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Abstract @ X X /X\ (b)  Xna
We consider the question “How e X+ a X« b a X b
much strong generative power can
be squeezed out of a formal system b X« a
without increasing its weak generative ]
power?” and propose some theoret- Figure 1: Example of weakly context-free TAG.

ical and practical constraints on this
problem. We then introduce a formal-

ism which, under these constraints, The a_pproach that Vijay-Shanker et al. (1987)
maximally squeezes strong generative ~ and Weir (1988) take, elaborated on by Becker
power out of context-free grammar. et al. (1992), is to_|dent|fy a very general class
Finally, we generalize this result to of formalisms, which they call linear context-

formalisms beyond CFG. free rewriting systems (CFRSs), and define for

this class a large space of structural descriptions
which serves as a common ground in which the
strong generative capacities of these formalisms

“How much strong generative power can be@n be compgred. Similarly, if we want to talk
squeezed out of a formal system without increas@POUt Squeezing strong generative power out of
ing its weak generative power?” This question,2 formal system, we need to do so in th_e _context
posed by Joshi (2000), is important for both lin- Of some larger space of structural descriptions.
guistic description and natural language process- Second, why is preservation of weak generative
ing. The extension of tree adjoining grammarpower important? If we interpret this constraint to
(TAG) to tree-local multicomponent TAG (Joshi, the letter, it is almost vacuous. For example, the
1987), or the extension of context free gram-class of all tree adjoining grammars which gen-
mar (CFG) to tree insertion grammar (Schabegrate context-free languages includes the gram-
and Waters, 1993) or regular form TAG (Rogers,mar shown in Figure 1a (which generates the lan-
1994) can be seen as steps toward answering th@slage{a, b}*). We can also add the tree shown in
question. But this question isfllcult to answer Figure 1b without increasing the grammar’s weak
with much finality unless we pin its terms down generative capacity; indeed, we can add any trees
more precisely. we please, provided they yield ordg andbs. In-
First, what is meant by strong generativetuitively, the constraint of weak context-freeness
power? In the standard definition (Chomsky,has little force.
1965) a grammafG weakly generates a set of This intuition is verified if we consider that
sentenced (G) and strongly generates a set ofweak context-freeness is desirable for computa-
structural description(G); the strong genera- tional dficiency. Though a weakly context-free
tive capacity of a formalisny is then{X(G) | TAG might berecognizablein cubic time (if we
F providesG}. There is some vagueness in theknow the equivalent CFG), it need not parsable
literature, however, over what structural descrip-in cubic time—that is, given a string, to compute
tions are and how they can reasonably be comall its possible structural descriptions will take
pared across theories (Miller (1999) gives a good)(n®) time in general. If we are interested in com-
sSynopsis). puting structural descriptions from strings, then

1 Introduction
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Y — Ba(Y) B2({Y1, ¥2)) = (by1, y2C)

we need a tighter constraint than preservation of
weak generative power.

In Section 3 below we examine some restric- _ _
tions on tree adjoining grammar which are weaklyFigure 3: Example of TAG with corresponding
context-free, and observe that their parsers afSCFG and interpretation. Here adjunction at foot
work in the same way: though given a TAG, hodes is allowed.
they implicitly parse using a CFG’ which de-
rives the same strings &5 but also their corre- 4. pis a finite set of productions of the form
sponding structural descriptions und&rin such
a way that preserves the dynamic-programming A— f(A,....An)

structure of the parsing algorithm. wheren > 0, f € F, andA A € V.
Based on this observation, we replace the con-,

straint of preservation of weak generative powel’tA‘ r?r?ni/rr?i“zhedrci ?Br g_::e?earatesd ari\?at;(ﬁ) OL der
with a constraint ofsimulability. essentially, a erms ch areinterpreted as derivations unde

grammarG’ simulates another gramm@ if it some formalism. In this paper we require tidat

generates the same strings tGadoes, as well as be free of .spurious ambiguity, that is, that each
their corresponding structural descriptions undeFerm be uniquely generated.
G (see Figure 2). Definition 2 We say that a formalisn¥ is a

