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Abstract

This paper describes a system for seg-
menting Chinese text into words us-
ing the MBDP-1 algorithm. MBDP-1
is a knowledge-free segmentation algo-
rithm that bootstraps its own lexicon,
which starts out empty. Experiments
on Chinese and English corpora show
that MBDP-1 reliably outperforms the
best previous algorithm when the avail-
able hand-segmented training corpus is
small. As the size of the hand-segmented
training corpus grows, the performance
of MBDP-1 converges toward that of the
best previous algorithm. The fact that
MBDP-1 can be used with a small cor-
pus is expected to be useful not only for
the rare event of adapting to a new lan-
guage, but also for the common event of
adapting to a new genre within the same
language.

1 Introduction

Many languages, including Chinese and Japanese,
are written without spaces or other delimiters be-
tween the words. A word segmentation algorithm
is therefore required as a front end for any lan-
guage procesing system that relies on a word-
based representation. Most systems for parsing,
indexing, document retrieval, spell checking, and
grammar checking fall into this category. As a re-
sult, the text segmentation problem has received
considerable attention, particularly for Chinese. A
variety of methods have been investigated. One
approach is based on looking up strings in a pre-
existing dictionary and using the longest match
(Cheng et al., 1999). A second approach is based
on bigram frequencies or more general substring
frequencies (Dai et al., 1999; Ponte and Croft,
1996; Teahan et al., 2000). A third approach uses
transformation-based learning (Hockenmaier and
Brew, 1998; Palmer, 1997). A review of earlier

work can be found in (Wu and Tseng, 1993). All
of these methods require either a pre-existing dic-
tionary or else a supervised training regimen using
a manually segmented corpus.

Dictionary-based methods have the well-known
advantages and disadvantages of all knowledge-
intensive approaches. Manually curated linguistic
knowledge tends to be more accurate than what
can be gleaned by an adaptive learning system,
especially when handling relatively rare cases. On
the other hand, it tends to give insufficient weight
to the common cases and suffers from a lack of
adaptability to new languages, genres, and appli-
cations. Since this paper is concerned primarily
with adaptability, we will focus on the best avail-
able methods that do not require a pre-existing
dictionary.

PPM is an adaptive text compression algo-
rithm that has been applied to the segmenta-
tion problem (Teahan et al., 1998; Teahan et al.,
2000). Many text compression algorithms, includ-
ing PPM, work by estimating a probability distri-
bution on the next symbol in a text given the pre-
vious context. Distributions estimated from a text
that includes word-boundary delimiters assign a
probability to word-boundary delimiters in each
context. If an unsegmented text is viewed as hav-
ing hidden word-boundary delimiters, a Viterbi-
style algorithm can be used to find the most prob-
able locations of the hidden delimiters, according
to the estimated probability model. Teahan and
colleagues have done this with the PPM proba-
bility model. The result appears to be the best
available algorithm for segmentation of large cor-
pora of written text, both in English and in Chi-
nese. PPM requires supervised training using a
manually segmented corpus.

The MBDP-1 algorithm (Brent, 1999a) was de-
veloped as a model of how children segment speech
in the course of learning their native languages.
Because speech contains no known acoustic mark-
ing of word boundaries, children must segment
the utterances they hear in order to learn the



words of their language. Further, children start
out without knowing any words and without ac-
cess to a presegmented speech sample of the sort
that would be required for supervised training.
Thus, MBDP-1 — the algorithm underlying an
abstract cognitive model known as INCDROP, for
INCremental Distributional Regularity OPtimiza-
tion (Brent, 1999b; Dahan and Brent, 1999) — re-
quires neither a dictionary nor a segmented train-
ing corpus. It bootsraps its own dictionary, which
is initially empty, using a probability model and
Viterbi-style optimization algorithm. In this pa-
per, we show that MBDP-1 is useful for text seg-
mentation in both English and Chinese.

