
A Common Framework for Syntactic Annotation

Nancy Ide
Department of Computer Science

Vassar College
Poughkeepsie, NY 12604-0520 USA

ide@cs.vassar.edu

Laurent Romary
LORIA/CNRS

Campus Scientifique, B.P. 239
54506 Vandoeuvre-l�s-Nancy, FRANCE

romary@loria.fr

Abstract

It is widely recognized that the
proliferation of annotation schemes
runs counter to the need to re-use
language resources, and that standards
for linguistic annotation are becoming
increasingly mandatory. To answer this
need, we have developed a
representation framework comprised of
an abstract model for a variety of
different annotation types (e.g.,
morpho-syntactic tagging, syntactic
annotation, co-reference annotation,
etc.), which can be instantiated in
different ways depending on the
annotatorÕs approach and goals. In this
paper we provide an overview of our
representation framework and
demonstrate its applicability to
syntactic annotation. We show how the
framework can contribute to
comparative evaluation and merging of
parser output and diverse syntactic
annotation schemes.

1 Introduction

It is widely recognized that the proliferation of
annotation schemes runs counter to the need to
re-use language resources, and that standards for
linguistic annotation are becoming increasingly
mandatory. In particular, there is a need for a
general framework for linguistic annotation that
is flexible and extensible enough to
accommodate different annotation types and
different theoretical and practical approaches,
while at the same time enabling their
representation in a ÒpivotÓ format that can serve
as the basis for comparative evaluation of parser

output, such as PARSEVAL (Harrison, et al.,
1991), as well as the development of reusable
editing and processing tools.
To answer this need, we have developed a
representation framework comprised of an
abstract model for a variety of different
annotation types (e.g., morpho-syntactic
tagging, syntactic annotation, co-reference
annotation, etc.), which can be instantiated in
different ways depending on the annotatorÕs
approach and goals. We have implemented both
the abstract model and various instantiations
using XML schemas (Thompson, et al., 2000),
the Resource Definition Framework (RDF)
(Lassila and Swick, 2000) and RDF schemas
(Brickley and Guha, 2000), which enable
description and definition of abstract data
models together with means to interpret, via the
model, information encoded according to
different conventions. The results have been
incorporated into XCES (Ide, et al., 2000a), part
of the EAGLES Guidelines developed by the
Expert Advisory Group on Language
Engineering Standards (EAGLES)1. The XCES
provides a ready-made, standard encoding
format together with a data architecture
designed specifically for linguistically annotated
corpora.

In this paper we provide an overview of our
representation framework and demonstrate its
applicability to syntactic annotation. The
framework has been applied to the
representation of terminology (Terminological
Markup Framework2, ISO project n.16642) and
computational lexicons (Ide, et al., 2000b), thus
demonstrating its general applicability for a
variety of linguistic annotation types. We also
show how the framework can contribute to

1 http://www.ilc.pi.cnr.it/EAGLES/home.html
2 http://www.loria.fr/projects/TMF

comparison and merging of diverse syntactic
annotation schemes.

2 Current Practice

At the highest level of abstraction, syntactic
annotation schemes represent the following
kinds of information:
• Category in format ion : labeling of

components based on syntactic category
(e.g., noun phrase, prepositional phrase),
syntactic role (subject, object), etc.;

• Dependency information: relations among
components, including constituency
relations, grammatical role relations, etc.

For example, the annotation in Figure 1, drawn
from the Penn Treebank II3 (hereafter, PTB),
uses LISP-like list structures to specify
constituency relations and provide syntactic
category labels for constituents. Some
grammatical roles (subject, object, etc.) are
implicit in the structure of the encoding: for
instance, the nesting of the NP Òthe front roomÓ
implies that the NP is the object of the
prepositional phrase, whereas the position of the
NP ÒhimÓ following and at the same level as the
VP node implies that this NP is the grammatical
object. Additional processing (or human
intervention) is required to render these relations
explicit. Note that the PTB encoding provides
some explicit information about grammatical
role, in that ÒsubjectÓ is explicitly labeled
(although its relation to the verb remains
implicit in the structure), but most relations
(e.g., ÒobjectÓ) are left implicit. Relations
among non-contiguous elements demand a
special numbering mechanism to enable cross-
reference, as in the specification of the NP-SBJ
of the embedded sentence by reference to the
earlier NP-SBJ-1 node.

