
FastDecodingand Optimal Decodingfor Machine Translation

Ulrich Germann
�
, Michael Jahr � , Kevin Knight

�
, Daniel Mar cu

�
, and Kenji Yamada

��
InformationSciencesInstitute � Departmentof ComputerScience

Universityof SouthernCalifornia StanfordUniversity
4676Admiralty Way, Suite1001 Stanford,CA 94305

MarinadelRey, CA 90292 jahr@cs.stanford.edu�
germann,knight,marcu,kyamada � @isi.edu

Abstract

A good decodingalgorithm is critical
to thesuccessof any statisticalmachine
translationsystem.Thedecoder’s job is
to find thetranslationthatis mostlikely
accordingto set of previously learned
parameters(anda formula for combin-
ing them). Since the spaceof possi-
ble translationsis extremelylarge, typ-
ical decodingalgorithmsareonly able
to examine a portion of it, thus risk-
ing to missgoodsolutions. In this pa-
per, we comparethe speedand out-
put quality of a traditionalstack-based
decodingalgorithm with two new de-
coders: a fast greedy decoderand a
slow but optimaldecoderthattreatsde-
codingasaninteger-programmingopti-
mizationproblem.

1 Intr oduction

A statistical MT system that translates(say)
French sentencesinto English, is divided into
threeparts: (1) a languagemodel (LM) that as-
signsaprobabilityP(e)toany Englishstring,(2) a
translationmodel(TM) thatassignsa probability
P(f � e) to any pair of EnglishandFrenchstrings,
and (3) a decoder. The decodertakes a previ-
ously unseensentence� and tries to find the �
thatmaximizesP(e� f), or equivalentlymaximizes
P(e) � P(f � e).

Brown et al. (1993) introduced a series of
TMs basedonword-for-word substitutionandre-
ordering, but did not include a decodingalgo-
rithm. If thesourceandtarget languagesarecon-
strainedto have the sameword order(by choice

or throughsuitablepre-processing),thenthe lin-
earViterbi algorithmcanbeapplied(Tillmann et
al., 1997). If re-orderingis limited to rotations
aroundnodesin abinarytree,thenoptimaldecod-
ing canbecarriedoutby ahigh-polynomialalgo-
rithm (Wu, 1996).For arbitraryword-reordering,
the decodingproblem is NP-complete(Knight,
1999).

A sensiblestrategy (Brown et al., 1995;Wang
andWaibel,1997)is to examinea largesubsetof
likely decodingsand choosejust from that. Of
course,it is possibleto miss a good translation
this way. If thedecoderreturnse� but thereexists
somee for which P(e� f) 	 P(e� � f), this is called
a search error. As WangandWaibel (1997)re-
mark, it is hard to know whethera searcherror
hasoccurred—theonly wayto show thatadecod-
ing is sub-optimalis to actuallyproduceahigher-
scoringone.

Thus, while decodingis a clear-cut optimiza-
tion task in which every probleminstancehasa
right answer, it is hard to come up with good
answersquickly. This paper reports on mea-
surementsof speed,searcherrors,andtranslation
quality in the context of a traditional stackde-
coder(Jelinek,1969;Brown etal., 1995)andtwo
new decoders.Thefirst is a fastgreedydecoder,
andthesecondis aslow optimaldecoderbasedon
genericmathematicalprogrammingtechniques.

2 IBM Model 4

In this paper, we work with IBM Model 4, which
revolves aroundthe notion of a word alignment
over a pair of sentences(seeFigure1). A word
alignmentassignsa singlehome(Englishstring
position) to eachFrenchword. If two French
wordsalign to the sameEnglishword, thenthat



it is not clear .
| \ | \ \
| \ + \ \
| \/ \ \ \
| /\ \ \ \
CE NE EST PAS CLAIR .

Figure1: Samplewordalignment.

English word is said to have a fertility of two.
Likewise, if anEnglishword remainsunaligned-
to, then it has fertility zero. The word align-
ment in Figure1 is shorthandfor a hypothetical
stochasticprocessby whichanEnglishstringgets
convertedinto a Frenchstring. Thereareseveral
setsof decisionsto bemade.

