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Abstract

For ambiguoussentences traditional
semanticsconstructionproduceslarge
numbers of higherorder formulas,
which mustthenbe g-reducedndivid-
ually. Underspecifiedersionscanpro-
ducecompactdescriptionsof all read-
ings,butit is notknown how to perform
B-reductionon thesedescriptions.We
shav how to do this using s-reduction
constraintsin the constraintlanguage
for A-structuregCLLS).

1 Intr oduction

Traditionalapproache$o semanticonstruction
(Montague,1974; Coopey 1983)emplg formu-
las of higherorderlogic to derive semanticrep-
resentationsompositionallythen 3-reductionis
appliedto simplify theserepresentationsWhen
theinputsentencés ambiguoustheseapproaches
require all readingsto be enumeratedand 8-
reducedndividually. For large numbersof read-
ings,thisis bothinefficientanduneleyant.
ExistingundespecificatiorapproachefReyle,
1993; van Deemterand Peters, 1996; Pinkal,
1996;Bos,1996)provide a partialsolutionto this
problem.They delaytheenumeratiorof theread-
ings and representhem all at oncein a single,
compactdescription An underspecificatiofor-
malismthatis particularlywell suitedfor describ-
ing higherorderformulasis the ConstraintLan-
guagefor LambdaStructuresCLLS (Eggetal.,
2001; Erk et al., 2001). CLLS descriptionscan
be derived compositionallyand have beenused
to dealwith arich classof linguistic phenomena
(Koller et al., 2000; Koller and Niehren,2000).

They are basedon dominanceconstraintgMar-
cusetal., 1983;Rambav etal., 1995)andextend
them with parallelism(Erk and Niehren, 2000)
andbindingconstraints.

However, lifting S-reductionto anoperatioron
underspecifiedlescriptionsis not trivial, andto
our knowledgeit is not knowvn how this canbe
done.Suchanoperation-whichwe will call un-
derspecifiedg-reduction— would essentiallys-
reduceall describedformulasat onceby der-
ing a descriptionof thereducedormulas. In this
paperwe shav how underspecifie@-reductions
canbe performedn theframevork of CLLS.

Our approachextendsthe work presentedn
(Bodirsky etal.,2001),whichdefiness-reduction
constaints and shawvs how to obtaina complete
solution procedureby reducingthem to paral-
lelism constraintsin CLLS. The problem with
this previous work is thatit is often necessaryo
performlocal disambiguations.Here we add a
nev mechanismwhich, for a large classof de-
scriptions,permitsus to perform underspecified
B-reductionstepswithout disambiguatingandis
still completefor the generalproblem.

Plan. We startwith a few examplesto shav
what underspecifieg@s-reductionshoulddo, and
why it is not trivial. We thenintroduceCLLS
and g-reductionconstraints. In the core of the
paperwe presenta procedurefor underspecified
B-reductionandapplyit to illustrative examples.

2 Examples

In this section,we shav what underspecified-
reductionshoulddo, andwhy the taskis nontriv-
ial. Considerfirst the ambiguoussentencdevery
studentdidn’t pay attention In first-orderlogic,
thetwo readingscanberepresenteds
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Figurel: Underspecifie@-reductionstepsfor ‘Every studentdid not pay attention’
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Figure 2: Descriptionof ‘Every studentdid not
payattention’

Vz(std z — —(payatt z))
—(Vz(std x — payatt z))

A classicalcompositionabemanticEonstruction
first derivesthesetwo readingsn theform of two
HOL-formulas:

(Every std) Az (—payatt z)
—((Every std) Az (payatt x))

whereEvery is anabbreiation for theterm
Every = APAQ(Vz(P z — Q 1))

An underspecifiediescriptionof bothreadingss
shawvn in Figure2. For now, noticethatthegraph
hasall the symbolsof the two HOL formulasas
nodelabels,thatvariablebinding is indicatedby
dashedarrowns, andthattherearedottedlinesindi-
catingan “outscopesrelation;we will fill in the
detailsin Section3.