Although they differ in the labels and in
some cases the function of various nodes in the
tree, most annotation schemes provide a similar
constituency-based representation of relations
among syntactic components (see Abeille,
forthcoming, for a comprehensive survey of
syntactic annotation schemes). In contrast,
dependency schemes (e.g., Sleator and
Temperley, 1993; Tapanainen and Jarvinen,
1997; Carroll, et al., forthcoming) do not

3 http://www.cis.upenn.edu/treebank

provide a constituency analysis4 but rather
specify grammatical relations among elements
explicitly; for example, the sentence ÒPaul
intends to leave IBMÓ could be represented as
shown in Figure 2, where the predicate is the
relation type, the first argument is the head, the
second the dependent, and additional arguments
may provide category-specific information (e.g.,
introducer for prepositional phrases, etc.).

((S (NP-SBJ-1 Jones)
(VP followed)
(NP him)
(PP-DIR into
 (NP the front room))
,
(S-ADV (NP-SBJ *-1)
 (VP closing
 (NP the door)

(PP behind
(NP him)))))

.))

Figure 1. PTB annotation of ÒJones followed him
into the front room, closing the door behind

him.Ó

subj(intend,Paul,_)
xcomp(intend,leave,to)
subj(leave,Paul)
dobj(leave,IBM,_)

Figure 2. Dependency annotation according to
Carroll, Minnen, and Briscoe (forthcoming)

3 A Model for Syntactic Annotation

The goal in the XCES is to provide a framework
for annotation that is theory and tagset
independent. We accomplish this by treating the
description of any specific syntactic annotation
scheme as a process involving several
knowledge sources that interact at various
levels. The process allows one to specify, on the
one hand, the informational properties of the
scheme (i.e., its capacity to represent a given
piece of information), and, on the other, the way
the scheme can be instantiated (e.g., as an XML
document). Figure 3 shows the overall
architecture of the XCES framework for
syntactic annotation.

4 So-called Òhybrid systemsÓ (e.g., Basili, et al., 199;
Grefenstette, 1999) combine constituency analysis and
functional dependencies, usually producing a shallow
constituent parse that brackets major phrase types and
identifying the dependencies between heads of
constituents.

Figure 3. Overall architecture of the XCES annotation framework

Two knowledge sources are used define the
abstract model:

Data Category Registry: Within the framework
of the XCES we are establishing an inventory of
data categories for syntactic annotation, initially
based on the EAGLES Recommendations for
Syntactic Annotation of Corpora (Leech et al.,
1996). Data categories are defined using RDF
descriptions that formalize the properties
associated with each. The categories are
organized in a hierarchy, from general to
specific. For example, a general dependent
relation may be defined, which may have one of
the possible values argument or modifier;
argument in turn may have the possible values

subject, object, or complement; etc.5 Note that
RDF descriptions function much like class
definitions in an object-oriented programming
language: they provide, effectively, templates
that describe how objects may be instantiated,
but do not constitute the objects themselves.
Thus, in a document containing an actual
annotation, several objects with the type
argument may be instantiated, each with a
different value. The RDF schema ensures that
each instantiation of argument is recognized as a
sub-class of dependent and inherits the
appropriate properties.

Structural Skeleton: a domain-dependent
abstract structural framework for syntactic

5 Cf. the hierarchy in Figure 1.1, Caroll, Minnen, and
Briscoe (forthcoming).

General Markup Language

XSLT Script

Dialect
Specification

DATA
CATEGORY
REGISTRY

Virtual
AML

Concrete
AML

Data
Category

Specification

STRUCTURAL
SKELETON

Abstract
XML

encoding

Concrete
XML

encoding

Non-XML
Encoding

Universal Resources

Project Specific Resources

annotations, capable of fully capturing all the
information in a specific annotation scheme. The
structural skeleton for syntactic annotations is
described below in section 12.1.

Two other knowledge sources are used to
define a project-specific format for the
annotation scheme, in terms of its expressive
power and its instantiation in XML:

Data Category Specification (DCS): describes
the set of data categories that can be used within
a given annotation scheme, again using RDF
schema. The DCS defines constraints on each
category, including restrictions on the values
they can take (e.g., "text with markup"; a
"picklist" for grammatical gender, or any of the
data types defined for XML), restrictions on
where a particular data category can appear
(level in the structural hierarchy). The DCS may
include a subset of categories from the DCR
together with application-specific categories
additionally defined in the DCS. The DCS also
indicates a level of granularity based on the
DCR hierarchy.

