Tractability and Structural Closuresin Attribute Logic Type Signatures

Gerald Penn
Department of Computer Science
University of Toronto
10 King's College Rd.
Toronto M5S 3G4, Canada
gpenn@s. t oront o. edu

Abstract

This paper considers three assumptions
conventionally made about signatures
in typed feature logic that are in po-
tential disagreement with current prac-
tice among grammar developers and
linguists working within feature-based
frameworks such as HPSG: meet-semi-
latticehood, unique feature introduc-
tion, and the absence of subtype cover-
ing. It aso discussesthe conditions un-
der which each of these can betractably
restored in realistic grammar signatures
where they do not already exist.

1 Introduction

Thelogic of typed feature structures (LTFS, Car-
penter 1992) and, in particular, its implementa-
tion in the Attribute Logic Engine (ALE, Car-
penter and Penn 1996), have been widely used
as ameans of formalising and developing gram-
mars of natural languages that support computa-
tionally efficient parsing and SLD resolution, no-
tably grammars within the framework of Head-
driven Phrase Structure Grammar (HPSG, Pollard
and Sag 1994). These grammars are formulated
using a vocabulary provided by a finite partially
ordered set of types and a set of features that must
be specified for each grammar, and feature struc-
tures in these grammars must respect certain con-
straints that are also specified. These include ap-
propriateness conditions, which specify, for each
type, al and only the features that take values
in feature structures of that type, and with which
types of values (valuerestrictions). Thereareaso
more general implicational constraintsof theform

T — ¢, where 7 isatype, and ¢ is an expres-
sion from LTFS's description language. In LTFS
and ALE, these four components, a partial order
of types, aset of features, appropriatenessdeclara-
tionsand type-antecedent constraints can be taken
as the signature of a grammar, relative to which
descriptions can be interpreted.

LTFS and ALE aso make severa assump-
tions about the structure and interpretation of this
partial order of types and about appropriateness,
some for the sake of generality, others for the
sake of efficiency or simplicity. Appropriate-
ness is generally accepted as a good thing, from
the standpoints of both efficiency and representa-
tional accuracy, and while many have advocated
theneed for implicational constraintsthat are even
more general, type-antecedent constraints at the
very least are al so accepted as being necessary and
convenient. Not al of the other assumptions are
universally observed by formal linguistsor gram-
mar devel opers, however.

This paper addressesthe three most contentious
assumptions that LTFS and ALE make, and how
to deal with their absence in a tractable manner.
They are:

1. Meet-semi-latticehood: every partial order
of types must be a meet semi-lattice. This
impliesthat every consistent pair of typeshas
aleast upper bound.

2. Uniquefeatureintroduction: for every fea-
ture, F, thereisaunique most general typeto
which F is appropriate.

3. No subtype covering: there can be feature
structures of a non-maximally-specific type
that are not typable as any of its maximally
specific subtypes. When subtype covering
isnot assumed, feature structuresthemselves

can be partialy ordered and taken to repre-
sent partial information states about some set
of objects. When subtype covering is as-
sumed, feature structures are discretely or-
dered and totaly informative, and can be
taken to represent objects in the (linguistic)
world themselves. Thelatterinterpretationis
subscribed to by Pollard and Sag (1994), for
example.

All three of these conditions have been claimed
elsewhere to be either intractable or impossible
to restore in grammar signatures where they do
not already exist. It will be argued here that: (1)
restoring meet-semi-latticehood is theoretically
intractable, for which the worst case bears a dis-
quieting resemblance to actua practicein current
large-scale grammar signatures, but nevertheless
can beefficiently compilablein practice dueto the
sparseness of consistent types; (2) unique feature
introduction can always be restored to asignature
inlow-degree polynomial time, and (3) whiletype
inferencing when subtype covering is assumed is
intractable in the worst case, a very elegant con-
straint logic programming solution combined with
a special compilation method exists that can re-
storetractability in many practical contexts. Some
simple compl etion algorithmsand acorrected NP-
compl eteness proof for non-digunctivetypeinfer-
encing with subtype covering are also provided.

2 Meet-semi-latticehood

In LTFS and ALE, partia orders of types are as-
sumed to be meet semi-lattices:

Definition 1 A partial order, (P,C), is a meet
semi-latticeiff for any z,y € P,z Myl.

