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Abstract

The theoretical study of the range
concatenationgrammar[RCG] formal-
ism hasrevealedmany attractive prop-
erties which may be used in NLP.
In particular, rangeconcatenationlan-
guages[RCL] can be parsedin poly-
nomial time andmany classicalgram-
matical formalisms can be translated
into equivalent RCGswithout increas-
ing their worst-caseparsingtime com-
plexity. For example, after transla-
tion into an equivalent RCG, any tree
adjoining grammarcan be parsedin�������
	

time. In this paper, we studya
parsingtechniquewhosepurposeis to
improvethepracticalefficiency of RCL
parsers.Thenon-deterministicparsing
choicesof the main parserfor a lan-
guage� aredirectedby a guidewhich
usesthesharedderivationforestoutput
by aprior RCL parserfor asuitablesu-
persetof � . The resultsof a practi-
cal evaluationof thismethodon a wide
coverageEnglishgrammararegiven.

1 Intr oduction

Usually, duringanondeterministicprocess,when
anondeterministicchoiceoccurs,oneexploresall
possibleways,either in parallelor oneafter the
other, usinga backtrackingmechanism.In both
cases,the nondeterministicprocessmay be as-
sistedby anotherprocessto which it asksits way.
This assistantmaybeeithera guideor anoracle.

An oraclealwaysindicatesall thegoodwaysthat
will eventually lead to success,and thosegood
waysonly, while aguidewill indicateall thegood
waysbut mayalsoindicatesomewrongways.In
other words, an oracle is a perfectguide (Kay,
2000), and the worst guide indicatesall possi-
ble ways. Given two problems ��
 and ��� and
their respective solutions ��
 and ��� , if they are
suchthat ��
������ , any algorithmwhich solves� 
 is a candidateguide for nondeterministical-
gorithmssolving ��� . Obviously, supplementary
conditionshavetobefulfilled for ��
 to beaguide.
Thefirst onedealswith relative efficiency: it as-
sumesthat problem ��
 canbe solved moreeffi-
ciently thanproblem � � . Of course,parsersare
privileged candidatesto be guided. In this pa-
per we apply this techniqueto the parsingof a
subsetof RCLsthatarethelanguagesdefinedby
RCGs.Thesyntacticformalismof RCGsis pow-
erful while stayingcomputationallytractable.In-
deed,thepositive versionof RCGs[PRCGs]de-
fines positive RCLs [PRCLs] that exactly cover
theclassPTIME of languagesrecognizablein de-
terministic polynomial time. For example, any
mildly context-sensitive languageis aPRCL.

In Section 2, we presentthe definitions of
PRCGsandPRCLs. Then,in Section3, we de-
signanalgorithmwhich transformsany PRCL �
into anotherPRCL ��
 , ������
 suchthatthe(the-
oretical) parsetime for ��
 is lessthan or equal
to the parsetime for � : the parserfor � will be
guidedby the parserfor ��
 . Last, in Section4,
werelatesomeexperimentswith awidecoverage
tree-adjoininggrammar[TAG] for English.



2 PositiveRangeConcatenation
Grammars

This sectiononly presentsthe basicsof RCGs,
moredetailscanbefoundin (Boullier, 2000b).

A positive range concatenation grammar
[PRCG] � � �"!$#&%'#)(*# � # � 	 is a 5-tuplewhere!

is a finite set of nonterminalsymbols(also
calledpredicatenames),

%
and
(

arefinite, dis-
joint setsof terminalsymbolsandvariablesym-
bols respectively, �,+ ! is the start predicate
name, and � is afinite setof clauses

-*.0/1- 
�23232 -�4
where 5 617 and eachof

-�. # - 
 # 23232 # -�4 is a
predicateof theform

8 �:9 
 # 23232 #;9=<&# 23232 #;9?>@	
where AB6DC is its arity,

8 + ! , and eachof9�< + �E%�FG(H	&I , CKJML�JNA , is anargument.
Each occurrenceof a predicatein the LHS

(resp. RHS) of a clauseis a predicatedefini-
tion (resp.call). Clauseswhich definepredicate
name