First, every Englishword is assigneda fertil-
ity. Theseassignmentsare madestochastically
accordingto a table n(
�� e� ). We deletefrom
thestring any word with fertility zero,we dupli-
cateany wordwith fertility two, etc.If awordhas
fertility greaterthanzero,we call it fertile. If its
fertility is greaterthanone,we call it very fertile.

After eachEnglishword in thenew string,we
may incrementthe fertility of an invisible En-
glish NULL elementwith probability p
 (typi-
cally about0.02). TheNULL elementultimately
produces“spurious”Frenchwords.

Next, we perform a word-for-word replace-
ment of English words (including NULL) by
Frenchwords,accordingto thetablet(f ��� e� ).

Finally, we permutetheFrenchwords. In per-
muting, Model 4 distinguishesbetweenFrench
words that are heads (the leftmost Frenchword
generatedfrom a particularEnglishword), non-
heads (non-leftmost,generatedonly by very fer-
tile Englishwords),andNULL-generated.

Heads. The headof oneEnglish word is as-
signeda Frenchstring positionbasedon the po-
sition assignedto the previous Englishword. If
an English word e����
 translatesinto something
at Frenchposition j, then the Frenchheadword
of e� is stochasticallyplacedin Frenchposition
k with distortionprobabilityd 
 (k–j � class(e����
 ),
class(f� )), where“class” refersto automatically
determinedword classesfor FrenchandEnglish
vocabulary items.This relative offsetk–j encour-
agesadjacentEnglishwordsto translateinto ad-
jacentFrenchwords. If e����
 is infertile, thenj is

takenfrom e����� , etc. If e����
 is very fertile, thenj
is theaverageof thepositionsof its Frenchtrans-
lations.

Non-heads. If the headof English word e�
is placedin Frenchposition j, then its first non-
headis placedin Frenchpositionk ( 	 j) accord-
ing to anothertabled ��
 (k–j � class(f� )). Thenext
non-headis placedat positionq with probability
d ��
 (q–k � class(f� )), andsoforth.

NULL-generated. After headsandnon-heads
areplaced,NULL-generatedwordsarepermuted
into theremainingvacantslotsrandomly. If there
are 
�� NULL-generatedwords, then any place-
mentschemeis chosenwith probability1/
 ��� .

Thesestochasticdecisions,startingwith e, re-
sult in differentchoicesof f andanalignmentof f
with e. Wemapane ontoa particular � a,f	 pair
with probability:
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wherethefactorsseparatedby ' symbolsdenote
fertility, translation,headpermutation,non-head
permutation, null-fertility, and null-translation
probabilities.1

3 Definition of the Problem

If we observe a new sentencef, thenan optimal
decoderwill searchfor anethatmaximizesP(e� f)

1Thesymbolsin this formulaare: Z (the lengthof e), [
(thelengthof f), e

*
(thei \ ] Englishwordin e),e

S
(theNULL

word), ^ *
(the fertility of e

*
), ^ S

(the fertility of theNULL
word), _ *a` (the k \ ] Frenchword producedby e

*
in a), b *c`

(the positionof _ *a` in f), d *
(the positionof the first fertile

word to theleft of e
*

in a), eUfhg (theceiling of theaverageof
all b fhg ` for d *

, or 0 if d *
is undefined).



i P(e) � P(f � e). Here,P(f � e) is thesumof P(a,f� e)
over all possible alignmentsa. Becausethis
sum involves significant computation,we typi-
cally avoid it by insteadsearchingfor an � e,a	
pair thatmaximizesP(e,a� f) i P(e) � P(a,f� e). We
take the languagemodel P(e) to be a smoothed
n-grammodelof English.

4 Stack-BasedDecoding

Thestack(alsocalledA*) decodingalgorithmis
a kind of best-firstsearchwhich wasfirst intro-
ducedin the domainof speechrecognition(Je-
linek, 1969). By building solutions incremen-
tally andstoringpartial solutions,or hypotheses,
in a “stack” (in modernterminology, a priority
queue),the decoderconductsan orderedsearch
of thesolutionspace.In theidealcase(unlimited
stacksizeandexhaustivesearchtime),astackde-
coderis guaranteedto find an optimal solution;
our hopeis to do almostaswell underreal-world
constraintsof limited spaceandtime. Thegeneric
stackdecodingalgorithmfollows:j Initialize the stackwith an empty hy-

pothesis.j Poph, thebesthypothesis,off thestack.j If h is acompletesentence,outputh and
terminate.j Foreachpossiblenext wordw, extendh
by addingw andpushtheresultinghy-
pothesisontothestack.j Returnto thesecondstep(pop).