M isthe binary greatest lower bound, or meet op-
eration, and is the dual of the join operation, LI,
which corresponds to unification, or least upper
bounds (in the orientation where L corresponds
to the most general type). Figure 1 is not a meet
semi-lattice because ¢ and d do not have a mest,
nor do « and g, for example.

In thefinite case, the assumption that every pair
of types has a meet is equivalent to the assump-
tion that every consistent set of types, i.e, types
with an upper bound, hasajoin. Itistheoretically
convenient when discussing the unification of fea-
ture structures to assume that the unification of

=

P—oT—0
Q——+—0o—a

Figure1: An exampleof apartial order that is not
ameet semi-lattice.

two consistent types always exists. It can aso be
more efficient to makethisassumption as, in some
representations of types and feature structures,
it avoids a source of non-determinism (selection
among minimal but not least upper bounds) dur-
ing search.

Just becauseit would be convenient for unifica-
tion to be well-defined, however, does not mean
it would be convenient to think of any empiri-
cal domain’s concepts as a meet semi-lattice, nor
that it would be convenient to add all of the types
necessary to a would-be type hierarchy to ensure
meet-semi-latticehood. The question then natu-
rally arises as to whether it would be possible,
given any finite partial order, to add some extra
elements (types, in this case) to make it a meet
semi-lattice, and if so, how many extra el ements
it would take, which also provides alower bound
on the time complexity of the completion.

Itis, infact, possibleto embed any finite partial
order into a smallest lattice that preserves exist-
ing meetsand joinsby adding extraelements. The
resulting construction is the finite restriction of
the Dedekind-MacNeille completion (Davey and
Priestley, 1990, p. 41).

Definition 2 Given a partially ordered set,
P, the Dedekind-MacNeille completion of P,
(DM (P), C),isgiven by:

DM (P)={AC P|A" = A}

This route has been considered before in the
context of taxonomical knowledge representation
(Ait-Kati et a., 1989; Fall, 1996). While meet
semi-lattice completions are a practical step
towards providing a semantics for arbitrary
partial orders, they are generaly viewed as
an impractical preliminary step to performing
computations over a partial order. Work on
more efficient encoding schemes began with
Ait-Kati et a. (1989), and this seminal paper has

123 124 134 234

1 2 3 4

Figure 2 A worst case for the Dedekind-
MacNeille completionat n = 4.

in turn given rise to severa interesting studies
of incremental computations of the Dedekind-
MacNeille completion in which LUBs are added
as they are needed (Habib and Nourine, 1994;
Bertet et al., 1997). This was aso the choice
made in the LKB parsing system for HPSG
(Malouf et al., 2000).

Therearepartial orders P of unbounded sizefor
which |[DM (P)| = ©(2/Pl). As one family of
worst-case examples, parametrised by n, consider
aset S = {1,...,n}, and apartia order P de-
fined asdl of thesizen — 1 subsetsof S and all of
thesize 1 subsets of .S, ordered by inclusion. Fig-
ure 2 shows the case where n. = 4. Although the
maximum subtype and supertype branching fac-
tors in this family increase linearly with size, the
partial orderscan grow in depth instead in order to
contain this.

That yields something roughly of the form
shownin Figure 3, whichisan exampleof arecent
trend in using type-intensive encodingsof linguis-
tic information into typed feature logic in HPSG,
beginning with Sag (1997). These explicitly iso-
late several dimensions! of analysis as a means
of classifying complex linguistic objects. In Fig-
ure 3, specific clausal types are selected from
among the possible combinations of CLAUSAL-
ITY and HEADEDNESS subtypes. In this set-
ting, the parameter n corresponds roughly to the
number of dimensionsused, although an exponen-
tial explosion isobviously not dependent on read-
ing the type hierarchy according to this conven-
tion.

Thereisasimple algorithm for performing this
completion, which assumes the prior existence of
a most general element (L), given in Figure 4.

11t should be noted that while the common parlance for
these sections of the type hierarchy is dimension, borrowed
from earlier work by Erbach (1994) on multi-dimensional
inheritance, these are not dimensions in the sense of
Erbach (1994) because not every n-tuple of subtypes from
an n-dimensional classification isjoin-compatible.

Most instantiations of the heuristic, “where there
is no meet, add one” (Fall, 1996), do not yield
the Dedekind-MacNeillecompletion (Bertetet al.,
1997), and other authors have proposed incremen-
tal methods that trade greater efficiency in com-
puting the entire completion at once for their in-
crementality.