So then, within the class of context-free rewrit- context-free rewriting syste(@FRS) if its deriva-
ing systems, how does this constraint of simudion sets can be characterized by generalized
lability limit strong generative power? In Sec- CFGs, and its derived structures are produced by
tion 4.1 we define a formalism called multicom- a function[-]J# from terms to strings such that for
ponent multifoot TAG (MMTAG) which, when each function symbof, there is ayield function
restricted to a regular form, characterizes pref” such that
cisely those CFRSs which are simulable by a 4T
CFG. Thus, in the sense we have set forth, this [f(t,.. W)y = 7 ([l ... [tlr)
formalism can be said to squeeze as much stron@A linear CFRS is subject to further restrictions,
generative power out of CFG as is possible. Fiwhich we do not make use of.)

nally, we generalize this result to formalisms be-pq gp example, Figure 3 shows a simple TAG
yond CFG. with a corresponding GCFG and interpretation.

A nice property of CFRS is that any formal-
ism which can be defined as a CFRS immedi-
First we define context-free rewriting systems.ately lends itself to several extensions, which arise
What these formalisms have in common is thatvhen we give additional interpretations to the
their derivation sets are all local sets (that is, genfunction symbols. For example, we can interpret
erable by a CFG). These derivations are taken a#e functions as ranging over probabilities, cre-
structural descriptions. The following definitions ating a stochastic grammar; or we can interpret
are adapted from Weir (1988). them as yield functions of another grammar, cre-
Definition 1 A generalized context-free gram- ating asynchro_nous grammar. .
mar Gis a tuple(V. S, F, Py, where Now we deﬂne strong g_eneratlve capacity as

the relationship between strings and structural de-

1. Vis afinite set of variables, scriptionst

2.SeVisa dlstlngwshed start Symbo" 1This is similar in spirit, but not the same as, the notion

3. F is afinite set of function symbols, and of derivational generative capacity (Becker et al., 1992).

Y - €() e() = (e €)

2 Characterizing structural descriptions



Definition 3 Thestrong generative capacityf a 3.2 Excursus: regular form TAG

grammaiG a CFRSF" is the relation Strictly speaking, the recognition algorithm
{[tle,t) | t e T(G)). Rogers gives cannot be extended to parsing; that

For example, the strong generative capacity of thé& It gen_erates all possible (_jenved .”e?s for a

grammar of Figure 3 is given string, but not all possible derivations. It

is correct, however, as a parser for a further re-

{a™"c"d™, (BT (€()). B2(€ONN stricted subclass of TAGs:
whereas any equivalent CFG must have a stron@efinition 4 We say that a TAG is irstrict reg-
generative capacity of the form ular form if there exists some partial orderirg
{(@™p"c"d™, £M(g"(e()))} over the nonterminal alphabet such that for ev-

ery auxiliary trees, if the root and foot of3 are
labeledX, then for every nodeg alongps’s spine
where adjunction is allowed{ < label(n), and
X = label(n) only if n is a foot node. (In this vari-

3 Simulating structural descriptions ant adjunction at foot nodes is permitted.)

We now tak loser 10ok at some exampl hus the only kinds of adjunction which can oc-
“se e% eg” ?:(?nfeof(?reg ?‘or?naslgmi ?oall pster):jttceJ ur to unbounded depth aréfspine adjunction
queez Xt : i and adjunction at foot nodes.

how a CFG can be used to simulate formalisms This stricter definition still has greater strong

with greater strong generative power than CFG. generative capacity than CFG. For example, the
3.1 Motivation TAG in Figure 3 is in strict regular form, because

- . . theonly n lon ines wher junction i
Tree substitution grammar (TSG), tree msernont e only nodes along spines where adjunction is

grammar (TI1G), and regular-form TAG (RF-TAG) allowed are foot nodes.
are all weakly context free formalisms which can3.3  Simulability

additionally be parsed in cubic time (with a caveat -
for RF-TAG below). For each of these formalisms So far we have not placed any restrictions on

. . how these structural descriptions are computed.
a CKY-style parser can be written whose items arg-,an though we might imagine attaching arbi-
of the form [X,i, j] and are combined in various

wavs. but alwavs according to the schema trary functions to the rules of a parser, an algo-
ysS, y 9 rithm like CKY is only really capable of com-