One crucial differencebetweenthe decoding
processin speechrecognition(SR) andmachine
translation(MT) is that speechis always pro-
ducedin thesameorderasits transcription.Con-
sequently, in SRdecodingthereis alwaysa sim-
ple left-to-right correspondencebetweeninput
andoutputsequences.By contrast,in MT theleft-
to-right relation rarely holds even for language
pairs as similar as Frenchand English. We ad-
dressthis problemby building the solutionfrom
left to right, but allowing thedecoderto consume
its input in any order. This changemakesdecod-
ing significantlymorecomplex in MT; insteadof
knowing the order of the input in advance,we
must considerall k � permutationsof an k -word
input sentence.

AnotherimportantdifferencebetweenSR and
MT decodingis the lack of reliable heuristics

in MT. A heuristic is usedin A* searchto es-
timate the costof completinga partial hypothe-
sis. A goodheuristicmakes it possibleto accu-
rately comparethe valueof differentpartial hy-
potheses,andthusto focusthesearchin themost
promisingdirection. The left-to-right restriction
in SR makesit possibleto usea simpleyet reli-
ableclassof heuristicswhich estimatecostbased
on theamountof input left to decode.Partly be-
causeof the absenceof left-to-right correspon-
dence,MT heuristicsaresignificantlymoredif-
ficult to develop(WangandWaibel,1997).With-
out a heuristic, a classicstack decoderis inef-
fectivebecauseshorterhypotheseswill almostal-
wayslook moreattractive thanlongerones,since
aswe addwordsto a hypothesis,we endup mul-
tiplying moreandmoretermsto find the proba-
bility. Becauseof this, longerhypotheseswill be
pushedoff the end of the stackby shorterones
even if they arein reality betterdecodings.For-
tunately, by using more than one stack,we can
eliminatethiseffect.

In a multistackdecoder, we employ morethan
onestackto force hypothesesto competefairly.
Morespecifically, wehaveonestackfor eachsub-
set of input words. This way, a hypothesiscan
only beprunedif thereareother, better, hypothe-
sesthat representthe sameportion of the input.
With morethanonestack,however, how doesa
multistack decoderchoosewhich hypothesisto
extendduringeachiteration?We addressthis is-
sueby simply taking one hypothesisfrom each
stack,but a bettersolutionwould beto somehow
comparehypothesesfrom differentstacksandex-
tendonly thebestones.

Themultistackdecoderwe describeis closely
patternedontheModel3 decoderdescribedin the
(Brown et al., 1995)patent. We build solutions
incrementallyby applyingoperationsto hypothe-
ses.Therearefour operations:j Add adds a new English word and

alignsasingleFrenchword to it.j AddZfert addstwonew Englishwords.
The first has fertility zero, while the
secondis aligned to a single French
word.j Extend aligns an additional French
word to the mostrecentEnglishword,
increasingits fertility.



j AddNull aligns a Frenchword to the
EnglishNULL element.

AddZfert is by far the mostexpensive opera-
tion, aswemustconsiderinsertingazero-fertility
Englishword beforeeachtranslationof eachun-
alignedFrenchword. With anEnglishvocabulary
sizeof 40,000,AddZfert is 400,000timesmore
expensive thanAddNull !

We can reducethe cost of AddZfert in two
ways.First,we canconsideronly certainEnglish
words as candidatesfor zero-fertility, namely
words which both occur frequently and have
a high probability of being assignedfrequency
zero. Second,we canonly inserta zero-fertility
wordif it will increasetheprobabilityof ahypoth-
esis. Accordingto thedefinitionof thedecoding
problem,a zero-fertility English word can only
make a decodingmore likely by increasingP(e)
more than it decreasesP(a,f� e).2 By only con-
sideringhelpful zero-fertility insertions,we save
ourselves significant overheadin the AddZfert
operation,in many caseseliminating all possi-
bilities andreducingits cost to lessthan that of
AddNull .