Dialect specification: defines, using XML
schemas, XSLT scripts, and XSL style sheets,
the project-specific XML format for syntactic
annotations. The specifications may include:
• Data category instantiation styles: Data

categories may be realized in a project-
specific scheme in any of a variety of
formats. For example, if there exists a data
category NounPhrase, this may be realized
as an <NounPhrase> element (possibly
containing additional elements), a typed
element (e.g. <cat type=NounPhrase>), tag
content (e.g., <cat>NounPhrase</cat>), etc.

• Data category vocabulary styles: Project-
specific formats can utilize names different
from those in the Data Category Registry;
for instance, a DCR specification for
NounPhrase can be expressed as ÒNPÓ or
ÒSNÓ (Ò syntagme nominalÓ) in the project-
specific format, if desired.

• Expansion structures: A project-specific
format may alter the structure of the
annotation as expressed using the structural
skeleton. For example, it may be desirable
for processing or other reasons to create two
sub-nodes under a given <struct> node, one
to group features and one to group relations.

The combination of the structural skeleton
and the DCS defines a virtual annotation
markup language (AML). Any information
structure that corresponds to a virtual AML has
a canonical expression as an XML document;
therefore, the inter-operability of different
AMLs is dependent only on their compatibility
at the virtual level. As such, virtual AML is the
hub of the annotation framework: it defines a
lingua franca for syntactic annotations that can
be used to compare and merge annotations, as
well as enable design of generic tools for
visualization, editing, extraction, etc.

The combination of a virtual AML with the
Dialect Specification provides the information
necessary to automatically generate a concrete
AML representation of the annotation scheme,
which conforms to the project-specific format
provided in the Dialect Specification. XSLT
filters translate between the representations of
the annotation in concrete and virtual AML, as
well as between non-XML formats (such as the
LISP-like PTB notation) and concrete AML.6

2.1 The Structural Skeleton

For syntactic annotation, we can identify a
general, underlying model that informs current
practice: specification of constituency relations
(with some set of application-specific names and
properties) among syntactic or grammatical
components (also with a set of application-
specific names and properties), whether this is
modeled with a tree structure or the relations are
given explicitly.

Because of the common use of trees in
syntactic annotation, together with the natural
tree-structure of markup in XML documents, we
provide a structural skeleton for syntactic
markup following this model. The most
important element in the skeleton is the
<struct> element, which represents a node
(level) in the syntax tree. <struct> elements may
be recursively nested at any level to reflect the
structure of the corresponding tree. The <struct>
element has the following attributes:

6 Strictly speaking, an application-specific format could be
translated directly into the virtual AML, eliminating the
need for the intermediary concrete AML format. However,
especially for existing formats, it is typically more
straightforward to perform the two-step process.

• type : specifies the node label (e.g., ÒSÓ,
ÒNPÓ, etc.) or points to an object in another
document that provides the value. This
allows specifying complex data items as
annotations. It also enables generating a
single instantiation of an annotation value in
a separate document that can be referenced as
needed.

• xlink : points to the data to which the
annotation applies. In the XCES, we
recommend the use of s t a n d - o f f
a n n o t a t i o n Ñi.e., annotation that is
maintained in a document separate from the
primary (annotated) data.7 The xlink attribute
uses the XML Path Language (XPath) (Clark
& DeRose, 1999) to specify the location of
the relevant data in the primary document.

• ref : refers to a node defined elsewhere, used
instead of xlink.

• rel˚: specifies a type of relation (e.g., ÒsubjÓ)
• head : specifies the node corresponding to

the head of the relation
• dependent : specifies the node corresponding

to the dependent of the relation
• introducer : specifies the node corresponding

to an introducing word or phrase
• initial : gives a thematic or semantic role of a

component, e.g., ÒsubjÓ for the object of a
by-phrase in a passive sentence.
The hierarchy of <struct> elements

corresponds to the nodes in a phrase structure
analysis; each <struct> element is typed
accordingly. The grammar underlying the
annotation therefore specifies constraints on
embedding that can be instantiated in an XML
schema, which can then be used to prevent or
detect tree structures that do not conform to the
grammar. Conversely, the grammar rules
implicit in annotated treebanks, which are
typically not annotated according to a formal
grammar, can be easily extracted from the
abstract structural encoding.