[X1, ] ' [Y. j.Kl puting values of bounded size, or else structure-
[Z,1,K] sharing in the chart will be lost, increasing the

just as in the CKY parser for CFG. Irffect the ~complexity of the algorithm possibly to exponen-
parser dynamically converts the TSG, TIG, or RF-tial complexity. _ _ _
TAG into an equivalent CFG—each parser rule of FOr a parser to compute arbitrary-sized objects,

the above form corresponds to the rule schemguch as the derivations themselves, it must use
Z — XY. back-pointers references to the values of sub-

More importantly’ given a grammaB and a Computations but not the values themselves. The

string w, a parser can reconstruct all possibleonly functions on a back-pointer the parser can
derivations ofw underG by storing inside each compute online are the identity function (by copy-

chart item how that item was inferred. If we think ing the back-pointer) and constant functions (by
of the parser as dynamically convertijinto a  feplacing the back-pointer); any other function

CFG @, then this CFG is likewise able to com- Would have to dereference the back-pointer and
positionally reconstruct TSG, TIG, or RF-TAG destroy the structure of the algorithm. Therefore
derivations—we say th&’ simulates G such functions must be computefilioe.

Note that the parser specifies how to con@rt Definition 5 A simulating interpretatior][-] is a
into G’, but G’ is not itself a parser. Thus these bijection between two recognizable sets of terms
three formalisms have a special relationship tasuch that
CFG that is independent of any particular pars- : : )
ing algorithm: for any TSG, TIG, or RF-TAG, L tli::r: (%Zﬂl:]ut?:;ttlon symbgl, there is a func
there is a CFG that simulat& We make this no- _
tion more precise below. [p(ta, ... t)] = ¢([tall, . ... [tall)

Thatis, in a CFG tha bs andcs must appear later
in the derivation than thenas andds, whereas in
our example they appear in parallel.




2. Eachg is definable as:

_ S — (X1, X2) < (X1, X2)
(KL, -+ o> Xamg)))s -+ > (X -+ - X)) = a® - af, (€(), X2) i (—, X2)
(Wi, ..., Whn) % — o™ (= %2) — (= %)
- o’ — ot (= €0) 1 (=, -)
where eaclw; can take one of the following ol e’ ( ’ ol ’ y
forms: . T o
a® — B[] (B1(X1), X2) 4 (X1, X2)

(a) avariablexj, or
(b) a function applicationf (X, ;.- - - Xi,jn),
n>0

Ble° - aﬁi[aol d (X X) i (X, X2)
B210% - Bl (Bi(x). X2} — (Xq, Xo)

. Bl T = a% (0. %) (=%
3. Furthermore, we require that for any recog- al* S flal] (= Ba(X2)) i (= Xo)

nizable se.fl', |[T]] is? also aie.cogn.izable set. ﬁg[al] S bAal ¢ (= X} i (=, %)
We say trlat[-]] is trivial if every ¢ is definable as ﬁg[al] —>,32[Oél] (=, B2(X2)) i (=, Xo)
¢(X1, ... Xn) = f(X,r(l), ... X,,(n)) ,33[041] - afl. (= €()) « (= —)
. . 2
wherer is a permutation ofL,...., n. Figure 4: CFG which simulates the grammar

The rationale for requirement (3) is that it of Figure 3. Here we leave the yield functions

should not be possible, simply by imposing localanonymousy « x denotes the function which
constraints on the simulating grammar, to producgnapsx to y.

a simulated grammar which does not even come
from a CFRS?

Definition 6 We say that a grammas from a _the fo!lowing problem: find a formalism that_ triv-
CFRS¥ is (trivially) simulableby a grammar G’ ially s_|mulf':1tes as many grammars as possible but
from another CFRS if there is a (trivial) simu- fémains simulable by".

lating interpretatior]-Is : 7(G’) — 7 (G) which

satisfieq[tly = [[tlsly for all t € 7(G). 3.4 Results

As an example, a CFG which simulates theThe following is easy to show:

TAG of Figure 3 is shown in Figure 4. Note that pronosition 1 Simulability is reflexive and tran-
if we give additional interpretations to the simu- gjtye.

lated yield functionsy, 81, andg,, this CFG can

compute any probabilities, translations, etc., thaBecause of transitivity, it is impossible that a for-
the original TAG can. malism which is simulable by could simulate