The remainder of the paper is organized as fol-
lows. The next section describes the probability
model underlying INCDROP and the objective
function that results from the model. Section 3
describes the optimization algorithm that MBDP-
1 uses to find the most probable segmentation,
according to the model. Section 4 reports exper-
iments in which MBDP-1 is compared to PPM
(Teahan et al., 2000) using the PH corpus of Chi-
nese newspaper text and the English portion of
the Hansard corpus. Finally, Section 5 considers
the broader implications of this work.

2 Generative Probability Model

This section introduces a language-independent
prior probability distribution on all possible seg-
mented texts. Given an unsegmented text T, this
prior distribution defines a conditional distribu-
tion on all segmented texts that yield T after
word-boundary deletion. The conditional distri-
bution determines the most probable segmenta-
tion of T, according to the model. The prior
distribution is derived from a five-step model for
the generation of texts. The steps are presented
below, along with their probability distributions.
This section describes a mathematical model, not
an algorithm that is intended to be run.

In the following generative model, let ¥ be the
alphabet or character set of the text to be seg-
mented, and let # and $ be reserved symbols that
are not in ¥. These symbols will be used to repre-
sent word boundaries and sentence boundaries, re-
spectively.! After describing each step of the gen-
erative procedure, we provide a sample result that
could be produced from that step. Combining all
five sample results yields a sample segmented text
that can be generated by this model.

1. Choose the number of distinct word types in

YWhile word boundaries are not marked in the text
to be segmented, sentence boundaries are.

the text, n, according to the distribution:

Pr(n) = = (1) 0

w2\ n

The inverse-squared distribution on the pos-
itive integers was chosen because it is a sim-
ple, smooth distribution that is relatively flat,
representing a relatively unbiased prior, yet
its sum converges (unlike the sum of 1/z).
The 6/7% term normalizes the sum to one.

Sample result: n = 6.

2. Let X' = X U {#} be the character set to-
gether with the word-boundary marker, and
let {p1 ...px/|} be a probability distribution
on Y/, For each i from 1 to n, generate word
type ¢ by choosing characters at random, ac-
cording to the probabilities {p; ...ps|}, un-
til the word boundary character # is cho-
sen. If the word boundary character is cho-
sen first, discard it and choose again until a
non-boundary character is chosen, ensuring
that the word has at least one such charac-
ter. Call the resulting word type W;, and
let L = {W;...W,} be the resulting lexicon.
For notational convenience, let Wy = §, the
reserved sentence-boundary marker. To com-
pute the probability of a given lexicon, we
estimate probabilities of the characters using
add-one smoothing:?

—
Pl—s

where ¢; is one greater than the frequency
count of letter [ in the currently hypothesized
segmentation, and S = )7, ¢. If L is a set of
word types that are all chosen independently,
then

Pr(L | n) = n! (1_;_#)" I (%) 2)

S lex

The product at the right of (2) represents
the probability of selecting the sequence of
word types Wi ...W,, in that particular or-
der, when multiple word boundaries (#’s) are
permitted to occur in sequence. The center
term on the right hand side of (2) results from
imposing the constraint a word cannot begin
with #. The n! term reflects the fact that L
is an unorderd set, so any permutation of the
n words is permissible.

2 As described below, we treated each byte of each
Chinese character as a separate character, so the al-
phabet for MBDP-1 has just 2% characters.



Sample result:

W1 =do# Wy =the# Ws; =kb#
Wy =like#t Wy =see#t Wg =mbo#
Wo =$

. For each i from 1 to n, choose f(i), the fre-
quency of word W; in the text, according to
the inverse-squared distribution on the posi-
tive integers:

Sample result:

fM=2 f2)=4 fB)=2 f4)=1
fG)=2 f6)=2 f(0)=2

. Let m = Y f(§) be the total number of
word tokens. Choose an ordering function
s:{L,...,m} = {1,...,n} that maps each
position in the text to be generated to the
index of the word that will appear in that
position. Thus, word type Wy(;) appears as
the jth word in the text. Note that s is con-
strained to map exactly f(¢) positions to word
type W;. Choose s according to the uniform
distribution on the distinct orderings (there
are only finitely many, given n, L, and f):

i _ 156
Priofn, L) = g @
Sample Result:
s(1)=1 s(2)=3 s3)=5 s(4)=2
s(5)=6 s(6)=0 s(7)=5 58 =2
s59)=2 s(10)=0 s(11)=1 s(12)=3
s(13) =4 s(14) =2 s(15) =6

Define w; to be W), the jth word in the
text. Define wi, = wy ...ws, the concatena-
tion of the first k& words of the text. Note
that wy is a text in which word boundaries
are marked by #.

Ezample:

w1 = Ws(l) =W = do#
Wo = Ws(2) = W3 = kb#
w3 = Wy = Wi = see#

Ezample:
wo = do#kb#

5. Delete the #’s from w,, and output the re-
sult. The output is a text in which the word
boundaries are not marked, like the texts to
be segmented. This is a deterministic process,
so the unique possible outcome has probabil-
ity 1.0.

Sample output:

dokbseethembo$seethethe$dokblikethembo

The probability with which steps 1-4 generate a,
particular segmented text w,, is simply the prod-
uct of equations (1)-(4). The conditional probabil-
ity that steps 1-4 generated a segmented text w,,,
given the unsegmented text T resulting from step
5, is proportional to the marginal probability if T
can be obtained by deleting the word boundaries
from w,,; otherwise it is zero.

The probability of w,,, resulting from steps 1-4
can be factored by defining R (for relative proba-
bility) as follows:?

R(wk) - %7

where Pr(wy) is defined to be 1. Now

Pr(wy) = R(wg) Pr(wg—_1)
k
=TT &) 5)

Hereafter, we focus on R(w;).

If wy has occurred previously (wrp €
{wy,...,wp_1}) we say wy is a familiar word,
otherwise, we say it is a novel word. Brent (1999a)
showed that if wy is a familiar word that occurs
f(wg) times in wy, then

f(:?}k) (f(;}(’;)lk; 1)2

Note that the final occurrence in position k is
included in f(wy), so f(wg) > 2 for a familiar
word and thus (6) is never zero. The first term
on the right hand side of (6) is the relative fre-
quency of the word so far, with one added to both
the numerator and the denominator (since the oc-
currence in position & is included). This term is
similar to the familiar maximum likelihood esti-
mate for a parameter of a multinomial distribu-
tion on words. The second term can be thought
of as an adjustment for the fact that the observed

R(wy) =

(6)

3Algebraically, the relative probability can be
treated as the conditional probability of the kth word
given the first £k — 1 words, but the semantics is differ-
ent.



relative frequency of a word tends to overestimate
its asymptotic relative frequency, especially when
it has occurred only a few times. (Intuitively, if a
word has occurred only once, there are probably a
lot of other words that are just as frequent in the
long run but happen not to have been observed in
the available sample.) However, (6) was derived
directly from the probability model, without any
consideration of relative frequency or adjustments
to it.

If wy, is a novel word whose character sequence
is a1 ...aq then

Rowe) = 555+

n—1)\2 Da; - - -Da,
)- G

n 1—p#

where n is the number of distinct word types in
wy, and p,, ...p,, are the estimated probabilities
of the characters in wy. The second term of (7) —
n/k — is the type-to-token ratio, or the relative
frequency with which new words have occurred
in the past. It makes sense that the probability
of novel words would be higher if they have oc-
curred frequently in the past than if they have oc-
curred rarely in the past. The third term can be
thought of as an adjustment factor to the second
term, reflecting the fact that the relative frequency
with which novel words have occurred in the past
will tend to overestimate the asymptotic relative
frequency when the sample is small.* The last
term, which generally dominates, corresponds to
the probability that a particular novel word will
happen to be spelled a; ...a,. This term favors
novel words constructed out of common characters
over novel words constructed out of rare charac-
ters and favors short words over long words, all
other things being equal.

