/b PcQdS/U �e" ) (3)

In the above equation,
b PRQTS/U denotesthe gra-

dient (or more rigorously, a subgradient)ofE F�8 $G� � ] 0KJL%_^`�f�-0<�g0 � "I' , which takes the value" if � ] 0hJL%_^h� � 0 � 0 = " , the value
� � 0 � 0 if� ] 0KJL%_^`�f�-0<�g0i� " , and a value in betweenif� ] 0KJL%_^`� � 0 � 0 �j" . The Winnow update(1) can

beregardedasanapproximatesolutionto (3).
Although the above derivation doesnot solve

thenon-convergenceproblemof theoriginalWin-
now methodwhenthedataarenot linearly sepa-
rable,it doesprovide valuableinsightswhichcan
leadto amoresystematicsolutionof theproblem.
Thebasicideawasgivenin (Zhang,2001),where
theoriginalWinnow algorithmwasconvertedinto
anumericaloptimizationproblemthatcanhandle
linearlynon-separabledata.



The resultingformulationis closelyrelatedto
(2). However, insteadof looking at oneexample
ata timeasin anonlineformulation,we incorpo-
rateall examplesat the sametime. In addition,
we adda margin conditioninto the “hinge loss”.
Specifically, weseekalinearweight k� thatsolves

E NKOP BXW 2 �32 Y O
�32Z ?-2 [ml

,W
0KnL%
E F�8 $o	�� � � � 0 � 0 � "I'aD )

Where l
= " is agivenparametercalledthereg-

ularizationparameter. Theoptimalsolution k� of
the above optimizationproblemcan be derived
from the solution kp of the following dual opti-
mizationproblem:

kp �eE F�8q W
0
p 0 � W 2 ? 2 798.:

$ W
0
p 0 � 02 � 0 '

s.t. p 0 �rB " � l D ( Ms� 	��*)*)*)+�ut )
)

The 1 -th componentof k� is givenby

k�32v��?-2w798/: $ ,W
0hnL%

kp 0 � 02 � 0 ' )

A Winnow-like updaterule canbederived for
the dual regularized Winnow formulation. At
eachdatapoint

$ � 0 � � 0 ' , we fix all pLx with y{z�|M ,
and update p 0 to approximatelymaximize the
dualobjective functionalusinggradientascent:

p 0�} E~F�8 $ E~NKO $ l
� p 0 [

;R$o	/� � � � 0 � 0 'u' � "I' � (4)

where � 2 �6? 2 798.: $�� 0 p 0��-02 �g0�' . We update p
and � by repeatedlygoingover thedatafrom Ms�	��*)*)*)+�ut

.
Learningboundsof regularizedWinnow that

are similar to the mistake boundof the original
Winnow havebeengivenin (Zhang,2001).These
resultsimply that the new method,while it can
properlyhandlenon-separabledata,sharessimi-
lar theoreticaladvantagesof Winnow in that it is
alsorobust to irrelevant features.This theoretical
insight implies that the algorithm is suitablefor
NLP taskswith largefeaturespaces.

3 CoNLL-2000 chunking task

The text chunking task is to divide text into
syntactically relatednon-overlapping groupsof
words (chunks). It is consideredan important

problemin natural languageprocessing.As an
exampleof text chunking,the sentence“Balcor,
which has interests in real estate, said the posi-
tion is newly created.” canbedividedasfollows:

[NP Balcor], [NP which] [VP has] [NP inter-
ests][PP in] [NP real estate],[VP said] [NP the
position][VP is newly created].

In this example,NP denotesnon phrase,VP
denotesverbphrase,andPPdenotesprepositional
phrase.

TheCoNLL-2000sharedtask(SangandBuch-
holz, 2000), introducedlast year, is an attempt
to set up a standarddatasetso that researchers
cancomparedifferentstatisticalchunkingmeth-
ods. The dataareextractedfrom sectionsof the
PennTreebank.Thetrainingsetconsistsof WSJ
sections15-18of thePennTreebank,andthetest
setconsistsof WSJsections20. Additionally, a
part-of-speech(POS)tagwasassignedto eachto-
ken by a standardPOStagger(Brill, 1994) that
was trainedon the PennTreebank. ThesePOS
tagscanbe usedasfeaturesin a machinelearn-
ing basedchunkingalgorithm. SeeSection4 for
detail.