Note that ifG’ trivially simulatesG, they are & grammar that is not simulable lFy. So we are
very nearly strongly equivalent, except that thelooking for a formalism that can trivially simulate
yield functions ofG’ might take their arguments exactly those grammars that can.
in a different order tha, and there might be sev-  In Section 4.1 we define a formalism called
eral yield functions ofz’ which correspond to a multicomponent multifoot TAG (MMTAG), and
single yield function ofs used in several dierent  then in Section 4.2 we prove the following result:
co_ntext_s. In_fact, for technical reasons we will useProposition 2 A grammarG from a CERS is
this notion instead of strong equivalence for test-_. . P
ing the strong generative power of a formal sys_s!mulable by a CFG if a’.‘d only if it isrivially
tem. simulable by an MMTAG in regular form.

Thus the original problem, which was, given The “if” direction (<) implies (because simu-
a formalism#, to find a formalism that has as lability is reflexive) that RF-MMTAG is simula-
much strong generative power as possible but reéble by a CFG, and therefore cubic-time parsable.
mains weakly equivalent t&, is now recast as (The proof below does give anfective proce-
minterpretaﬂons and trivial simulating inter- dure for constructing a_5|m_ulat|_ng CFG for any
pretations are similar to the generalized and “ungeneralizedRF-MMTAG.) The “only if” direction (=) shows
syntax-directed translations, respectively, of Aho and Ull-that, in the sense we have defined, RF-MMTAG

man (1969; 1971). . __is the most powerful such formalism.
Without this requirement, there are certain pathological

cases that cause the construction of Section 4.2 to produce We can generalize this result using the notion
infinite MM-TAGs. of a meta-level grammar (Dras, 1999).



Definition 7 If 7 and#, are two CFRSsf o
¥ is the CFRS characterized by the interpretation

function [ lger, = [-15, © [-17-

A A

A
A

1 is the meta-level formalism, which generates A YEIXA
derivations forf,. Obviously#; must be a tree- Y2« YRx o~ A
rewriting system. Y 2] %
Proposition 3 For any CFRSF’, a grammaiG X>|< X X
from a (possibly dierent) CFRS is simulable by I I l ‘

a grammar i’ if and only if it is trivially simu- .

lable by a grammar itfF” c RF-MMTAG.

The “only if" direction (=) follows from the Figure 5: Example of MMTAG adjunction. The
fact that the MMTAG constructed in the proof of types of the components, not shown in the figure,
Proposition 2 generates the same derived trees a&e allX.

the CFG. The “if” direction €) is a little trickier

because the constructed CFG inserts and relabelsl_ S is a finite alphabet;

nodes. . -
2. Pis afinite set of tree sets; and
4 Multicomponent multifoot TAG 3. S € X is a distinguished start symbol.
4.1 Definitions Definition 9 A componenta is adjoinable at a

MMTAG resembles a cross between set-locaInOde" if 7 is an adjunction node and the type of
multicomponent TAG (Joshi, 1987) and ranked” ec:]uals thle Iz)del Of d
node rewriting grammar (Abe, 1988), a variant of _T (heresuto Jfommgdat():omponerglyatanc_) €
TAG in which auxiliary trees may have multiple 7 'S the tree set formed by separatingrom its
foot nodes. It also has much in common with ¢-children, replacingy with the root ofe, and re-

tree substitution grammar (Rambow et al., 1995)placing theith TOOt node ofq with the ith child
of n. (Thus adjunction of a one-foot component

Definition 8 An elementary tree set is a finite s analogous to TAG adjunction, and adjunction
set of trees (called theomponent®f @) with the  of a zero-foot component is analogous to substi-
following properties: tution.)

1. Zero or more frontier nodes are designated A tree seta is adjoinableat an adjunction site
foot nodes which lack labels (following 7 if there is a way to adjoin each componenizof
Abe), but are marked with the diacritic at a diferent node_ ofj (with no nodes left over)_

2. Zero or more (non-foot) nodes are desig-Sl_JCh th?.t the dominance and pr'ecedence relations
nated adjunction nodeswhich are parti- within @ are preserved. (See Figure 5 for an ex-
tioned into one or more disjoint sets called ample.)
adjunction sitesWe notate this by assigning  We now define a regular form for MMTAG that
an indexi to each adjunction site and mark- js analogous to strict regular form for TAG. A
ing each node of sitewith the diacriticlil. spineis the path from the root to a foot of a sin-