The skeleton also includes a <feat> (feature)
element, which can be used to provide
additional information (e.g., gender, number)
that is attached to the node in the tree
represented by the enclosing <struct> element.
Like <struct>, this element can be recursively
nested or can point to a description in another

7 The stand-off scheme also provides means to represent
ambiguities, since there can be multiple links between data
and alternative annotations.

document, thereby providing means to associate
information at any level of detail or complexity
to the annotated structure.

Figure 4 shows the annotation from the PTB

(Figure 1) rendered in the abstract XML format.
Note that in this example, relations are encoded
only when they appear explicitly in the original
annotation (therefore, heads of relations default
to ÒunknownÓ.) An XSLT script could be used
to create a second XML document that includes
the relations implicit in the embedding (e.g., the
first embedded <struct> with category NP has
relation ÒsubjectÓ, the first VP is the head, etc.).
A strict dependency annotation encoded in the
abstract format uses a flat hierarchy and
specifies all relations explicitly with the rel
attribute, as shown in Figure 5.8

4 Using the XCES Scheme

The Virtual AML provides a pivot format that
enables comparison of annotations in different
formatsÑincluding not only different
constituency-based annotations, but also
constituency-based and dependency annotations.
For example, the PTB annotation corresponding
to the dependency annotation in Figure 2 is
shown in Figure 6. Figure 7 gives the
corresponding encoding in the XCES abstract
scheme. It is relatively trivial with an XSLT
script to extract the information in the
dependency annotation (Figure 5) from the PTB

encoding (Figure 7) to produce a nearly identical
dependency encoding. The script would use
rules to make relations that are implicit in the
structure of the P T B encoding explicit (for
example, the ÒxcompÓ relation that is implicit in
the embedding of the ÒSÓ phrase).

The ability to generate a common
representation for different annotations
overcomes several obstacles that have hindered
evaluation exercises in the past. For instance, the
evaluation technique used in the PARSEVAL

exercise is applicable to phrase structure
analyses only, and cannot be applied to
dependency-style analyses or ÒlexicalÓ parsing
frameworks such as finite-state constraint
parsers. As the example above shows, this

8 For the sake of readability, this encoding assumes that the
sentence ÒPaul intends to leave IBMÓ is marked up as
<s1><w1>Paul</w1><w2>intends</w2><w3>to</w3><w
4>leave</w4><w5>IBM</w5></s1>.

problem can be addressed using the XCES
framework.

It has also been noted that that the PARSEVAL

bracket-precision measure penalizes parsers that
return more structure than exists in the relatively
ÒflatÓ treebank structures, even if they are
correct (Srinivas, et al., 1995). XSLT scripts can
extract the appropriate information for
comparison purposes while retaining links to
additional parts of the annotation in the original
document, thus eliminating the need to Òdumb
downÓ parser output in order to participate in the
evaluation exercise. Similarly, information lost
in the transduction from phrase structure to a

dependency-based analysis (as in the example
above), which, as Atwell (1996) points out, may
eliminate grammatical information potentially
required for later processing, can also be
retained.

((S (NP-SBJ-1 Paul)
(VP intends)
(S (NP-SBJ *-1)

(VP to
 (VP leave

 (NP IBM))))
.))

Figure 6. PTB annotation of "Paul intends to
leave IBM.

<struct id="s0" type="S">
 <struct id="s1" type="NP"
 xlink:href="xptr(substring(/p/s[1]/text(),1,5))"
 rel ="SBJ"/>
 <struct id="s2" type="VP"
 xlink:href="xptr(substring(/p/s[1]/text(),7,8))"/>
 <struct id="s3" type="NP"
 xlink:href="xptr(substring(/p/s[1]/text(),16,3))"/>
 <struct id="s4" type="PP"
 xlink:href="xptr(substring(/p/s[1]/text(),20,4))"
 rel="DIR">
 <struct id="s5" type="NP"
 xlink:href="xptr(substring(/p/s[1]/text(),25,14))"/>
 </struct>
 <struct id="s6" type="S" rel="ADV">
 <struct id="s7" ref="s1" type="NP" rel="SBJ"/>
 <struct id="s8" type="VP"
 xlink:href="xptr(substring(/p/s[1]/text(),41,7))">
 <struct id="s9" type="NP"
 xlink:href="xptr(substring(/p/s[1]/text(),49,8))"/>
 <struct id="s10" type="PP" rel="DIR"
 xlink:href="xptr(substring(/p/s[1]/text(),57,6))">
 <struct id="s11" type="NP"
 xlink:href="xptr(substring(/p/s[1]/text(),64,3))"/>