5 GreedyDecoding

Over the last decade,many instancesof NP-
completeproblemshave beenshown to be solv-
ablein reasonable/polynomial time usinggreedy
methods(Selmanet al., 1992; Monassonet al.,
1999). Instead of deeply probing the search
space,such greedymethodstypically start out
with a random,approximatesolutionandthentry
to improve it incrementallyuntil asatisfactoryso-
lution is reached.In many cases,greedymethods
quickly yield surprisinglygoodsolutions.

We conjecturedthatsuchgreedymethodsmay
prove to be helpful in the context of MT decod-
ing. The greedydecoderthat we describestarts
the translationprocessfrom an Englishglossof
the Frenchsentencegiven as input. The gloss
is constructedby aligning eachFrenchword f �
with its mostlikely Englishtranslationef l (ef lnm
argmaxo t(e � f � )). For example,in translatingthe
Frenchsentence“Bien entendu, il parlede une
belle victoire .”, the greedydecoderinitially as-

2Weknow thataddingazero-fertilitywordwill decrease
P(a,fp e)becauseit addsatermn(0 p e* ) q 1 to thecalculation.

sumesthata goodtranslationof it is “Well heard
, it talking a beautiful victory” becausethe best
translationof “bien” is “well”, thebesttranslation
of “entendu”is “heard”,andsoon. Thealignment
correspondingto this translationis shown at the
topof Figure2.

Once the initial alignment is created, the
greedydecodertries to improve it, i.e., tries to
find an alignment(and implicitly translation)of
higherprobability, by applyingoneof thefollow-
ing operations:j translateOneOrTwoWords(r�
 ,e
 ,r+� ,e� )

changesthetranslationof oneor two French
words,thoselocatedat positionsrK
 and r+� ,
from es lJt andes l#u into e
 ande� . If es l is
a word of fertility 1 ande� is NULL, then
es l is deletedfrom the translation. If es l is
theNULL word, theworde� is insertedinto
thetranslationat thepositionthatyields the
alignmentof highestprobability. If es lJt m
e
 or es l#u m e� , this operationamountsto
changingthetranslationof asingleword.j translateAndInsert(r ,e
 ,e� ) changes the
translationof theFrenchword locatedatpo-
sition r from es l into �K
 andsimulataneously
insertsworde� at thepositionthatyieldsthe
alignmentof highestprobability. Word �v�
is selectedfrom anautomaticallyderivedlist
of 1024wordswith high probabilityof hav-
ing fertility 0. Whenes l m e
 , thisoperation
amountsto insertingawordof fertility 0 into
thealignment.j removeWordOfFertility0 ( w ) deletes the
wordof fertility 0 at position w in thecurrent
alignment.j swapSegments( w3
vB3wh��Bhr�
vBhrv� ) createsa new
alignment from the old one by swap-
ping non-overlapping English word seg-
ments x w3
vB3wJ�<y and x rK
vBhrv�<y . During the swap
operation,all existing links betweenEnglish
and Frenchwords are preserved. The seg-
mentscanbeassmallasawordor aslongas�E�z�!7{T words,where �E�|� is the lengthof
theEnglishsentence.j joinWords( w 
 B3w � ) eliminatesfrom thealign-
menttheEnglishword at position w3
 (or wh� )
andlinks theFrenchwordsgeneratedby � � t
(or �v� u ) to �}� u (or �}� t ).
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Figure 2: Exampleof how the greedydecoder
producesthetranslationof Frenchsentence“Bien
entendu,il parledeunebellevictoire.”

In a stepwisefashion, starting from the initial
gloss, the greedydecoderiteratesexhaustively
over all alignmentsthat are one operationaway
from thealignmentunderconsideration.At every
step,thedecoderchoosesthealignmentof high-
estprobability, until theprobabilityof thecurrent
alignmentcanno longerbe improved. When it
startsfrom theglossof theFrenchsentence“Bien
entendu,il parle de une belle victoire.”, for ex-
ample,thegreedydecoderalterstheinitial align-
mentincrementallyasshown in Figure2, eventu-
ally producingthetranslation“Quite naturally, he
talks abouta greatvictory.”. In the process,the
decoderexploresa total of 77421distinct align-
ments/translations,of which “Quite naturally, he
talksabouta greatvictory.” hasthehighestprob-
ability.