3. Each component is associated with a symgle component. Whenever adjunction takes place,
bol called itstype This is analogous to the several spines are inserted inside or concatenated
left-hand side of a CFG rule (again, follow- with other spines. To ensure that unbounded in-
ing Abe). sertion does not take place, we impose an order-

4. The components of are connected by- ing on spines, by means of functiopsthat map
edgesrom foot nodes to root nodes (notated the type of a component to the rank of that com-
by dotted lines) to form a single tree struc- Ponentsith spine.

ture. A single foot node may have multiple peginition 10 We say that an adjunction noges

djchlldren, and their order is significant. (Seeﬁ is safein a spine if it is the lowest node (except

Figure 5 for an example.) the foot) in that spine, and if each component un-
A multicomponent multifoot tree adjoining gram- der that spine consists only of a memberjaind
maris a tuple(Z, P, S), where: zero or more foot nodes.



We say that an MMTAGS is inregular formif T symbol in the root label of, in order. Where
there are functiong; from X into the domain of we do not define a yield function for a production
some partial ordering such that for each com- below, the identity function is understood.
ponenta of type X, for each adjunction node For every se@ with a single,S-type compo-

n € a, if the jth child of  dominates théth foot  nent rooted by;, add the rule

node ofa (that is, another componentjsh spine S o [n.d(T ]
would adjoin into theith spine), thernp;j(X) < S USRI

pi(label(n)), andpi(X) = p;(label)) only if F(X1, - -> Xn) (XL, Xn)

is safe in thdth spine. For every non-adjunction, non-foot nogewith

Thus the only kinds of adjunction which can oc-childrenny, ... (2 0),

cur to unbounded depth ard¢f-@pine adjunction [n,t] = [t [ 1]

and safe adjunction. The adjunction shown in Fig- _ .

ure 5 is an example of safe adjunction. Fglr every component with roaf that is adjoin-
able aty,

4.2 Proof of Proposition 2 [n,up(t)] — [, 1]

(&) First we describe how to construct a simu-If 7" is the root of the whole se¥’, this rule
lating CFG for any RF-MMTAG; then this direc- rewrites aT to severalT symbols; the corre-
tion of the proof follows from the transitivity of Sponding yield function is then
simulability. (
When a CFG simulates a regular form TAG,
each nonterminal must encapsulate a stack (dfor every component witfith foot 7 that is ad-
bounded depth) to keep track of adjunctions. Inoinable at a node witkth child z;,
the multicomponent case, these stacks must be ,
generalized to trees (again, of bounded size). [ni 0 = [, up(t)]
So the nonterminals @’ are of the form#,t],  This last rule skips over deleted parts of the
wheret is a derivation fragment d& with a dot  derivation tree, but this is harmless in a regular
(-) at exactly one nodé&, andn is a node ofr. Let  form MMTAG, because all the skipped adjunc-
n be the node in the derived tree wherends up. tions are safe.
A fragmentt can be put into a normal form as
follows:

@ (X X))y ey A Xy ey Xy e )

(=) First we describe how to decompose any
_ given derivationt’ of G’ into a set of elementary
1. For every@ above the dot, if; does not lie  rge sets.
along a spine off, delete everything above | ett = [t']s. (Note the convention that primed
a. variables always pertain to the simulating gram-
2. For every® not above or at the dot, if does mar, unprimed variables to the simulated gram-
not lie along a d-edge off, deleted@ and mar.) If, during the computation df a noder’
everything below and replace it with if creates the nodg, we say that;’" is productive

dominates?; otherwise replace it with.. andproduces;. Without loss of generality, let us

assume that there is a one-to-one correspondence
3. If there are two node&; and @, along a P

. . < between productive nodes and nodes bf
path which name the same tree set arigs To start. lets be the root of. and its
along the same spine or same d-edge in both ;1807 ' M- <> TIn

o . ) children.
of them, collapser, anday, deleting every- ™' do ihedomainof n as follows: any node
thing in between.

in t’ that produceg; or any of its descendants is
Basically this process removes all unboundedlyin the domain oﬁﬁ, and any non-productive node
long paths, so that the set of normal forms is finitewhose parent is in the domain gfis also in the

In the rule schemata below, the terms in the leftdomain ofy;.

hand sides range over normalized terms, and their For eachm’ excise each connected component
corresponding right-hand sides are renormalizedof the domain of;. This operation is the reverse
Letup(t) denote the tree that results from movingof adjunction (see Figure 6): each component gets

the dot int up one step. . , 4If G’ does not have this property, it can be modified
The value of a subderivatiar of G’ under[-]s s that it does. This may change the derived trees slightly,

is a tuple of partial derivations @, one for each which makes the proof of Proposition 3 trickier.