Proposition 1 The MSL completion algorithmis
correct on finite partially ordered sets, P, i.e,
upon termination, it has produced DM (P).

Proof: Let V' (P) bethe partially ordered set pro-
duced by the agorithm. Clearly, P C V(P). It
sufficesto show that (1) V (P) isacompletelattice
(with T added), and (2) for al v € V(P), there
existsubsets A, B C Psuchthatv = \/y,(p) A =
Av () B2

Suppose there are v, w € V (P) such that v M
wt. Thereis aleast element, so v and w have
more than one maximal lower bound, /;,/, and
others. But then {/4,/,} is upper-bounded and
1 U [371, so the agorithm should not have termi-
nated. Suppose instead that v U w1. Again, the
agorithm should not have terminated. So V (P)
with T added isa complete lattice.

Givenv € V(P),if v € P, then choose 4, =
B, = {v}. Otherwise, the algorithm added v be-
cause of abounded set {t1, ¢z}, with minimal up-
per bounds, w1, . . . ux, which did not have aleast
upper bound, i.e, & > 1. In this case, choose
AU = Atl U ‘47“2 and B, = U1<7f<k, Bui- In ei-
ther case, clearly v = \/V(P) A, ;_/\V(P) B, for
dlveV(p).O

Termination is guaranteed by considering, af-
ter every iteration, the number of sets of meet-
irreducible elements with no meet, since all com-
pletion types added are meet-reducible by defini-
tion.

In LinGO (Flickinger et al., 1999), the largest
publicly-available LTFS-based grammar, and one
which uses such type-intensive encodings, there
are 3414 types, the largest supertype branching
factor is 19, and athough dimensionality is not
distinguishedin the source code from other types,
thelargest subtype branching factor is 103. Using
supertype branching factor for the most conserva-
tive estimate, this still implies atheoretical maxi-

2These are sometimes called the join density and meet

density, respectively, of P in V(P) (Davey and Priestley,
1990, p. 42).

fin-wh-fill-rel-cl inf-wh-fill-recl-cl

red-rel-cl

s A R

wh-re-d—___non-wh-rel-cl ill- d-comp-ph hd-subj-p(hd-spr-ph
i

imp-cl decl-cl inter-cl rel-cl hd-adj- hd-nexus-ph

P 9% -p p

simp-inf-rel-cl_ wh-subj-rel-cl _bare-rel-cl

inf-hd-fill-ph fin-Rd-subj-ph

_— |
cl ause/ non-clause hd-ph non-hd-ph
|CLAUSALITY | | HEADEDNESS)|

phrase

Figure 3: A fragment of an English grammar in which supertype branching distinguishes

“dimensions’ of classification.
mum of approximately 500,000 compl etion types,
whereas only 893 are necessary, 648 of which are
inferred without reference to previously added
completion types.

Whereasincremental compilation methodsrely
on the assumption that the joins of most pairs of
types will never be computed in a corpus before
the signature changes, this method’ sefficiency re-
lies on the assumption that most pairs of types
are join-incompatible no matter how the sigha-
ture changes. In LinGO, this is indeed the case:
of the 11,655,396 possible pairs, 11,624,866 are
join-incompatible, and there are only 3,306 that
are consistent (with or without joins) and do not
stand in a subtyping or identity relationship. In
fact, the cost of completion is often dominated
by the cost of transitive closure, which, using a
sparse matrix representation, can be completed for
LinGO in about 9 seconds on a450 MHz Pentium
I1 with 1GB memory (Penn, 2000a).

While the continued efficiency of compile-time
completion of signatures as they further increase
in size can only be verified empirically, what can
be said at thisstageisthat the only reason that sig-
natures like LinGO can be tractably compiled at
all is sparseness of consistent types. In other ge-
ometric respects, it bears a close enough resem-
blance to the theoretical worst case to cause con-
cern about scalability. Compilation, if efficient,
is to be preferred from the standpoint of static
error detection, which incremental methods may
elect to skip. In addition, running a new signa-
ture plus grammar over atest corpusisafrequent
task in large-scale grammar development, and in-
cremental methods, even ones that memoise pre-
vious computations, may pay back the savingsin
compile-time on alarge test corpus. It should also

be noted that another plausible method is compi-
lation into logical terms or bit vectors, in which
someamount of compilation (ranging from linear-
timeto exponentia) isperformed with theremain-
ing cost amortised evenly across all run-time uni-
fications, which often results in a savings during
grammar devel opment.