Thedatacontainselevendifferentchunktypes.
However, except for the most frequent three
types: NP (nounphrase),VP (verb phrase),and
PP(prepositionalphrase),eachof the remaining
chunkshaslessthan ��� occurrences.Thechunks
are representedby the following three typesof
tags:

B-X first wordof achunkof typeX

I-X non-initialword in anX chunk

O wordoutsideof any chunk

A standard software program has been
provided (which is available from http://lcg-
www.uia.ac.be/conll2000/chunking) to compute
the performanceof each algorithm. For each
chunk, three figures of merit are computed:
precision(thepercentageof detectedphrasesthat
arecorrect),recall (the percentageof phrasesin
the data that are found), and the �L� nL% metric
which is theharmonicmeanof theprecisionand
therecall. Theoverall precision,recalland �L� nL%
metric on all chunksare also computed. The
overall �L� nL% metric gives a single numberthat
canbeusedto comparedifferentalgorithms.



4 Systemdescription

4.1 Encoding of basicfeatures

An advantageof regularizedWinnow is its robust-
nessto irrelevantfeatures.Wecanthusincludeas
many featuresaspossible,and let the algorithm
itself find therelevantones.Thisstrategy ensures
that we do not missany featuresthat are impor-
tant.However, usingmorefeaturesrequiresmore
memoryand slows down the algorithm. There-
fore in practiceit is still necessaryto limit the
numberof featuresused.

Let �G��y/�-� � �o��y/�-� JL% �*)*)*)�� �G��y�� �*)*)*)�� �G��yI�o� % � �G��y��
beastringof tokenizedtext (eachtokenis aword
or punctuation). We want to predict the chunk
type of the current token �o��y�� . For eachword�G��y 0 , we let �&��� 0 denotethe associatedPOStag,
which is assumedto begivenin theCoNLL-2000
sharedtask.Thefollowing is a list of thefeatures
weuseasinputto theregularizedWinnow (where
we choose���|� ):
� first order features: �o��y 0 and �&��� 0 ( MC�� � �*)*)*)
� � )
� secondorder features: �&��� 0�� �&����2 ( M � 1��� � �*)*)*)
� � , M���1 ), and �&��� 0 � �G��y 2 ( Mr�� � �*)*)*)
� � ; 1�� �
	�� " �
	 )
In addition, sincein a sequentialprocess,the

predictedchunktags � 0 for �o��y 0 areavailableforM���" , we includethefollowing extra chunktype
features:� first order chunk-type features: � 0 ( M��� � �*)*)*)
�*��	 )
� secondorder chunk-typefeatures: � 0�� ��2

( M � 1�� � � �*)*)*)+�*�
	 , M���1 ), andPOS-chunk
interactions� 0 � �&��� 2 ( M�� � � �*)*)*)+�*�
	�� 1 �� � �*)*)*)
� � ).

For eachdatapoint (correspondingto the cur-
rent token �G��y � ), the associatedfeaturesareen-
codedasa binaryvector � , which is the input to
Winnow. Eachcomponentof � correspondsto a
possiblefeaturevalue ¡ of a feature ¢ in oneof
the above featurelists. The valueof thecompo-
nentcorrespondsto a testwhich hasvalueoneif
the correspondingfeature ¢ achievesvalue ¡ , or
valuezeroif thecorrespondingfeature¢ achieves
anotherfeaturevalue.

For example,since �&���+� is in our featurelist,
eachof the possiblePOSvalue ¡ of �c����� corre-
spondsto a componentof � : the componenthas
valueone if �&�����£�¤¡ (the featurevalue repre-
sentedby thecomponentisactive),andvaluezero
otherwise.Similarly for a secondorderfeaturein
our featurelist suchas �&���+� � �&��� % , eachpos-
sible value ¡�� � ¡ % in the set

� �c����� � �&��� % � is
representedby a componentof � : thecomponent
hasvalueoneif �&��� � �#¡ � and �&��� % �#¡ % (the
featurevaluerepresentedby thecomponentis ac-
tive),andvaluezerootherwise.Thesameencod-
ing is appliedto all otherfirst orderandsecond
orderfeatures,with eachpossibletestof “feature
= featurevalue” correspondsto a uniquecompo-
nentin � .