Labeling adjunction nodes For any noder’,
and any list of nodesn;,...,ny,), let the sig-

[ o2

|

* b1 Qi *h T nature of »" with respect to(n;,...,n,) be

° j Q@ (A ay,...,an), whereA is the left-hand side of
A ~ A ‘ the GCFG production that generated anda, =
a ecd a4 eed oc (J,k) if n’ gets itsith field from thekth field of

‘ ‘ ‘ n’j, or = if 7 produces a function symbol in itth

®c % € field.

‘ So when we excise the domain gf, the la-

€

bel of the node left behind by a componenis

. o s..s S, Wh is the signat f th t
Figure 6: Example derivation (left) of the gram- (S5 $), wheres|s the signature of the roo

e 4. and first st td i of & with respect to the foot nodes asd ..., s,
mar ot ;Figure 4, and Nirst Step ot decomposition. 5 ¢ the signatures of the foot nodes with respect to
Non-adjunction nodes are shown with the place

hold b he vield f : i the oriai their d-children. Note that the number of possible
oldere (because the yield functions in the origi- adjunction labels is finite, though large.

nal grammar were anonymous), the Greek letters
indicating what is produced by each node. Ad- .

of the (very long) true labels. corresponds to a function symbol (though not

necessarily one-to-one), it is easy to write a triv-
ial simulating interpretatiofi-] : 7 (G) — 7 (G).

S T Qu: I Qu: I Q! I Q: I To see tha6s does not overgenerate, observe that
Q. i ) I L the nonterminal Iapels_ inside the signatures en-
| /N sure thafc every derivation @ corresponds to a
QE & Q,@md b QE% vahql derivation ofG’, and thereforé. To_see 'Fhat
‘ ‘ [-1 is one-to-one, observe that the adjunction la-
€ % bels keep track of hows” constructed its simu-

) ~lated derivations, ensuring that for any derivation
Figure 7: MMTAG converted from CFG of Fig-  of G, the decomposition of the derived treefof
ure 4 (cf. the original TAG in Figure 3). Each s f jtself. Therefore two derivations & cannot
components’ type is written to its left. correspond to the same derivation®f nor of G.

G is finite. Briefly, suppose that the number of
foot nodes to replace its lost children, and thecomponents per tree set is unbounded. Then it is

components are connected by d-edges accordirpssible, by intersectin@’ with a recognizable

to their original configuration. set, to obtain a grammar whose simulated deriva-

Meanwhile an adjunction node is created int!On setls non-recognlngle._ The idea is that mul-
ticomponent tree sets give rise to dependent paths

place of each component. This node is given a IaLi'n the derivation set, so if there is no bound on

bel (which also becomes the type of the excise . . .
L —~the number of components in a tree set, neither is
component) whose job is to make sure the fina here a bound on the length of dependent paths.

the label is chosen below. The adjunction node\s?lhls contradicts the requirement that a simulating

are partitioned such that thth site contains all nterpretation map recognizable sets to recogniz-

) . ) able sets.
the adjunction nodes created when removjng
Suppose that the number of nodes per compo-

The tree set that is left behind is the elementary, ont is unbounded. If the number of components
tree set corresponding wp (rather, the function o\ ree set is bounded, so must the number of ad-
symbol that labelg); this process is repeated re- jy,nction nodes per component; then it is possible,
cursively on the children of, if any. again by intersecting’ with a recognizable set,

Thus any derivation o6’ can be decomposed to obtain a grammar which is infinitely ambigu-
into elementary tree sets. L& be the union of ous with respect to simulated derivations, which
the decompositions of all possible derivations ofcontradicts the requirement that simulating inter-
G’ (see Figure 7 for an example). pretations be bijective.
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