3 UniqueFeatureIntroduction

LTFS and ALE aso assume that appropriateness
guaranteesthe existence of auniqueintroducer for
every feature:

Definition 3 Given a type hierarchy, (7', C), and
a finite set of features, Feat, an appropriateness
specification is a partial function, Approp
Feat x T — T suchthat, for every F € Feat:

e (Feature Introduction) there is a type
Intro(F) € T such that:

— Approp(F, Intro(F))J, and
— for everyt € T, if Approp(F,t)], then
Intro(F) C t, and

e (Upward Closure / Right Monotonic-
ity) if Approp(F,s)] and s C ¢, then
Approp(F,t)l and Approp(F, s) c
Approp(F, t).

Feature introduction has been argued not to be
appropriate for certain empirical domains either,
although Pollard and Sag (1994) do otherwise ob-
serve it. The debate, however, has focussed on
whether to modify some other aspect of typeinfer-
encing in order to compensate for the lack of fea-
ture introduction, presumably under the assump-
tion that feature introduction was difficult or im-
possible to restore automatically to grammar sig-
natures that did not haveit.

1. Find two elements, ¢;, t> with minimal upper bounds,
ui ... ux, sSuchthat theirjoin ¢, U ¢2 isundefined, i.e.,
k > 1. If no such pair exists, then stop.

2. Add an element, », such that:

e fordl1<i<k,vCu;,and
o foral dementst,t C vifffordl 1 < i <k,
t C u;.

3. Goto (1).
Figure 4: The MSL completion algorithm.

Just as with the condition of meet-semi-
latticehood, however, it is possible to take a
would-be signature without feature introduction
and restore this condition through the addition
of extra unique introducing types for certain
appropriate features. The algorithm in Figure 5
achieves this. In practice, the same signature
completion type, v, can be used for different
features, provided that their minimal introducers
are the same set, K. This clearly produces a
partially ordered set with a unique introducing
type for every feature. It may disturb meet-
semi-latticehood, however, which means that this
completion must precede the meet semi-lattice
completion of Section 2. If generaisation has
already been computed, the signature completion
agorithm runsin O(fn), where f is the number
of features, and » is the number of types.

4 Subtype Covering

In HPSG, it is generally assumed that non-
maximally-specific types are ssmply a convenient
shorthand for talking about sets of maximally
specific types, sometimes called species, over
which the principles of agrammar are stated. Ina
view where feature structures represent discretely
ordered objects in an empirical model, every
feature structure must bear one of these species.
In particular, each non-maximally-specific type
in adescription is equivalent to the disjunction of
the maximally specific subtypes that it subsumes.

There are some good reasons not to build this
assumption, called “ subtype covering,” into LTFS
or its implementations. Firstly, it is not an ap-
propriate assumption to make for some empiri-
cal domains. Even in HPSG, the denotations of

1. Given candidate signature, S, find a feature, F, for
which there is no unique introducing type. Let K be
the set of minimal types to which F is appropriate,
where | K| > 1. If thereis no such feature, then stop.

2. Addanewtype, v,t0.S, towhich Fisappropriate, such
that:

o foradlk e K,vCk,

o foraltypes tinS,t C vifffordl &k € K,
tC k,and

o Approp(F,v) = Approp(F, k1) T
Approp(F,k2) T ... M Approp(F, kx|),
the generalization of the value restrictions on F
of the elementsof K.

3. Goto(1).

Figure 5: The introduction completion algorithm.

parametrically-typed lists are more naturaly in-
terpreted without it. Secondly, not to makethe as-
sumptionismore general: whereit isappropriate,
extra type-antecedent constraints can be added to
the grammar signature of the form:

n—mpV-.--Vm;

for each non-maximally-specific type, n, and its
i maximal subtypes, mq,...,m;. These con-
straints become crucial in certain cases wherethe
possible permutations of appropriate feature val-
ues at atype are not covered by the permutations
of those features on its maximally specific sub-
types. Thisisthe case for thetype, ver b, inthe
signaturein Figure 6 (givenin ALE syntax, where
sub/ 2 defines the partial order of types, and
i nt ro/ 2 defines appropriateness on unique in-
troducersof features). Thecombination, AUX:—A
INV:+, isnot attested by any of ver b’s subtypes.
While there are arguably better ways to represent
this information, the extra type-antecedent con-
straint:

verb — aux_.verb Vv nai n_.verb

is necessary in order to decide satisfiability cor-
rectly under the assumption of subtype covering.
We will call types such asver b deranged types.
Types that are not deranged are called normal

types.