Now we wantto reducethe descriptionin Fig-
ure2 asfaraspossible.Thefirst G-reductionstep,
with the red at X is straightforvard. Even
thoughthe descriptionis underspecifiedthe re-
ducingpartis a completelyknown A-term. The
resultis shavn on the left-handsideof Figurel.
Herewe have justonerede, startingatYy, which
bindsa single variable. The next reductionstep
is lessobvious: The — operatorcould eitherbe-
long to the context (the partbetweenR; andYp)
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Figure3: Problemswith rewriting of descriptions

or to theargument(below Yy). Still, it is not dif-

ficult to give a correctdescriptionof the result:
it is shavn in the middle of Fig. 1. For the final

step,which takesusto the rightmostdescription,
therede« startsat Zg. Notethatnow the = might
be part of the body or part of the contet of this
redex. Theendresultis preciselya descriptionof

thetwo readingsasfirst-orderformulas.

Sofar, the problemdoesnot look too difficult.
Twice,we did not know whatexactly the partsof
therede were,but it wasstill easyto derive cor
rect descriptionsof the reducts. But this is not
always the case. ConsiderFigure 3, an abstract
but simpleexample. In the left descriptionthere
aretwo possiblepositionsfor the —: abore X or
below Y. Proceedingidvely asabore, we arrive
attheright-handdescriptiorin Fig. 3. Butthisde-
scriptionis alsosatisfiedby theterm f(—(b(a))),
which cannotbe obtainedby reducingary of the
termsdescribedn the left-handside. More gen-
erally, the nave “graph rewriting” approachis
unsound;the resultingdescriptionscan have too
mary readings. Similar problemsarisein (more
complicated)examplesfrom semanticssuchas
the coordinationn Fig. 8.

The underspecified3-reductionoperationwe
proposehere doesnot rewrite descriptions. In-
stead,we describethe resultof the stepusinga



“B-reductionconstraint’that ensuregshatthe re-
ducedtermsarecapturectorrectly Thenwe usea
saturationcalculusto make the descriptionmore
explicit.

3 Treedescriptionsin CLLS

In this section,we briefly recall the definition of
the constrainlanguagefor A-structuregCLLS).
A morethoroughand completeintroductioncan
befoundin (Eggetal.,2001).

We assumea signature® = {f,g,...} of
function symbols, each equippedwith an arity
ar(f) > 0. A tree@ consistsof a finite setof
nodesr € Dy, eachof whichis labeledoy asym-
bol Ly(m) € ¥. Eachnoder hasa sequencef
childrennl,... ,7n € Dg wheren = ar(Lgy(r))
is the arity of thelabelof 7. A singlenodee, the
root of 4, is notthechild of ary othernode.

3.1 Lambda structures

Theideabehind\-structureds thata A-termcan
be consideredsa pair of atreewhich represents
the structureof the term and a binding function
encodingvariablebinding. Weassumé: contains
symbolsvar (arity 0, for variables)lam (arity 1,
for abstraction)@ (arity 2, for application),and
analogoudabelsfor thelogical connecties.

Definition 1. A A-structure 7 is a pair (6, A) of
atreed anda bindingfunction) that mapsevery
noder with labelvar to a nodewith labellam, V,
or 3 dominatingr.

The binding function X explicitly lam<
mapshodesrepresentingyariablesto ,l
the nodesrepresentingheir binders.  / \ !
Whenwe draw A-structuresyve rep- [ var
resentthe binding function usingdashedarrows,
asin the pictureto theright, which representshe
AtermAz. f(z).

A A-structurecorrespondsiniquelyto aclosed
A-term modulo a-renaming. We will freely
consider\-structuresas first-order model struc-
tures with domain Dy. This structuredefines
the following relations. The labeling relation
m:f(m1,... ,m) holdsin @ if Ly(x) = f and
m; = mi forall 1 < ¢ < n. Thedominancee-
lation w<* ' holdsiff thereis a path#” suchthat
mr” = «'. Inequality # is simply inequality of
nodes;disjointnessr L7’ holdsiff neitherr<* =’
nor o' <*mr.