 </struct>
 </struct>

 </struct>
</struct>

Figure 4. The PTB example encoded according to the structural skeleton

<struct rel="subj" head="w2" dependent="w1"/>
<struct rel="xcomp" head="w2" dependent="w4" introducer="w3"/>
<struct rel="subj" head="w4" dependent="w1"/>
<struct rel="dobj" head="w4" dependent="w5"/>

Figure 5. Abstract XML encoding for the dependency annotation in Figure 2.

<struct id="s0" type="SÓ>
 <struct id="s1" type="NPÓ target="w1Ó
 rel="SBJ" head="s2"/>
 <struct id="s2" type="VPÓ target="w2"/>
 <struct id="s3" type="SÓ>
 <struct id="s4" ref="s1"
 rel="SBJ" head="s6"/>
 <struct id="s5" type="VPÓ target="w3">
 <struct id="s6" type="VPÓ target="w4">
 <struct id=Ós7Ó type="NPÓ target="w5"/>
 </struct>
 </struct>
 </struct>
</struct>

Figure 4 : PTB encoding of "Paul intends to leave IBM."

5 Discussion

Despite its seeming complexity, the XCES
framework is designed to reduce overhead for
annotators and users. Part of the work of the
XCES is to provide XML support (e.g.,
development of XSLT scripts, XML schemas,
etc.) for use by the research community, thus
eliminating the need for XML expertise at
each development site. Because XML-
encoded annotated corpora are increasingly
used for interchange between processing and
analytic tools, we are developing XSLT
scripts for mapping, and extraction of
annotated data, import/export of (partially)
annotated material, and integration of results
of external tools into existing annotated data
in XML. Tools for editing annotations in the
abstract format, which automatically generate
virtual AML from Data Category and Dialect
Specifications, are already under development
in the context of work on the Terminological
Markup Language, and a tool for
automatically generating RDF specifications
for user-specified data categories has already
been developed in the SALT project.9 Several
freely distributed interpreters for XSLT have
also been developed (e.g., xt10, Xalan11). In
practice, annotators and users of annotated
corpora will rarely see XML and RDF
instantiations of annotated data; rather, they
will access the data via interfaces that
automatically generate, interpret, and display
the data in easy-to-read formats.

9 http://www.loria.fr/projets/SALT
10 Clark, J., 1999. XT Version 1991105.
http://www.jclark.com/xml/xt.html
11 http://www.apache.org

The abstract model that captures the
fundamental properties of syntactic annotation
schemes provides a conceptual tool for
assessing the coherence and consistency of
existing schemes and those being developed.
The model enforces clear distinctions between
implicit and explicit information (e.g.,
functional relations implied by structural
relations in constituent analyses), and phrasal
and functional relations. It is alarmingly
common for annotation schemes to represent
these different kinds of information in the
same way, rendering their distinction
computationally intractable (even if they are
perfectly understandable by the informed
human reader). Hand-developed annotation
schemes used in treebanks are often described
informally in guidebooks for annotators,
leaving considerable room for variation; for
example, Charniak (1996) notes that the PTB

implicitly contains more than 10,000 context-
free rules, most of which are used only once.
Comparison and transduction of schemes
becomes virtually impossible under such
circumstances. While requiring that annotators
make relations explicit and consider the
mapping to the XCES abstract format
increases overhead, we feel that the exercise
will help avoid such problems and can only
lead to greater coherence, consistency, and
inter-operability among annotation schemes.

The most important contribution to inter-
operability of annotation schemes is the Data
Category Registry. By mapping site-specific
categories onto definitions in the Registry,
equivalences (and non-equivalences) are made
explicit. Again, the provision of a ÒstandardÓ
set of categories, together with the
requirement that scheme-specific categories

are mapped to them where possible, will
contribute to greater consistency and
commonality among annotation schemes.