bot sub [verb, bool].
bool sub [+, -].
verb sub [aux_verb, mai n_verb]
intro [aux:bool,inv:bool].
aux_verb sub [aux: +,inv:bool].
mai n_verb sub [aux:-,inv:-].

Figure 6: A signature with a deranged type.

4.1 Non-Digunctive Type I nference under
Subtype Covering is NP-Complete

Third, athough subtype covering is, in the au-
thor’s experience, not a source of inefficiency in
practical LTFS grammars, when subtype cover-
ing isimplicitly assumed, determining whether a
non-disunctive descriptionis satisfiable under ap-
propriateness conditionsis an NP-complete prob-
lem, whereas this is known to be polynomia
time without it (and without type-antecedent con-
straints, of course). Thiswas originally proven by
Carpenter and King (1995). The proof, with cor-
rections, is summarised here because it was never
published. Consider the tranglation of a3SAT for-
mula into a description relative to the signature
givenin Figure 7. The resulting description is al-
ways non-disjunctive, since logical digunction is
encoded in subtyping. Asking whether aformula
is satisfiable then reduces to asking whether this
description conjoined with t r uef or mis satisfi-
able. Every typeisnormal exceptfort r uedi sj,
for which the combination, bisil:f al sef or ma
DISJ2:f al sef or misnot attested in either of its
subtypes. Enforcing subtype covering on thisone
deranged type is the sole source of intractability
for this problem.

4.2 Practical Enforcement of Subtype
Covering

Instead of enforcing subtype covering aong with
typeinferencing, an aternativeisto suspend con-
straints on feature structures that encode subtype
covering restrictions, and conduct type inferenc-
ing in their absence. This restores tractability
a the cost of rendering type inferencing sound
but not complete. This can be implemented very
transparently in systemslike ALE that are built on
top of another logic programming language with
support for constraint logic programming such as
SICStus Prolog. In the worst case, an answer to a
guery to the grammar signature may contain vari-

bot sub [bool, formula].
bool sub [true,fal se].
formula sub [propsynbol, conj, disj, neg,
trueformfal seform.
sub [truepropsym
fal sepropsyni.

pr opsynbol

conj sub [trueconj, fal seconjl,
fal seconj2].
intro [conj1:formul a,
conj 2: formul a] .
trueconj intro [conjl:trueform

conj 2:trueforn.
falseconjl intro [conj1l:falseforni.
fal seconj2 intro [conj2:falseforni.

disj sub [truedisj, falsedisj]
intro [disjl:formula,
di sj2:formul a] .
truedisj sub [truedisjl,truedisj?2].

truedisjl intro [disjl:trueforny.
truedisj2 intro [disj2:trueforny.
falsedisj intro [disjl:fal seform
di sj 2: fal seforny.
neg sub [trueneg,fal seneq]
intro [neg: propsynbol].
trueneg intro [neg: falsepropsyni.
fal seneg intro [neg:truepropsyni.
trueformsub [truepropsymtrueconj,
truedi sj, trueneq] .
fal seformsub [fal sepropsym fal seconj 1,
fal seconj 2, fal sedi sj, fal seneq] .

Figure 7: The signature reducing 3SAT to non-
digunctive type inferencing.

ables with constraints attached to them that must
be exhaustively searched over in order to deter-
minetheir satisfiability, and thisis still intractable
in the worst case. The advantage of suspending
subtype covering constraints is that other princi-
ples of grammar and proof procedures such as
SL D resolution, parsing or generation can add de-
terministic information that may result in an early
failure or adeterministic set of constraintsthat can
then be applied immediately and efficiently. The
variables that correspond to feature structures of
a deranged type are precisely those that require
these suspended constraints.