3.2 Basicconstraints

Now we define the constraintlanguagefor A-
structures(CLLS) to talk abouttheserelations.
X,Y, Z arevariablesthatwill denotenodesof a
A-structure.

¢ u= X<V |X£Y | X1Y [pAg

| Xef(Xne .o Xn) (ar(f) = n)
| AX)=Y [ A 1(Xo)={X1,..., Xn}

A constrainty is a conjunctionof literals (for
dominance labeling, etc). We usethe abbrei-
ations X<tY for X<*Y A X # Y andX =
Y for X<*Y A Y<*X. The A-binding literal
A(X)=Y expresseshatY denotesanodewhich
the binding function mapsto X. The inverse
A-bindingliteral A= (X)={X1, ... , X,,} states
that X4,..., X, denotethe entire set of vari-
able nodesboundby X,. A pair (7,0) of a A-
structurer andavariableassignment satisfiesa
A-structureiff it satisfieseachliteral, in the obvi-
ousway.
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Figure 4: The constraint graph of
AHX)={X1, X2} A Xa* X7 A X<*Xo

Wedraw constraintasgraphqFig. 4) in which
nodesrepresenvariables.Labelsandsolid lines
indicatelabelingliterals,while dottedlinesrepre-
sentdominanceDashedarravsindicatethebind-
ing relation; disjointnessand inequality literals
arenot representedTheinformal diagramsrom
Section2 canthusbe readas constraintgraphs,
which givesthema preciseformal meaning.

3.3 Segmentsand Correspondences

Finally, we define s@gmentsof \-structuresand
correspondenceBetweersegments. This allows
us to define parallelism and -reduction con-
straints.

A sggmentis acontiguougpartof a A-structure
thatis delineatedy severalnodesof thestructure.
Intuitively, it is a treefrom which somesubtrees
have beencutout, leaving behindholes.

Definition 2 (Segments).A sgmenta of a A-
structue (6, \) is atuple o/ ... , m, of nodes



in Dy sud that mo<*m; and m; Lm; holdin & for
1 <i# j < n Therootr(a) is m, and
hs(a) = m1,...,m, IS its (possiblyempty)se-
quenceof holes Thesetb(«) of nodesof a is

b(a) = {r € D, | r(a)<*r, andnotm;<tr

forall1 <i<n}

To exemptthe holes of the sggment, we define
b~ (a) = b(a) — hs(a). If hs(a) is a singleton
sequencehenwe write h(«) for the uniquehole
of a, i.e. theuniquenodewith h(«a) € hs(c).

For instance,a = 1 /my, w3 IS @ Smentin
Fig. 5; its rootis 1, its holesarews andrs, and
it containsthenodesb(«) = {my, 75, 72, 73 }.

Two tree sggmentsa, 5 overlap properly iff
b~(a) N b~ (B) # 0. The syntacticequialent
of a sggmentis a sgmentterm X,/ X1,... X,,.
We usethelettersA, B, C, D for themandextend
r(A), hs(A) , andh(A) correspondingly

A correspondendeinctionis intuitively aniso-
morphismbetweenseggments,mappingholesto
holesandrootsto rootsandrespectinghe struc-
turesof thetrees:

Definition 3. A correspondencefunction be-
tweenthe sggmentsa;, 5 is a bijective mapping
¢ : b(a) — b(B) sud that c mapsthe i-th hole
of a to thes-th holeof g for ead 4, andfor every
m € b~ (a) andeverylabel f,

m:f(ml,...

Thereis at mostone correspondencinction
betweerary two givenseggments.Thecorrespon-
denceliteral co(C, D)(X)=Y expresseghat a
correspondenciinction ¢ betweenthe sgments
denotedby C and D exists,that X andY denote
nodeswithin thesesegment,andthatthesenodes
arerelatedby c.