6 Conclusion

The XCES framework for linguistic
annotation is built around some relatively
straightforward ideas: separation of
information conveyed by means of structure
and information conveyed directly by
specification of content categories;
development of an abstract format that puts a
layer of abstraction between site-specific
annotat ion schemes and standard
specifications; and creation of a Data
Category Registry to provide a reference set
of annotation categories. The emergence of
XML and related standards such as RDF
provides the enabling technology. We are,
therefore, at a point where the creation and
use of annotated data and concerns about the
way it is represented can be treated
separatelyÑthat is, researchers can focus on
the question of what to encode, independent of
the question of how to encode it. The end
result should be greater coherence,
consistency, and ease of use and access for
annotated data.

References
Anne Abeill� (ed.), forthcoming. Treebanks:

Building and Using Syntactically Annotated
Corpora, Kluwer Academic Publishers.

Eric Atwell, 1996. Comparative evaluation of
grammatical annotation models. In R. Sutcliffe,
H. Koch, A. McElligott (eds.), Industrial
Parsing of Software Manuals, 25-46. Rodopi.

Paul Biron and Ashok Malhotra, 2000. XML
Schema Part 2: Datatypes. W3C Candidate
Recommendation.
http://www.w3.org/TR/xmlschema-2/.

Tim Bray, Jean Paoli and C. Michael Sperberg-
McQueen (eds.), 1998. Extensible Markup
Language (XML).

Dan Brickley and R.V. Guha, 2000. Resource
Description Framework (RDF) Schema
Specification 1.0. http://www.w3.org/TR/rdf-
schema/.

John Carroll, Guido Minnen, and Ted Briscoe,
forthcoming. Parser Evaluation Using a

Grammatical Relation Annotation Scheme. In
Anne Abeill� (ed.) Treebanks: Building and
Using Syntactically Annotated Corpora, Kluwer
Academic Publishers.

Eugene Charniak, 1996. Tree-bank grammars.
Proceedings of the 13th National Conference on
Artificial Intelligence, AAAIÕ96, 1031-36.

James Clark (ed.), 1999. XSL Transformations
(XSLT). http://www.w3.org/TR/xslt.

James Clark and Steven DeRose, 1999. XML Path
Language. http://www.w3.org/TR/xpath.

Philip Harrison, Steven Abney, Ezra Black, Dan
Flickinger, Claudia Gdaniec, Ralph Grishman,
Don Hindle, Bob Ingria, Mitch Marcus,
Beatrice Santorini, and Tomek Strzalkowski,
1991. Evaluating syntax performance of
parser/grammars of English. Proceedings of the
Workshop on Evaluating Natural Language
Processing Systems, 71-77.

Nancy Ide, Patrice Bonhomme, and Laurent
Romary, 2000. XCES: An XML-based Standard
for Linguistic Corpora. Proceedings of the
Second Language Resources and Evaluation
Conference (LREC), 825-30.

Nancy Ide, Adam Kilgarriff, and Laurent Romary,
2000. A Formal Model of Dictionary Structure
and Content. In Proceedings of EURALEX’00,
113-126.

Ora Lassila and Ralph Swick, 1999. Resource
Description framework (RDF) Model and
Syntax. http://www.w3.org/TR/REC-rdf-syntax.

Geoffrey Leech, R. Barnett, and P. Kahrel, 1996.
EAGLES Recommendations for the Syntactic
Annotation of Corpora.

Daniel Sleator and Davy Temperley, 1993. Parsing
English with a link grammar. T h i r d
International Workshop on Parsing
Technologies.

Bangalore Srinivas, Christy Doran, Beth-Ann
Hockey and Avarind Joshi, 1996. An approach
to robust partial parsing and evaluation metrics.
Proceedings of the ESSLIÕ96 Workshop on
Robust Parsing, 70-82.

Pasi Tapanainen and Timo J�rvinen. 1997. A non-
projective dependency parser. Proceedings of
the 5th Conference on Applied Natural
Language Processing (ANLP’97), 64-71.

Henry Thompson, David Beech, Murray Maloney,
and Noah Mendelsohn, 2000. XML Schema
Part 1: Structures.

 http://www.w3.org/TR/xmlschema-1/.