Given adiagnosis of which typesin asignature
are deranged (discussed in the next section),
suspended subtype covering constraints can be
implemented for the SICStus Prolog implemen-
tation of ALE by adding relational attachments
to ALE's type-antecedent universal constraints
that will suspend a goa on candidate feature
structures with deranged types such as verb
or truedi sj. The suspended goal unblocks

whenever the deranged type or the type of one
of its appropriate features' values is updated to
a more specific subtype, and checks the types of
the appropriate features' values. Of particular use
is the SICStus Constraint Handling Rules (CHR,
Frahwirth and Abdennadher (1997)) library,
which has the ability not only to suspend, but to
suspend until a particular variable is instantiated
or even bound to another variable. This is the
powerful kind of mechanism required to check
these constraints efficiently, i.e., only when nec-
essary. Re-entrancies in a Prolog term encoding
of feature structures, such as the one ALE uses
(Penn, 1999), may only show up as the binding
of two uninstantiated variables, and re-entrancies
are often an important case where these con-
straints need to be checked. The details of this
reduction to constraint handling rules aregivenin
Penn (2000b). The relevant complexity-theoretic
issue isthe detection of deranged types.

4.3 Detecting Deranged Types

The detection of deranged types themselves is
also a potential problem. This is something that
needs to be detected at compile-time when sub-
type covering constraints are generated, and as
small changesin a partial order of types can have
drastic effects on other parts of the signature be-
cause of appropriateness, incremental compila
tion of the grammar signature itself can be ex-
tremely difficult. This meansthat the detection of
deranged typesmust be something that can be per-
formed very quickly, as it will normally be per-
formed repeatedly during devel opment.

A naive agorithm would be, for every type,
to expand the product of its features’ appropriate
value types into the set, A, of al possible maxi-
mally specific products, then to do the samefor the
products on each of the type's i maximally spe-
cific subtypes, forming sets B;, and then to re-
move the productsin the B; from A. Thetypeis
deranged iff any maximally specific products re-
main in A\(U;B;). If the maximum number of
features appropriateto any typeis a, and there are
t types in the signature, then the cost of thisis
dominated by the cost of expanding the products,
t*, since in the worst case al features could have
L astheir appropriate value.

A lessnaivealgorithmwould treat normal (non-

deranged) subtypesasif they weremaximally spe-
cific when doing the expansion. This works be-
causethe products of appropriatefeature values of
normal types are, by definition, covered by those
of their own maximally specific subtypes. Maxi-
mally specific types, furthermore, are aways nor-
mal and do not need to be checked. Atomic types
(types with no appropriate features) are also triv-
ialy normal.

It isalso possible to avoid doing a great deal of
the remaining expansion, simply by counting the
number of maximally specific products of types
rather than by enumerating them. For exam-
ple, in Figure 6, mai n_ver b has one such prod-
uct, AUX:— A INV:—, and aux_ver b has two,
AUX:4+ A INV:4, and AUX:4+ A INV:—. ver b,
on the other hand, has al four possible combina-
tions, so it isderanged. The resulting algorithmis
thus given in Figure 8. Using the smallest normal

For each type, ¢, in topological order (from maximally spe-
cificdownto L):

e if tismaxima or atomic then ¢ is normal. Tabulate
normals(t) = {¢}, aminimal normal subtype cover of
the maximal subtypes of ¢.

o Otherwise:

1 Let N =, ez, normals(s), where /(t) is the
set of immediate subtypes of ¢.

2. Let a be the number of features appropriate to
t,and let R = {{s1,...,8qa) | s =
Approp(Fi, s), Approp(Fi, t)},s € N'}.

3. Givenry,ry € R suchthat rq Ur,] (coordinate-
wise):

— if 11 C ry (coordinate-wise), then discard
r2,

- |f 2 ; 1, then dla:ard 1,

— otherwisereplace {r1,r2} in R with:

{{u1,...,ua) | ui immed. subtypeof s; inry}
u{(u1, ..., ug) | u; immed. subtypeof s; in
ra}.

Repeat this step until nosuch rq, ro exist.
4. Letd = e approp(r,r) 4 maximal (Approp(F, ¢)) —

E(ul,___,ua)eRHISisamaximal(ui,), where
maximal(s) is the number of maximal subtypes
of s.

5if d # 0, then ¢t is deranged; tabulate
normals(t) = N and continue. Otherwise, ¢
is normal; tabulate normals(t) = {¢} and con-
tinue.