Together theseconstructsallow us to define
parallelism which was originally introducedfor
theanalysisof ellipsis(Eggetal.,2001). Thepar
allelismrelationa: ~ 8 holdsiff thereis a corre-
spondencdunction betweena and § that satis-
fies somenaturalconditionson A-binding which
we cannotgo into here. To modelparallelismin
thepresencef global A-bindersrelatingmultiple
parallelsegmentsBodirsky etal. (2001 general-
ize parallelismto group parallelism Group par
allelism(a, ... ,a,) ~ (B1,-..,Bn) isentailed

,mn) < c(m):f(c(nl),...c(mn)).
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FigureS: f ((Az.z(z))(a)) —p f (2(a))

by the conjunctionA?_; o; ~ f; of ordinarypar
allelisms,butimposesslightly wealerrestrictions
on A-binding. By way of example considetthe A-
structurein Fig. 5, where(mg /71, o /74, w3 /) ~
(mg/ 7y, w1 /7y, 74 /) holds.

On the syntactic side, CLLS provides
group parallelism literals (Aj,...,A,) ~
(By,...,By) totalk about(group)parallelism.

4 Betareduction constraints

Correspondencemealsousedin thedefinitionof
B-reductionconstaints (Bodirsky et al., 2001).
A p-reduction constraintdescribesa single -
reductionstepbetweentwo A-terms;it enforces
correctreductioneven if the two termsare only
partially known.
Standards-reductionhastheform

C((Az.B) A) =g C(B[z/A]) = freefor A.

ThereducingA-termconsistof contet C which
containsarede (Az.B)A. Therede itself is an
occurrenceof an applicationof a A-abstraction
Az.B with body B to agumentA. S-reduction
thenreplacesall occurrence®f the boundvari-
ablez in thebodyby theagumentwhile preserv-
ing the context.

We canpartitionbothredex andreductinto ar
gument,body, and context sggments Consider
Fig. 5. The A-structurecontainsthe reducingA-
termf ((Az.z(z))(a)) startingatmy. Thereduced
term can be found at 7. Writing ~y,~’ for the
contet, 3,8 for the body and «, o' for the ar
gumenttreesaymentsof the reducingandthere-
ducedterm,respectiely, we find

y=m/m1 [ =myfrs «a=m3/
¥ =l B =y o =l



Becausewe have boththe reducingtermandthe
reducedermaspartsof the same-structurewe
can expressthe fact that the structurebelov =,
canbe obtainedby S-reducingthe structurebe-
low 7o by requiringthat o correspondso o/, 3
to 4/, and~ to +', againmodulobinding. Thisis
indeedtrue in the given A-structure,aswe have
seembove.

More generally we definethe g-reductionre-
lation

(v, B, @) LN ,B,a, ... ah)

for abody g with n holes(for the variablesbound
in therede). The S-reductionrelationholdsiff
two conditionsaremet: (v, 8, &) mustform are-
ducingterm, andthe structuralequalitiesthat we
have notedabore musthold betweerthetreesey-
ments. The latter can be statedby the following
groupparallelismrelation,which alsorepresents
the correctbindingbehaiour:

(7, B,a,... ,a) ~(+,6,a),...,al)
Note that any A-structuresatisfyingthis relation
must containboth the reducingand the reduced
termassubstructuresincidentally this allows us
to accommodatdor global variablesin A-terms;
Fig. 5 shawvs thisfor the globalvariablez.

We now extend CLLS with g-reductioncon-
straints

B
(C7B’A) —> (CI7B,7 37"' 7A;L)a

whichareinterpretedy the 8-reductiorrelation.
The reduction stepsin Section2 can all be

representedorrectly by g-reductionconstraints.

Considete.g.thefirst stepin Fig. 1. Thisis repre-

sentedoy the constraint(R; /Yy, Y2/Y3,Y4/) LA
(Ro/Zy, Zy/Z3, Z3/). The entire middle con-
straintin Fig. 1 is entailedby the -reductionlit-
eral. If we learnin additionthat e.g. Y7<*Yj,
theB-reductionliteral will entail Z;<*Z, because
the segmentsmust correspond. This correlation
betweenparallel sggmentsis the exact sameef-
fect (quantifier parallelism)that is exploited in
the CLLS analysisof “Hirschbiihler sentences”,
where ellipses and scopeinteract (Egg et al.,
2001).
B-reductionconstraintslsorepresentheprob-
lematic examplein Fig. 3 correctly The spuri-
oussolutionof the right-handconstraintdoesnot