The most likely segmentation of a text, accord-
ing to the model, is the one that maximizes (5),
the product of the relative probabilities.

3 Optimization Algorithm

The MBDP-1 algorithm segments one input sen-
tence at a time, freezing the segmentation of each
sentence before the next sentence is read in. Each
sentence is segmented so as to maximize the prod-
uct of the relative probabilities of words in the
segmentation. The relative probabilities are com-
puted using (6) and (7), assuming that the all pre-
vious sentences in the corpus were segmented cor-
rectly. In addition, the relative probability of each
word in a sentence is based only on the words in

“Equation (7) is applicable only after the first sen-
tence has been segmented, guaranteeing n > 2. For
the first sentence, (1)-(4) must be used directly.

the previously segmented sentences, not on other
words in the same sentence. Put differently, the
relative probability of each word is calculated as
though it were the first word in the sentence.
Given these assumptions, MBDP-1 finds the op-
timal segmentation of a sentence using a Viterbi-
style dynamic programming algorithm that com-
putes the relative probability of every sub-string of
the sentence. This algorithm can be visualized as
a graph structure that we call a trellis, by analogy
to the trellis used in Viterbi decoding of HMMs.
This is illustrated in Figure 1 for the input “sen-
tence” consisting of the single word only. Nodes
represent the potential word boundaries between
adjacent input characters, an arc (or straight line
segment) from node j to node k represents the po-
tential word between nodes j and k, and a path
from one end of the trellis to the other represents
a potential segmentation.

Figure 1: The segmentation trellis for the “sen-
tence” consisting of the single word only. Arcs
between adjacent nodes are drawn as straight line
segments.

For each node k, from the left edge of the sen-
tence to the right, MBDP-1 computes the relative
probability of each impinging arc that starts to the
left of k, under the assumptions described above.
It multiplies this arc probability by the product
of relative probabilities along the best path to the
node where the arc starts. Finally, it takes the
maximum over all impinging arcs and stores the
result as the product of relative probabilities along
the best path to node k.

BestPathProb[k] = riiax(BestPathProb[j]
% RelProbl[j, k])

where BestPathProb[0] is set to 1. Only arcs
within the current sentence are considered, since
words cannot span sentence boundaries. At each
node, pointers to the previous node along the best
path are stored; tracing back through these arcs
yields the best path.

It is important to emphasize that, while the
search for a good segmentation is limited to one
sentence at a time, the probability calculation is
based on the entire corpus processed so far. That
is, the determination of whether a word is novel



or familiar, its frequency so far, the total number
of words so far, and the estimated probabilities
of all the letters, are based on the best segmenta-
tions found for all previous sentences in the cor-
pus. Formally, if w; is the sequence of words re-
sulting from the segmentation of all previous sen-
tences in the corpus and o;,;, is the string that lies
between nodes j and %k in the current sentence,
then
RelProb[j, k] = R(w; o g; 1),

where o is the concatenation operator and R is the
function defined by (6) and (7).

Normally, MBDP-1 is initialized to a naive state
in which all words are novel and all letters have
observed frequency 0. However, using MBDP-1
with a manually segmented training corpus could
not be simpler — the training corpus is simply
appended to the test corpus as a prefix, with its
segmentation frozen in advance. Thus, when the
first test sentence is processed, the training corpus
plays the role of w; in the last equation.