Clearly, in this representation,the high order
featuresareconjunctionfeaturesthatbecomeac-
tive whenall of their componentsareactive. In
principle,onemayalsoconsiderdisjunctionfea-
turesthatbecomeactivewhensomeof theircom-
ponentsare active. However, such featuresare
not consideredin this work. Note that theabove
representationleadsto asparse,but very largedi-
mensionalvector. This explainswhy we do not
include all possiblesecondorder featuressince
this will quickly consumemorememorythanwe
canhandle.

Also the above list of featuresare not neces-
sarily the bestavailable. We only includedthe
moststraight-forward featuresandpair-wise fea-
tureinteractions.Onemight try evenhigherorder
featuresto obtainbetterresults.

SinceWinnow is relatively robust to irrelevant
features,it is usuallyhelpful to provide thealgo-
rithm with asmany featuresaspossible,and let
the algorithm pick up relevant ones. The main
problemthat prohibits us from using more fea-
tures in the Winnow algorithm is memorycon-
sumption(mainly in training).Thetimecomplex-
ity of theWinnow algorithmdoesnot dependon
thenumberof features,but ratheron theaverage
numberof non-zerofeaturesper data,which is
usuallyquitesmall.

Dueto thememoryproblem,in our implemen-
tation we have to limit the numberof token fea-
tures(wordsor punctuation)to ��"�"�" : we sortthe
tokensby theirfrequenciesin thetrainingsetfrom
highfrequency to low frequency; wethentreatto-



kensof rank ��"�"�" or higher as the sametoken.
Sincethe number ��"�"�" is still reasonablylarge,
this restrictionis relatively minor.

There are possibleremediesto the memory
consumptionproblem,althoughwe have not im-
plementedthemin our currentsystem. Oneso-
lution comesfrom noticingthatalthoughthefea-
ture vector is of very high dimension,most di-
mensionsareempty. Thereforeonemaycreatea
hashtablefor thefeatures,whichcansignificantly
reducethememoryconsumption.

4.2 Usingenhancedlinguistic features

We were interestedin determiningif additional
featureswith morelinguistic contentwould lead
to even betterperformance. The ESG (English
Slot Grammar)systemin (McCord,1989)is not
directly comparableto thephrasestructuregram-
mar implicit in the WSJtreebank.ESGis a de-
pendency grammarin which eachphrasehasa
headanddependentelements,eachmarked with
asyntacticrole. ESGnormallyproducesmultiple
parsesfor asentence,but hasthecapability, which
we used,to outputonly thehighestrankedparse,
where rank is determinedby a system-defined
measure.

There are a number of incompatibilitiesbe-
tween the treebankand ESG in tokenization,
whichhadto becompensatedfor in orderto trans-
fer thesyntacticrole featuresto thetokensin the
standardtraining and test sets. We also trans-
ferred the ESG part-of-speechcodes(different
from thosein the WSJcorpus)andmadean at-
temptto attachB-PP, B-NP andI-NP tagsasin-
ferredfrom theESGdependency structure.In the
end,thelattertwo tagsdid notproveuseful.ESG
is also very fast, parsingseveral thousandsen-
tenceson an IBM RS/6000in a few minutesof
clock time.

It might seemoddto usea parseroutputasin-
put to amachinelearningsystemto find syntactic
chunks.As notedabove,ESGor any otherparser
normallyproducesmany analyses,whereasin the
kind of applicationsfor which chunkingis used,
e.g., informationextraction,only onesolutionis
normally desired. In addition, due to many in-
compatibilitiesbetweenESGandWSJtreebank,
less than ¥�"I� of ESG generatedsyntacticrole
tagsare in agreementwith WSJ chunks. How-

ever, theESGsyntacticrole tagscanberegarded
asfeaturesin a statisticalchunker. Anotherview
is that the statisticalchunker canbe regardedas
a machinelearnedtransformationthatmapsESG
syntacticrole tagsinto WSJchunks.

We denoteby ¢ 0 the syntacticrole tag associ-
atedwith token �G��y 0 . Eachtag takesoneof 138
possiblevalues.Thefollowing featuresareadded
to oursystem.

� first orderfeatures:¢ 0 ( Ms� � � �*)*)*)�� � )� secondorderfeatures:self interactions¢ 0¦�¢ 2 ( M � 1§� � � �*)*)*)+� � , M��¨1 ), anditerations
with POS-tags¢ 0f� �c����2 ( M � 1�� � � �*)*)*)
� � ).