usb(yp, X) =
if all syntacticredexesin ¢ belov X
arereducedhenreturn(y, X)
else
pick aformularedexy (C, B, A) in ¢
thatis unreducedwith X=r(C) in ¢
add(C, B, A) % (', B, Al,...  A!)
to ¢ whereC’, B', A},... , Al arenew
segmenttermswith freshvariables
addX Lr(C)toy
for all ¢’ € sol ve(yp) dousb(¢', r(C"))
end

Figure6: Underspecified-reduction

satisfy the s-reductionconstraint,as the bodies
would not correspond.

5 UnderspecifiedBeta Reduction

Having introduced -reduction constraints,we
now shav how to procesghem. In this section,
we presenthe procedureusb, which performsa
sequencef underspecifie@-reductionstepson
CLLS descriptions.This procedurds parameter
ized by anothermproceduresol ve for solving 8-
reductionconstraintsywhichwe discussn thefol-
lowing section.

A syntacticrede in a constrainty is a subfor
mulaof thefollowing form:

redexY(C,B,A) =df h(C)@(Y,T‘(A))
A Yiam(r(B)) A A 1Y) = hs(B)

A contt C of aredex musthave a uniquehole
h(C). An n-ary redex hasn occurrencesf the
boundvariable,i.e. thelengthof hs(B) is n. We
callarede linear if n = 1.

The algorithmusb is shavn in Figure 6. It
startswith aconstraintp andavariable X', which
denotesthe root of the current A\-termto be re-
duced. (For example, for the rede in Fig. 2,
this root would be Ry.) The procedurethense-
lectsanunreducedyntacticredex andaddsa de-
scriptionof its reductat a disjoint position. Then
thesol ve procedurds appliedto resole the 3-
reductionconstraint,at leastpartially. If it has
to disambiguateif returnsoneconstraintor each
readingit finds. Finally, usb is calledrecursvely
with the new constraintand the root variable of
thenew A-term.



Intuitively, thesol ve procedureaddsentailed
literals to ¢, makingthe nenv S-reductionliteral
moreexplicit. Whenpresentedvith theleft-hand
constraintn Fig. 1 andtherootvariableR;, usb
will adda -reductionconstraintfor the redex at
Y:; thensol ve will derivethemiddleconstraint.
Finally, usb will call itself recursvely with the
new rootvariable Ry, andtry to resole theredex
at Zs3, etc. Thepartialsolving stepsdo essentially
the sameas the naive graphrewriting approach
in this case;but the new algorithmwill behae
differentlyon problematiacconstraintasin Fig. 3.

6 A singlereductionstep

In this sectionwe presenta proceduresol ve for
solving S-reductionconstraints. We go through
several examplesto illustrate how it works. We
have to omit somedetailsfor lack of spacethey
canbefoundin (Bodirsky etal., 2001).

The aim of the procedureis to malke explicit
information that is implicit in S8-reductioncon-
straints: it introducesnew correspondingvari-
ablesand copies constraintsfrom the reducing
termto thereducederm.

We build uponthe solver for 8-reductioncon-
straintsfrom (Bodirsky etal., 2001). This solver
is completej.e. it canenumeratell solutionsof
aconstraintbut it disambiguatea lot, which we
wantto avoid in underspecifie@-reduction. We
obtain an alternatve proceduresol ve by dis-
abling all rules which disambiguateand adding
some nev non-disambiguatingules. This al-
lows usto performa completeunderspecifiegs-
reductionfor mary examplesrom underspecified
semanticsvithout disambiguatingtall. In those
casesvherethenew rulesalonearenotsuficient,
we canstill fall backonthe completesoler.