4 Experiment

Based on published results, MBDP-1 appears to
be the most effective known algorithm for seg-
mentation of phonemically transcribed sponta-
neous speech by mothers to young children (Brent,
1999a; Brent, 1999b). However, it was designed as
a computational model of how children segment
speech in the course of acquiring their native lan-
guage, an application that does not permit the use
of manually segmented training texts. Further,
written text has very different characteristics from
spontaneous child-directed speech, even in an al-
phabetic writing system. Text written in Chinese
characters is even more remote from the corpora
on which MBDP-1 had been tested. Thus, we had
no idea how MBDP-1 would perform on Chinese
text segmentation after being trained on a manu-
ally segmented text. In the following experiment,
we applied MBDP-1 to the segmentation of (1)
the PH Corpus of Chinese newspaper text, and
(2) Part A of the English portion of the Hansard
corpus, which is a sample of the official proceed-
ings of the Canadian parliament. We also tested
PPM, which is apparently the best known algo-
rithm for this problem (Teahan et al., 2000), on
the same corpora.

4.1 Input

The first corpus we used is Guo Jin’s Mandarin
Chinese PH corpus, containing more than one
million words of newspaper stories from the Xin-
hua news agency of PR China written between
January, 1990 and March, 1991. This manually

segmented corpus is represented in the standard
GB coding scheme, which uses two bytes for each
Chinese character. Following the procedure used
by Teahan et al. (2000), we treated each byte as
a separate input symbol for both MBDP-1 and
PPM. Thus, it is possible for either algorithm to
ingert a word boundary between the two bytes of
a Chinese character.

We chose the first one million words of PH as
a training corpus and the following 16,000 words
as a test corpus. The two algorithms were trained
on subsets of the overall training corpus whose
sizes varied from 2% up to 22° words, not counting
punctuation. The test corpus was divided into 16
samples of 1,000 words each so we could assess
the variance in performance across samples of a
given genre. The test corpus was preprocessed to
remove all spaces and create separate “sentences”
at punctuation marks, which are used in Chinese
approximately as in English.

The second corpus we used was Part A of the
English portion of the Hansard corpus, which con-
tains a sample of the proceedings of the Canadian
parliament. We extracted training and testing
samples exactly as for the PH corpus, but since
the Hansard is larger we were able to investigate
training samples of up to 222 words.

4.2 Results

We evaluated the results by applying the stan-
dard measures precision and recall to pairs of con-
secutive word boundaries (not to individual word
boundaries). To compute these measures, each
character of the automatic segmentation is aligned
with the corresponding character of the standard
segmentation. Each word in the automatic seg-
mentation is labeled a true positive if it lines up
exactly with a word in the standard segmentation—
that is, both boundaries match. Each word in
the automatic segmentation that does not align
exactly with a word in the standard segmenta-
tion is labeled a false positive. Each word in the
standard segmentation that does not align exactly
with a word in the automatic segmentation is la-
beled a false negative. For example, if the test sen-
tence is “ABCAEDF”, the standard segmentation
is “A BC AED F”, and the automatic segmenta-
tion is “A BC A ED F”, then the true positives are
’A’, ’BC’, and "F’. The false positives are A’ (the
second one) and 'ED’. AEDY is a false negative.

Using these terms, we define precision and recall
as follows:

true positives

precision = — "
true positives + false positives



recall = true positives

true positives + false negatives

Precision is the proportion of the machine-
segmented words that are right. Recall is the
proportion of words in the standard segmentation
words that are identified by the algorithm. These
two measures can diverge, and good performance
is achieved only when both are high.

Figure 2 shows the results on the Chinese PH
corpus, as a function of the logarithm of the train-
ing corpus size. The left panel shows precision and
the right shows recall. Data points for MBDP-
1 are disks, data points for PPM are triangles,
and error bars span two standard errors of the
mean. The results show that MBDP-1 has bet-
ter recall than PPM on the PH corpus until the
training corpus reaches 220 words; at 220 words
the two algorithms are statistically indistinguish-
able. MBDP-1’s precision is significantly better
than PPM when the training size is 2'© words or
less. After that the two become statistically indis-
tinguishable.

Interestingly, PPM occasionally inserts a word
boundary between the two bytes of a Chinese char-
acter, whereas MBDP-1, although it could seg-
ment between bytes, never does.