We chose the operation types enumerated
abovefor two reasons:(i) they aregeneralenough
to enablethe decoderescapelocal maximaand
modify in a non-trivial mannera given align-
ment in order to producegood translations;(ii)
they are relatively inexpensive (timewise). The
most time consumingoperationsin the decoder
areswapSegments,translateOneOrTwoWords,
and translateAndInsert. SwapSegmentsiter-
atesover all possiblenon-overlappingspanpairs
that can be built on a sequenceof length �F�¥� .

TranslateOneOrTwoWords iteratesover �¦�§� �'�� X � � alignments,where �.�¨� is thesizeof the
Frenchsentenceand � X � is thenumberof trans-
lationswe associatewith eachword (in our im-
plementation,we limit this numberto the top 10
translations). TranslateAndInsert iteratesover�©�O�!'N� X �ª'«�Y¬R� alignments,where �­¬R� is the
sizeof the list of wordswith high probability of
having fertility 0 (1024wordsin our implementa-
tion).

6 Integer Programming Decoding

Knight (1999) likens MT decoding to finding
optimal tours in the Traveling SalesmanProb-
lem (Garey and Johnson, 1979)—choosinga
good word order for decoderoutput is similar
to choosinga goodTSPtour. Becauseany TSP
probleminstancecan be transformedinto a de-
coding problem instance,Model 4 decodingis
provably NP-completein the length of f. It is
interestingto considerthe reversedirection—is
it possibleto transforma decodingproblemin-
stanceinto a TSPinstance?If so, we may take
greatadvantageof previousresearchinto efficient
TSPalgorithms.We may alsotake advantageof
existing softwarepackages,obtaininga sophisti-
cateddecoderwith little programmingeffort.

It is difficult to convert decodinginto straight
TSP, but a wide rangeof combinatorialoptimiza-
tion problems(including TSP)canbe expressed
in the moregeneralframework of linear integer
programming. A sampleinteger program(IP)
lookslike this:

minimize objective function:
3.2 * x1 + 4.7 * x2 - 2.1 * x3

subject to constraints:
x1 - 2.6 * x3 > 5
7.3 * x2 > 7

A solution to an IP is an assignmentof inte-
gervaluesto variables.Solutionsareconstrained
by inequalitiesinvolving linear combinationsof
variables. An optimal solution is one that re-
spectstheconstraintsandminimizesthevalueof
theobjective function,whichis alsoa linearcom-
binationof variables.We cansolve IP instances
with genericproblem-solvingsoftware such as
lp solve or CPLEX .3 In this sectionwe explain

3Available at ftp://ftp.ics.ele.tue.nl/pub/lpsolve and
http://www.cplex.com.



Figure 3: A salesman graph for the input sen-
tencef = “CE NE EST PAS CLAIR .” Thereis
onecity for eachword in f. City boundariesare
markedwith bold lines,andhotelsareillustrated
with rectangles. A tour of cities is a sequence
of hotels(startingat thesentenceboundaryhotel)
thatvisits eachcity exactly oncebeforereturning
to thestart.

how to expressMT decoding(Model 4 plus En-
glishbigrams)in IP format.

We first createa salesman graph like the one
in Figure3. To do this, we setup a city for each
word in theobservedsentencef. City boundaries
areshown with bold lines. We populateeachcity
with ten hotels correspondingto ten likely En-
glishwordtranslations.Hotelsareshown assmall
rectangles.The owner of a hotel is the English
wordinsidetherectangle.If twocitieshavehotels
with the sameowner x, thenwe build a third x-
ownedhotelon theborderof thetwo cities.More
generally, if k cities all have hotelsownedby x,
we build ®0¯z7Nk¨7°T new hotels (one for each
non-empty, non-singletonsubsetof thecities)on
variouscity bordersandintersections.Finally, we
addanextracity representingthesentencebound-
ary.

Wedefinea tour of cities asasequenceandho-
tels (startingat thesentenceboundaryhotel) that
visits eachcity exactly oncebeforereturningto
thestart.If ahotelsitson theborderbetweentwo
cities, then stayingat that hotel countsas visit-
ing both cities. We canview eachtour of cities
ascorrespondingto a potentialdecoding� e,a	 .