6.1 Saturation

Our constraintsolver is basedon satuation with

a givensetof satuation rules Very briefly, this
meanghata constrainis seenasthe setof its lit-

erals,to which moreand moreliterals areadded
accordingto saturation rules A saturationrule
of theform ¢y — Vi_,p; saysthatwe canadd
one of the p; to ary constraintthat containsat
leasttheliteralsin ¢¢. We only applyruleswhere
eachpossiblechoiceaddsnew literalsto theset;a

constraints satumtedunderasetS of saturation

rulesif norulein S canaddarythingelse.sol ve
returnsthe setof all possiblesaturation®f its in-
put. If the rule systemcontainsnondeterminis-
tic distribution rules,with n > 1, this setcanbe
non-singletonput theruleswe aregoingto intro-
duceareall deterministigpropagationrules(with
n = 1).

6.2 Solving Beta Reduction Constraints

The main problemin doing underspecifieds-
reductionis thatwe may not know to which part
of arede a certainnodebelongs(asin Fig. 1).
We addresshis problemby introducing under
specifiedcorrespondencéterals of theform

CO{(C1, 1), ., (Cay D) D(X)=Y.

Such a literal is satisfiedif the tree segments
denotedby the C’'s and by the D’s do not
overlap properly and thereis an ¢ for which
co(Cj, D;)(X) =Y is satisfied.

In Fig. 7 we presentthe rulesUB for under
specifiedS-reduction;the first five rules are the
coreof thealgorithm. To keeptherulesshort,we
usethefollowing abbreiations(with 1 < ¢ < n):

beta =qf (C,B,A) S (C', B, A},... A)
CO;  =def CO({(CaCI)a(B’BI)’(A’A;)})

The proceduresol ve consistsof UB together
with the propagatiorrulesfrom (Bodirsky etal.,
2001). The rest of this sectionshavs how this
procedureperatesndwhatit canandcannotdo.
First, we discussthe five core rules. Rule
(Beta) statesthat wheneer the 3-reductionrela-
tion holds,groupparallelismholds,too. (This al-
lowsusto fall backonacompletesolverfor group
parallelism.)Rule(Var)introducesanew variable
asacorrespondendf aredex variable,and(Lab)
and (Dom) copy labelingand dominancediterals
from the redex to the reduct. To understandhe
exceptionghey make, considere.g.Fig. 5. Every
nodebelow 7y hasa correspondenn thereduct,
exceptfor w3. Everylabelingrelationin therede
alsoholdsin thereduct,exceptfor thelabelingsof
the@-noder, thelam-noders, andthevar-node
m4. For the variablesthat possessa correspon-
dent,all dominancerelationsin theredex holdin
thereducttoo. Therule (A.Inv) copiesinverseA-
binding literals, i.e. the informationthatall vari-
ablesboundby a A-binderareknown. For now,
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Figure7: New saturatiorrulesUB for constraintsolving duringunderspecifie@-reduction.

it is restrictedto linear redexes; for the nonlinear

casewe have to take recourseo disambiguation.

It canbe shavn thattherulesin UB aresound
in thesensdhatthey arevalid implicationswhen
interpretecover A-structures.

6.3 SomeExamples

To seewhattherulesdo, we go throughthe first
reductionstepin Fig. 1. The g-reductioncon-
straintthatbelonggto this reductionis
(¢, B,4) % (¢, B!, A)) with
C=R/Yy,, B=Y\/Ys, A=Y,
C' = Ry/Zy, B' = Zy/Zs, A} = Z3/

Now saturationcan add more constraints for
examplethefollowing:

(1) Ye#1 (5) Ye#Y3

(2) Vi#n (6) Zo(Z7) (Lab)
(3) E|Z6.C01(Y6):Z6 (Var) (7) Roy<*Zg (Dom)
(4) 3Zr.coi(Y7)=Z7 (Var)

We get (1), (2), (5) by propagatiorrulesfrom
(Bodirsky et al., 2001): variablesbearingdiffer-
entlabelsmustbe different. Now we canapply
(Var) to get(3) and(4), then(Lab) to get(6). Fi-
nally, (7) shavs oneof the dominancesddedby
(Dom). Copiesof all othervariablesandliterals
canbe computedn acompletelyanalogougash-
ion. In particular copying givesusanothemredex
startingat Zg, andwe cancontinuewith thealgo-
rithm usb in Figure6.