Figure 3 shows the results on the English
Hansard corpus, as a function of the logarithm of
the training corpus size. The format is the same
as in Figure 2. The results show that MBDP-
1 has reliably better recall than PPM on the
Hansard corpus, except when the training corpus
size is between 2'2 words and 2'® words, where
the two algorithms are statisticaly indistinguish-
able. MBDP-1 has better precision, too, for both
large and small training corpora. The two algo-
rithms are tied at training sizes of 210 and 2%, and
PPM has greater precision between those points.
At very large training corpus sizes both algorithms
perform extremely well.®

For the smallest training corpus sizes MBDP-1
will learn as it tries to segment the test corpus, so per-
formance should be better than shown here on larger
test corpora. For the training corpora above 2'® words
performance is already so good that this effect is neg-
ligeable.

SPPM has one free parameter, the order of the
model. All experiments in this paper use order 3,
which Teahan et al. (2000) describe as giving the best
results overall. Although Teahan et al. do not discuss
adaptation of the order, we have implmented an adap-
tation scheme and found that it generally chooses or-
der 5 for large English corpora. This improves the re-
sults for large corpora by about two percentage points,
making them statistically indistinguishable from the
results of MBDP-1.

4.3 Discussion of the Experiment

In this discussion we focus on the results in Chi-
nese, since text segmentation has no real appli-
cation in English. Considering precision and re-
call together, it appears that MBDP-1 performs
much better when the available training corpus
is smaller than 2'? words, somewhat better when
the training corpus is between 2'2 words and 2!8
words, and indistinguishably when the training
corpus is 22° words.

There is no simple, complete explanation for the
fact that MBDP-1 outperforms PPM with small
training corpora. However, it is worth keeping in
mind that MBDP-1 is able to hypothesize the exis-
tence of words even when it has no training corpus,
recognize them when they occur in later utter-
ances, and segment them out. It does this, in part,
by making very good use of sentence boundaries
and other punctuation. Initially, when it has little
or no experience, MBDP-1 tends to treat entire
sentences (or other punctuation-bound phrases)
as single words, storing them in a list of famil-
iar words. Occasionally, phrases do in fact consist
of only one or a few words. Such short phrases are
likely to occur again embedded in longer phrases.
When they do, they tend to be segmented out,
leaving the remaining contiguous segments of the
phrase to be treated as though they were separate
phrages. This leads to the isolation and storage
of more words. For example, the one-word sen-
tence Look! would generally be interpreted as a
single word and stored in the list of familiar words.
If it occurred again in the phrase Lookhere!, it
would tend to be segmented out, leaving here to
be treated as though a separate phrase.

PPM, on the other hand, is not based on hy-
pothesizing words but rather on estimating the
probability of word boundaries in various contexts.
Since word boundaries appear only in segmented
training text, PPM does not learn from unseg-
mented text. The fact that it can learn only from
the training corpus and not from exposure to un-
segmented text may be one reason that it requires
a larger training sample.

The training and test materials for this experi-
ment, while distinct, came from exactly the same
source. The performance of both algorithms can
be expected to deteriorate as the training and test
corpora diverge in genre.

5 General Discussion

The process of adapting a natural language pro-
cessing algorithm to a new language holds great
theoretical interest. In general, algorithms that
can be adapted automatically and cheaply are to
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Figure 2: Precision and recall on a sample the Chinese PH corpus as a function of log, training corpus
size: MBDP-1 trained and PPM trained. Error bars are two standard errors of the mean.
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corpus size: MBDP-1 trained and PPM trained. Error bars are two standard errors of the mean.

be preferred over those that are more difficult to
adapt, all other things being equal or nearly so.
From this theoretical perspective, then, MBDP-
1 appears to be preferable to PPM. If I thought I
might be dropped by helicopter into an unexplored
region of Borneo with only a palmtop computer,
discover a new written language, and need to port
a text segmenter to it with minimal effort, I would
plan to bring MBDP-1 along.