Figure 8: The deranged type detection algorithm.

subtype cover that we have for the product of ¢'s
feature values, we iteratively expand the feature
value products for this cover until they partition
their maximal feature products, and then count the
maximal products using multiplication. A similar
trick can be used to calculate maximal efficiently.

The complexity of this approach, in practice,
is much better: O(tb%), where b is the weighted
mean subtype branching factor of a subtype of
a vaue restriction of a non-maximal non-atomic
type's feature, and d is the weighted mean length
of the longest path from a maximal type to a sub-
type of avalue restriction of a non-maximal non-
atomic type' sfeature. Inthe Dedekind-MacNeille
completion of LinGO’ssignature, bis1.9,d is2.2,
and the sum of 6% over al non-maximal types
with arity a is approximately 10%. The sum of
maximal®(t) over every non-maximal type, ¢, on
the other hand, is approximately 10'4. Practical
performanceis again much better becausethis al-
gorithm can exploit the empirical observation that
most types in arealistic signature are normal and
that most feature val ue restrictions on subtypes do
not vary widely. Using branching factor to move
the total number of typesto alower degreetermis
crucial for large signatures.

5 Conclusion

Efficient compilation of both meet-semi-
latticehood and subtype covering depends
crucially in practice on sparseness, either of
consistency among types, or of deranged types,
to the extent it is possible at al. Closure for
unique feature introduction runsin linear timein
both the number of features and types. Subtype
covering results in NP-complete non-disjunctive
type inferencing, but the postponement of these
constraints using constraint handling rules can
often hide that complexity in the presence of
other principles of grammar.

References

H. Ait-Kagi, R. Boyer, P. Lincoln, and R. Nasr. 1989.
Efficient implementation of |attice operations. ACM
Transactions on Programming Languages and Sys-
tems, 11(1):115-146.

K. Bertet, M. Morvan, and L. Nourine. 1997. Lazy
completion of a partial order to the smallest lattice.

In Proceedings of the International KRUSE Sympo-
sium: Knowledge Retrieval, Useand Storagefor Ef-
ficiency, pages 72-81.

B. Carpenter and PJ. King. 1995. The complexity
of closed world reasoning in constraint-based gram-
mar theories. In Fourth Meeting on the Mathemat-
ics of Language, University of Pennsylvania.

B. Carpenter and G. Penn. 1996. Compiling typed
attribute-value logic grammars. In H. Bunt and
M. Tomita, editors, Recent Advances in Parsing
Technologies, pages 145-168. Kluwer.

B. Carpenter. 1992. The Logic of Typed Feature Sruc-
tures. Cambridge.

B. A. Davey and H. A. Priestley. 1990. Introduction
to Latticesand Order. Cambridge University Press.

G. Erbach. 1994. Multi-dimensional inheritance. In
Proceedings of KONVENS 94. Springer.

D. Flickinger et al. 1999. The LinGO English
resource grammar. Available on-line from
http://hpsg. st anf ord. edu/ hpsg/
[ingo.htm.

A. Fall. 1996. Reasoningwith Taxonomies. Ph.D. the-
sis, Simon Fraser University.

T. Frihwirth and S. Abdennadher. 1997. Constraint-
Programmierung. Springer Verlag.

M. Habib and L. Nourine. 1994. Bit-vector encod-
ing for partially ordered sets. InOrders, Algorithms,
Applications: International Workshop ORDAL '94
Proceedings, pages 1-12. Springer-Verlag.

R. Mdouf, J. Carroll, and A. Copestake. 2000. Ef-
ficient feature structure operations without compi-
lation. Journal of Natural Language Engineering,
6(1):29-46.

G. Penn. 1999. An optimized prolog encoding of
typed feature structures. In Proceedings of the
16th International Conference on Logic Program-
ming (ICLP-99), pages 124-138.

G. Penn. 2000a. The Algebraic Sructure of Attributed
Type Sgnatures. Ph.D. thesis, Carnegie Mellon
University.

G. Penn. 2000b. Applying Constraint Han-
dling Rules to HPSG. In Proceedings of the
First International Conference on Computational
Logic (CL2000), Workshop on Rule-Based Con-
straint Reasoning and Programming, London, UK.

C. Pollard and I. Sag. 1994. Head-driven Phrase
Sructure Grammar. Chicago.

I. A. Sag. 1997. English relative clause constructions.
Journal of Linguistics, 33(2):431-484.