The ownersof the hotelson the tour give us e,
while thehotel locationsyield a.

Thenext taskis to establishreal-valued(asym-
metric) distancesbetweenpairs of hotels, such
that the lengthof any tour is exactly thenegative
of log(P(e) � P(a,f� e)). Becauselog is monotonic,
the shortesttour will correspondto the likeliest
decoding.

The distancewe assignto eachpair of hotels
consistsof somesmallpieceof theModel 4 for-
mula.Theusualcaseis typifiedby thelargeblack
arrow in Figure 3. Becausethe destinationho-
tel “not” sits on the border betweencities NE
andPAS, it correspondsto a partialalignmentin
which theword “not” hasfertility two:

... what not ...
/ __/\_

/ / \
CE NE EST PAS CLAIR .

If we assumethat we have alreadypaid the
pricefor visiting the“what” hotel,thenour inter-
hotel distanceneedonly accountfor the partial
alignmentconcerning“not”:

distance=
– log(bigram(not� what))
– log(n(2 � not))
– log(t(NE � not)) – log(t(PAS � not))
– log(d
 (+1 � class(what),class(NE)))
– log(d��
 (+2 � class(PAS)))

NULL-ownedhotelsaretreatedspecially. We
requirethat all non-NULL hotelsbe visited be-
foreany NULL hotels,andwefurtherrequirethat
at mostoneNULL hotelvisitedon a tour. More-
over, the NULL fertility sub-formulais easyto
computeif we allow only oneNULL hotel to be
visited: 
 � is simply thenumberof citiesthatho-
tel straddles,and

M
is thenumberof citiesminus

one.This caseis typified by thelargegrayarrow
shown in Figure3.

Betweenhotelsthatarelocated(evenpartially)
in thesamecity, we assignaninfinite distancein
bothdirections,astravel from oneto theothercan
never be part of a tour. For 6-word Frenchsen-
tences,wenormallycomeupwith agraphthathas
about80 hotelsand 3500 finite-cost travel seg-
ments.

Thenext stepis to casttourselectionasaninte-
gerprogram.Hereweadaptasubtour elimination
strategy usedin standardTSP. Wecreatea binary
(0/1) integervariable ±�� � for eachpair of hotels w



andr . ±$� � m T if andonly if travel from hotel w to
hotel r is on theitinerary. Theobjective function
is straightforward:

minimize: ² Ha��2 � I ±�� � � distance"�w%BhrA&
Thisminimizationis subjectto threeclassesof

constraints.First, every city mustbe visited ex-
actly once.Thatmeansexactly onetour segment
mustexit eachcity:³E´Uµ0´ �·¶ � oU¸º¹ ²w locatedat least

partially in 9 ² � ±$� � m T
Second,the segmentsmust be linked to one

another, i.e., every hotel haseither (a) one tour
segmentcomingin andonegoing out, or (b) no
segmentsin andnoneout. To put it anotherway,
every hotel must have an equalnumberof tour
segmentsgoingin andout:³ � ¹ ² � ±$� � m ² � ± � �

Third, it is necessaryto preventmultiple inde-
pendentsub-tours.To do this,we requirethatev-
ery propersubsetof cities have at leastonetour
segmentleaving it:³ ¸%» ´ �·¶ � oU¸º¹ ²w located

entirely

within @
²r located

at least

partially

outside @
±�� � 	 m T

Thereareanexponentialnumberof constraintsin
this third class.

Finally, we invoke our IP solver. If we assign
mnemonicnamesto the variables,we caneasily
extract � e,a	 from the list of variablesandtheir
binary values.The shortesttour for the graphin
Figure 3 correspondsto this optimal decoding:
it is not clear .

We can obtain the second-bestdecodingby
addinga new constraintto the IP to stopit from
choosingthesamesolutionagain.4

4If we simply replace“minimize” with “maximize,” we
canobtainthe longesttour, which correspondsto the worst
decoding!

7 Experiments and Discussion

In our experimentswe useda test collection of
505 sentences,uniformly distributed acrossthe
lengths6, 8, 10, 15, and 20. We evaluatedall
decoderswith respectto (1) speed,(2) searchop-
timality, and(3) translationaccuracy. Thelasttwo
factorsmaynotalwayscoincide,asModel4 is an
imperfectmodelof the translationprocess—i.e.,
thereis no guaranteethat a numericallyoptimal
decodingis actuallyagoodtranslation.