Notewhathappensn caseof anonlinearede,
asin theleft pictureof Fig. 8: astherede is 2-
ary, therulesproducetwo copiesof the— labeling
constraintpnevia co, andonevia co,. Theresult
is shawvn on theright-handside of thefigure. We
will returnto this examplein aminute.

6.4 More Complex Examples

The lasttwo rulesin Fig. 7 enforceconsisteng
betweenscopingin the redex andscopingin the

reduct.Therulesuseliteralsthatwereintroduced
in (Bodirsky etal.,2001),of theforms X € b(A),
X ¢ i(B), etc.,where A, B aresegmentterms.
Wetake X € b(A) to meanthatX mustbeinside
thetreesegmentdenotedby A, andwetake X €
i(B) (i for 'interior’) to meanthatX € b(B) and
X denotesieithertherootnoraholeof B.

As an example, reconsiderFig. 3: by rule
(Par.part), the reduct (right-handpicture of Fig.
3) cannotrepresentheterm f(—(b(a))) because
thatwould requirethe — operatorto bein i(B’).

Similarly in Fig. 8, wherewe have introduced
two copiesof the — label. If the — in the rede
on the left endsup as part of the contet, there
shouldbe only one copy in the reduct. This is
broughtaboutby therule (Par.all) andthefactthat
correspondencis a function (which is enforced
by rulesfrom (Erk etal., 2001)which arepartof
the solver in (Bodirsky et al., 2001)). Together
they canbe usedto infer that Z, canhave only
onecorrespondernin thereductcontext.

7 Conclusion

In this paper we have shavn how to performan
underspecifie@-reductionoperatiorin theCLLS
framawork. Thisoperatiortransformsunderspec-
ified descriptionsof higherorder formulasinto
descriptionsof their 8-reducts. It canbe usedto
essentially3-reduceall readingsof anambiguous
sentencatonce.

It is interestingto obsere how our under
specified g-reductioninteractswith parallelism
constraintsthat were introducedto model el-
lipses. Considerthe elliptical three-readingex-
ample“Peterseesaloophole. Every lawyer does
too” Underthe standardanalysisof ellipsis in
CLLS (Egg et al., 2001), “Peter” must be rep-
resentedhs a generalizedquantifierto obtainall
threereadings.This leadsto a spuriousambigu-
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Figure8: “PeterandMary do notlaugh’

ity in the sourcesentencewhich onewould like

to getrid of by g-reducingthe sourcesentence.
Our approachcan achieve this goal: Adding

[B-reduction constraintsfor the sourcesentence
leavesthe original copy intact,andthetamgetsen-
tencestill containghe ambiguity

Under the simplifying assumptiorthat all re-
dexes are linear, we canshav thatit takestime
O(kn?) to performk stepsof underspecified-
reductionon a constraintwith n variables. This
is feasiblefor large k aslong asn < 50, which
should be sufiicient for most reasonablesen-
tenceslf therearenon-linearedexes,thepresent
algorithmcantake exponentialtime becauseub-
termsareduplicated.Thesameproblemis known
in ordinary A-calculus;aninterestingguestionto
pursueis whetherthe sharingtechniquesdevel-
opedthere(Lamping,1990)carry over to theun-
derspecificatiorsetting.

In Sec.6, we only employ propagatiorrules;
thatis, we never disambiguate.This is concep-
tually very nice, but on more complex examples
(e.g.in mary caseswith nonlinearredexes) dis-
ambiguationis still needed.

Thisraiseshoththeoreticandpracticalissues.
On the theoreticallevel, the questionsof com-
pletenesgeliminationof all redexes)andconflu-
encestill have to be resohed. To that end, we
first have to find suitablenotionsof completeness
andconfluencen our setting.Also we wouldlike
to handlelarger classeof exampleswithout dis-
ambiguation.On the practicalside,we intendto
implementthe procedureand disambiguaten a
controlledfashionso we canreducecompletely
andstill disambiguateslittle aspossible.
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