4.3 Dynamic programming

In text chunking,we predicthiddenstates(chunk
types) basedon a sequenceof observed states
(text). This resembleshidden Markov models
where dynamic programminghas been widely
employed. Our approachis relatedto ideasde-
scribedin (PunyakanokandRoth,2001).Similar
methodshave alsoappearedin othernaturallan-
guageprocessingsystems(for example,in (Ku-
dohandMatsumoto,2000)).

Given input vectors � consistingof features
constructedas above, we apply the regularized
Winnow algorithmto train linearweightvectors.
Sincethe Winnow algorithmonly producespos-
itive weights, we employ the balancedversion
of Winnow with � being transformedinto A�©�B � �*�
	��*� � �
	 D . As explainedearlier, theconstant
term is usedto offset the effect of threshold � .
Oncea weight vector A�ª�«B � J � � J � �¬� � ���RD is
obtained,we let �|��� J � �¬� and ���e� J � �I� .
Thepredictionwith anincomingfeaturevector �
is then ­ $ � � �R'®�e­ $ A� � A�w'®������� � � .

SinceWinnow only solvesbinaryclassification
problems,we train one linear classifierfor each
chunktype. In this way, we obtaintwenty-three
linearclassifiers,onefor eachchunktype � . De-
noteby ��¯ theweightassociatedwith type � , then
astraight-forwardmethodto classifyanincoming
datumis to assignthe chunktag asthe onewith
thehighestscore­ $ � ¯ � �R' .

However, thereareconstraintsin any valid se-
quenceof chunktypes: if thecurrentchunkis of
typeI-X, thenthepreviouschunktypecanonlybe
eitherB-X or I-X. Thisconstraintcanbeexplored



to improve chunkingperformance.We denoteby°
the set of all valid chunk sequences(that is,

thesequencesatisfiestheabove chunktype con-
straint).

Let �o��y % �*)*)*)+� �o��y�± be the sequenceof tok-
enizedtext for which we would like to find the
associatedchunktypes.Let � % �*)*)*)+� � ± betheas-
sociatedfeaturevectorsfor thistext sequence.Let� % �*)*)*)�� � ± beasequenceof potentialchunktypes
that is valid:

� � % �*)*)*)+� �G± � � ° . In our system,
we find thesequenceof chunktypesthathasthe
highestvalueof overall truncatedscoreas:

� k� % �*)*)*)+� k�G± � �eF�²´³ E F�8µ ¯ Uu¶¸·¸·¸· ¯K¹¦º¼»�½
±W
0KnL%
­®¾ $ � ¯ Q � � 0 ' �

where

­ ¾ $ � ¯ Q � � 0 '3�eE NKO $o	�� E F�8 $G�
	�� ­ $ � ¯ Q � � 0 'u'u' )
Thetruncationontotheinterval B �
	��
	 D is to make
surethatno singlepoint contributestoo muchin
thesummation.

Theoptimizationproblem

E F�8µ ¯ U ¶¸·¸·¸· ¯K¹®º¼»�½
±W
0hnL%
­3¾ $ � ¯ Q � � 0 '

can be solved by using dynamic programming.
Webuild atableof all chunktypesfor everytoken�G��y 0 . For eachfixedchunktype � x JL% , we definea
value

¿ $ � x JL% '¦� E F�8µ ¯ U ¶¸·¸·¸· ¯ÁÀ ¶ ¯ÁÀ S/U º¼»�½
x JL%W
0KnL%
­3¾ $ � ¯ Q � � 0 ' )

It is easyto verify thatwe have thefollowing re-
cursion:

¿ $ � x JL% '®�e­ ¾ $ � ¯ÁÀ SVU � � x JL% ' [ E F�8µ ¯ À ¶ ¯ À S/U º¼»�½
¿ $ � x ' )

(5)
We alsoassumethe initial condition

¿ $ � � ' �Â"
for all �G� . Usingthisrecursion,wecaniterateoveryÃ�Ä" �
	��*)*)*)��uÅ , andcompute

¿ $ � x JL% ' for each
potentialchunktype � x JL% .