In practice, adaptation to a completely new lan-
guage is relatively rare. If the new language rep-
resents an important application, significant re-
sources are likely to be available for the port —
perhaps even a hand-segmented million-word cor-
pus. Adaptation to a new text genre, however,
is extremely common. An individual researcher
might want to apply natural language process-
ing tools to, say, novels, poetry, scientific writing,
or netnews, without the backing of significant re-
sources such as large, carefully annotated corpora.

Such a researcher might be willing to segment 212
or even 2'* words of text in the new genre by hand,
but probably could not produce a corpus of 26
words, and certainly not 2'® words. For this ap-
plication, then, MBDP-1 would appear to be the
best available algorithm.

In the future, we plan to investigate the is-
sue of training on one genre and testing on an-
other, or using a large training corpus from one
genre (such as journalistic text) supplemented by
a small training corpus from a different test genre.
We also plan to investigate the performance of
MBDP-1 when it is given a small, hand-segmented
training corpus followed by a large, unsegmented
“practice” corpus, before testing. This regimen
could be very useful for adaptation to a new genre.
Finally, we plan to investigate more elaborate
probability models and search algorithms. Ulti-
mately, we hope to develop a tool that can adapt
rapidly to a new genre with little or no hand-



segmented training text.

5.1 Web site for more information

For more information, please see the web site
for the Language Science Research Group at
lsrg.cs.wustl.edu. An online demo of MBDP-1
(using no training text whatsoever) can be found
on the demos page.

Acknowledgments

We are very grateful to Bill Teahan, Yingying
Wen, and Ian Witten for sharing their source code
with us and helping us to reproduce their experi-
ments. This work was supported, in part, by grant
number DCO03082 from the National Institutes of
Health to MRB.

References

Michael R. Brent. 1999a. An efficient, probabilis-
tically sound algorithm for segmentation and
word discovery. Machine Learning, 34:71-106.

Michael R. Brent. 1999b. Speech segmentation
and word discovery: A computational perspec-
tive. Trends in Cognitive Science, 3:294-301.

Kwok-Shing Cheng, Gilbert H. Young, and Kam-
Fai Wong. 1999. A sudy on word-based and
integral-bit chinese text compression algorithm.
Journal of the American Society for Informa-
tion Science, 50:218-228.

Delphine Dahan and Michael R. Brent. 1999.
On the discovery of novel word-like units from
utterances: An artificial-language study with
implications for native-language acquisition.
Journal of Experimental Psychology: General,
128:165-188.

Yubin Dai, Christopher S. G. Khoo, and Teck Ee
Loh. 1999. A new statistical formula for chi-
nese text segmentation incorporating contex-
tual information. In Proceedings of ACM SI-
GIR, pages 82-89.

Julia Hockenmajer and Chris Brew. 1998. Error
driven segmentation of chinese. In Communica-
tions of COLIPS, volume &, pages 69-84.

David Palmer. 1997. A trainable rule-based algo-
rithm for word segmentation. In Proceedings of
the 35th Annual Meeting of the Association for
Computational Linguistics.

Jay M. Ponte and W. Bruce Croft. 1996. USeg;:
a retargetable word segmentation procedure for
information retrieval. Technical Report TR96-
2, University of Massachusetts, Amherst, MA.

W. J. Teahan, S. Inglis, John G. Cleary, and
G. Holmes. 1998. Correcting english text using
ppm models. In J. A. Storer and J. H. Reif, ed-
itors, Proceedings of Data Compression Confer-
ence, pages 289-298, Los Alamitos, CA. IEEE
Computer Society Press.

W. J. Teahan, Yingying Wen, Rodger McNab, and
Ian H. Witten. 2000. A compression-based al-
gorithm for chinese word segmentation. Com-
putational Linguistics, 26:375-393.

Zimin Wu and Gwyneth Tseng. 1993. Chinese
text segmentation for text retrieval: Achieve-
ments and problems. JASIS, 44:532-542.