Supposea decoderoutputs � � , while the opti-
maldecodingturnsout to be � . Thenweconsider
six possibleoutcomes:j noerror(NE): �}� m � , and �}� is aperfect

translation.j puremodelerror (PME): �v� m � , but �}�
is notaperfecttranslation.j deadlysearcherror (DSE): � �º¼m � , and
while � is aperfecttranslation,while �}�
is not.j fortuitous searcherror (FSE): �v� ¼m � ,
and � � is aperfecttranslation,while � is
not.j harmlesssearcherror (HSE): �}� ¼m � ,
but � � and � are both perfectly good
translations.j compounderror (CE): � �V¼m � , andnei-
theris aperfecttranslation.

Here,“perfect” refersto a human-judgedtransla-
tion thattransmitsall of themeaningof thesource
sentenceusingflawlesstarget-languagesyntax.

Wehavefoundit veryusefulto haveseveralde-
codersonhand.It is only throughIP decoderout-
put, for example,thatwe canknow thestackde-
coderis returningoptimal solutionsfor so many
sentences(seeTable 1). The IP and stack de-
codersenabledus to quickly locatebugs in the
greedydecoder, and to implementextensionsto
thebasicgreedysearchthat canfind bettersolu-
tions. (We cameup with the greedyoperations
discussedin Section5 by carefullyanalyzinger-
ror logsof thekind shown in Table1). Theresults
in Table 1 also enableus to prioritize the items
on our researchagenda.Sincethemajority of the
translationerrorscanbeattributedto thelanguage
andtranslationmodelswe use(seecolumnPME
in Table 1), it is clear that significant improve-
mentin translationquality will comefrom better



sent decoder time search translation
length type (sec/sent) errors errors(semantic NE PME DSE FSE HSE CE

and/orsyntactic)
6 IP 47.50 0 57 44 57 0 0 0 0
6 stack 0.79 5 58 43 53 1 0 0 4
6 greedy 0.07 18 60 38 45 5 2 1 10
8 IP 499.00 0 76 27 74 0 0 0 0
8 stack 5.67 20 75 24 57 1 2 2 15
8 greedy 2.66 43 75 20 38 4 5 1 33

Table1: Comparisonof decoderson setsof 101 test sentences.All experimentsin this tableusea
bigramlanguagemodel.

sent decoder time translation
length type (sec/sent) errors(semantic

and/orsyntactic)
6 stack 13.72 42
6 greedy 1.58 46
6 greedy½ 0.07 46
8 stack 45.45 59
8 greedy 2.75 68
8 greedy½ 0.15 69
10 stack 105.15 57
10 greedy 3.83 63
10 greedy½ 0.20 68
15 stack ¾ 2000 74
15 greedy 12.06 75
15 greedy½ 1.11 75
15 greedy

t
0.63 76

20 greedy 49.23 86
20 greedy½ 11.34 93
20 greedy

t
0.94 93

Table2: Comparisonbetweendecodersusing a
trigramlanguagemodel.Greedy¿ andgreedy
 are
greedydecodersoptimizedfor speed.

models.

Theresultsin Table2, obtainedwith decoders
thatusea trigramlanguagemodel,show thatour
greedydecodingalgorithmis a viablealternative
to thetraditionalstackdecodingalgorithm.Even
whenthe greedydecoderusesan optimized-for-
speedsetof operationsin whichatmostoneword
is translated,moved,or insertedat a time andat
most3-word-longsegmentsareswapped—which
is labeled“greedy¿ ” in Table2—the translation
accuracy is affectedonly slightly. In contrast,the
translationspeedincreaseswith at leastone or-
der of magnitude.Dependingon the application
of interest,onemaychooseto useaslow decoder
thatprovidesoptimalresultsor a fast,greedyde-
coderthat provides non-optimal,but acceptable
results.Onemayalsorun thegreedydecoderus-
ing a time threshold,asany instanceof anytime

algorithm. Whenthe thresholdis setto onesec-
ond per sentence(the greedy
 label in Table1),
theperformanceis affectedonly slightly.
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