Observe that in (5), � x JL% dependson the pre-
vious chunk-types k� x �*)*)*)�� k� x JL% �-� (where �6�� ). In our implementation, these chunk-
types used to create the current feature vec-
tor � x JL% are determined as follows. We

let k� x � F�²´³�E~F�8 ¯ À ¿ $ � x ' , and let k� x � 0 �F�²´³ÆE F�8 ¯ À´Ç Q�È µ ¯ À¼Ç Q ¶TÉ¯ À¼Ç QdS/U º¼»�½ ¿ $ � x � 0 ' for M �	��*)*)*) � .
After the computationof all

¿ $ � x ' for yÊ�" �
	��*)*)*)��uÅ , we determine the best sequence� k� % �*)*)*)
� k� ± � as follows. We assign k� ± to
the chunk type with the largest value of¿ $ �G±¬' . Each chunk type k�G± � % �*)*)*)
� k� % is then
determined from the recursion (5) as k� x �F�²´³ÆE F�8 ¯ À È µ ¯ À ¶TÉ¯ À S/U º¼»�½ ¿ $ � x ' .
5 Experimental results

Experimentalresultsreportedin thissectionwere
obtainedby using l �

	
, anda uniform prior of? 0 �i" )K	 . We let the learningrate

; �Ë" ) " 	 , and
ran the regularizedWinnow updateformula (4)
repeatedlythirty timesover thetrainingdata.The
algorithm is not very sensitive to theseparame-
ter choices. Someother aspectsof the system
design(suchasdynamicprogramming,features
used,etc)have moreimpacton theperformance.
However, dueto the limitation of space,we will
notdiscusstheir impactin detail.

Table 1 gives resultsobtainedwith the basic
features.This representationgivesa totalnumber
of Ì ) ¥ � 	 "�Í binaryfeatures.However, thenumber
of non-zerofeaturesper datumis ÎI¥ , which de-
terminesthetime complexity of our system.The
trainingtimeona400MhzPentiummachinerun-
ning Linux is aboutsixteenminutes,which cor-
respondsto less than one minute per category.
Thetimeusingthedynamicprogrammingto pro-
ducechunk predictions,excluding tokenization,
is lessthantenseconds.Thereareabout Ï � 	 "�Ð
non-zerolinear weight componentsper chunk-
type,whichcorrespondsto asparsityof morethanÑ ¥�� . Most featuresarethusirrelevant.

All previous systemsachieving a similar per-
formanceare significantly more complex. For
example, the previous best result in the litera-
turewasachievedby acombinationof 231kernel
supportvectormachines(KudohandMatsumoto,
2000)with anoverall �L� nL% valueof

Ñ Ì ) ÎI¥ . Each
kernel support vector machineis computation-
ally significantly more expensive than a corre-
spondingWinnow classifier, andthey usean or-
der of magnitudemoreclassifiers. This implies
that their systemshouldbeordersof magnitudes
moreexpensive thanours.This point canbever-



ified from their trainingtime of aboutonedayon
a 500Mhz Linux machine. The previously sec-
ondbestsystemwasa combinationof fivediffer-
ent WPDV models,with an overall ��� nL% value
of
Ñ Ì ) Ì�� (van Halteren,2000). This systemis

again more complex than the regularizedWin-
now approachwe propose(their bestsingleclas-
sifier performanceis �L� nL% � Ñ � ) ÎgÏ ). The third
bestperformancewasachieved by usingcombi-
nationsof memory-basedmodels,with an over-
all �L� nL% valueof

Ñ � ) ��" . The restof the eleven
reportedsystemsemployed a variety of statisti-
cal techniquessuchasmaximumentropy, Hidden
Markov models, and transformationbasedrule
learners. Interestedreadersare referredto the
summarypaper(SangandBuchholz,2000)which
containsthereferencesto all systemsbeingtested.

testdata precision recall �L� nL%
ADJP 79.45 72.37 75.75
ADVP 81.46 80.14 80.79
CONJP 45.45 55.56 50.00
INTJ 100.00 50.00 66.67
LST 0.00 0.00 0.00
NP 93.86 93.95 93.90
PP 96.87 97.76 97.31

PRT 80.85 71.70 76.00
SBAR 87.10 87.10 87.10

VP 93.69 93.75 93.72
all 93.53 93.49 93.51

Table1: Our chunkpredictionresults:with basic
features

Theabovecomparisonimpliesthattheregular-
ized Winnow approachachieves stateof the art
performancewith significant less computation.
The successof this methodrelieson regularized
Winnow’s ability to tolerateirrelevant features.
This allows us to usea very large featurespace
andlet thealgorithmto pick therelevantones.In
addition,thealgorithmpresentedin this paperis
simple. Unlike someother approaches,thereis
little ad hoc engineeringtuning involved in our
system.This simplicity allows otherresearchers
to reproduceour resultseasily.

In Table2, we reportthe resultsof our system
with the basicfeaturesenhancedby using ESG
syntacticroles,showing that usingmorelinguis-

tic featurescan enhancethe performanceof the
system.In addition,sinceregularizedWinnow is
ableto pick uprelevantfeaturesautomatically, we
caneasilyintegratedifferentfeaturesinto oursys-
temin a systematicway without concerningour-
selveswith thesemanticsof thefeatures.There-
sultingoverall ��� nL% valueof

Ñ Î )K	 Ì is appreciably
betterthanany previoussystem.Theoverallcom-
plexity of thesystemis still quitereasonable.The
total numberof featuresis about Î ) � � 	 "�Í , with¥�¥ nonzerofeaturesfor eachdatapoint. Thetrain-
ing time is aboutthirty minutes,andthenumber
of non-zeroweightcomponentsperchunk-typeis
about ¥ � 	 " Ð .

testdata precision recall ��� nL%
ADJP 82.22 72.83 77.24
ADVP 81.06 81.06 81.06
CONJP 50.00 44.44 47.06
INTJ 100.00 50.00 66.67
LST 0.00 0.00 0.00
NP 94.45 94.36 94.40
PP 97.64 98.07 97.85

PRT 80.41 73.58 76.85
SBAR 91.17 88.79 89.96

VP 94.31 94.59 94.45
all 94.24 94.01 94.13

Table2: Our chunkpredictionresults: with en-
hancedfeatures

It is alsointerestingto comparetheregularized
Winnow resultswith thoseof the original Win-
now method.We only reportresultswith theba-
sic linguistic featuresin Table3. In this exper-
iment, we usethe samesetupas in the regular-
izedWinnow approach.We startwith a uniform
prior of ? 0 �Ò" )K	 , and let the learning rate be; �Ó" ) " 	 . The Winnow update(1) is performed
thirty timesrepeatedlyover thedata.Thetraining
time is aboutsixteenminutes,which is approxi-
mately the sameas that of the regularizedWin-
now method.

Clearly regularized Winnow method has in-
deedenhancedthe performanceof the original
Winnow method. The improvementis more or
lessconsistentoverall chunktypes.It canalsobe
seenthat the improvementis not dramatic. This
is not toosurprisingsincethedatais verycloseto



linearly separable.Evenon thetestset,themulti-
classclassificationaccuracy is around

Ñ�Ô � . On
average,thebinaryclassificationaccuracy on the
trainingset(notethatwe train onebinaryclassi-
fier for eachchunktype) is closeto

	 "�"I� . This
meansthat the training data is closeto linearly
separable.Sincethe benefitof regularizedWin-
now is moresignificantwith noisy data,the im-
provementin this caseis not dramatic.We shall
mentionthatfor someothermorenoisyproblems
whichwehavetestedon,theimprovementof reg-
ularizedWinnow methodover the original Win-
now methodcanbemuchmoresignificant.

testdata precision recall �L� nL%
ADJP 73.54 71.69 72.60
ADVP 80.83 78.41 79.60
CONJP 54.55 66.67 60.00
INTJ 100.00 50.00 66.67
LST 0.00 0.00 0.00
NP 93.36 93.52 93.44
PP 96.83 97.11 96.97

PRT 83.13 65.09 73.02
SBAR 82.89 86.92 84.85
UCP 0.00 0.00 0.00
VP 93.32 93.24 93.28
all 92.77 92.93 92.85

Table3: Chunkpredictionresultsusingoriginal
Winnow (with basicfeatures)

6 Conclusion

In this paper, we describeda text chunkingsys-
temusingregularizedWinnow. Sinceregularized
Winnow is robust to irrelevant features,we can
constructa very high dimensionalfeaturespace
andlet thealgorithmpick up the importantones.
We have shown that stateof theart performance
canbeachievedby usingthis approach.Further-
more,themethodwe proposeis computationally
moreefficient thanall othersystemsreportedin
the literaturethat achieved performancecloseto
ours. Our systemis alsorelatively simplewhich
doesnot involve muchengineeringtuning. This
meansthat it will be relatively easyfor otherre-
searchersto implementandreproduceourresults.
Furthermore,the successof regularizedWinnow
in text chunkingsuggeststhat the methodmight

be applicableto otherNLP problemswhereit is
necessaryto uselarge featurespacesto achieve
goodperformance.
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