8
are called

8
-clauses. Each predicate

name
8 + ! hasa fixed arity whosevalue is

arity
� 8 	

. By definition arity
� � 	 �OC . The ar-

ity of an
8

-clauseis arity
� 8 	

, and the arity P
of a grammar(we have a P -PRCG)is the max-
imum arity of its clauses. The size of a clauseQ � 8 . � 23232 	 / 23232 8 <&� 23232 	 23232 8 4 � 23232 	 is the
integer R Q RS�UT

4<WV .
arity
� 8 <:	

andthesizeof � isRX�YRZ� T\[&]Z^ R Q R .
For a given string _`�BaS
�23232badce+ % I , a pair

of integers
� L #:fg	 s.t. 7eJhLiJ f J � is calleda

range, andis denotedjELk2l2 fgmon : L is its lowerbound,f
is its upperboundand

fGp L is its size. For a
given _ , the set of all rangesis noted q n . In
fact, jEL;2l2 frmon denotesthe occurrenceof the stringa <Ws 
�23232baut in _ . Two rangesjELk2l2 frmon and j:P?2l2wv mon
canbeconcatenatediff thetwobounds

f
and P are

equal,theresultis therange jELk2l2wv m n . Variableoc-
currencesor moregenerallystringsin

�E%xFN(H	&I
can be instantiatedto ranges. However, an oc-
currenceof the terminal y canbe instantiatedto
the range j fHp CZ2l2 fgmon if f yz�{a|t . That is, in a
clause,several occurrencesof the sameterminal
maywell beinstantiatedto differentrangeswhile
severaloccurrencesof thesamevariablecanonly
be instantiatedto thesamerange.Of course,the

concatenationon stringsmatchesthe concatena-
tion on ranges.

Wesaythat
8 �"} 
 # 23232 #k}|>~	 is aninstantiationof

thepredicate
8 �:9 
 # 23232 #;9?>@	 if f }~< +�q n�# CKJML�JA and eachsymbol (terminal or variable)of

9 <
,C�JxL�J�A is instantiatedto a rangein q n s.t.
9=<

is instantiatedto
}d<

. If, in a clause,all predicates
areinstantiated,we have aninstantiatedclause.

A binary relation derive, denoted ���� n , is de-

fined on strings of instantiatedpredicates. If� 
�� � � is astringof instantiatedpredicatesandif� is theLHS of someinstantiatedclause� / � ,
thenwe have

� 
 � � ������ n � 
 �=� � .
An input string _�+ %�I , R _iR�� � is a sen-

tenceiff the emptystring (of instantiatedpredi-
cates)canbederivedfrom � � j"7r2l2 ��mon�	 , theinstan-
tiation of thestartpredicateon the wholesource
text. Suchasequenceof instantiatedpredicatesis
calledacompletederivation. � � � 	 , thePRCLde-
finedby aPRCG � , is thesetof all its sentences.

For a given sentence_ , asin the context-free
[CF] case,a single completederivation can be
representedby a parsetreeandthe (unbounded)
setof completederivationsby a finite structure,
theparseforest. All possiblederivationstrategies
(i.e., top-down, bottom-up,. . . ) areencompassed
within bothparsetreesandparseforests.

A clauseis:

� combinatorialif at leastoneargumentof its
RHS predicatesdoesnot consistof a single
variable;

� bottom-uperasing(resp.top-down erasing)
if thereis at leastonevariableoccurringin
its RHS (resp.LHS) which doesnot appear
in its LHS (resp.RHS);

� erasingif thereexists a variableappearing
only in its LHS or only in its RHS;

� linearif noneof its variablesoccurstwice in
its LHS or twice in its RHS;

� simple if it is non-combinatorial, non-
erasingandlinear.

Thesedefinitionsextendnaturallyfrom clause
to setof clauses(i.e.,grammar).

In this paper we will not considernegative
RCGs, since the guide constructionalgorithm



presentedis Section3 is not valid for this class.
Thus, in the sequel,we shall assumethat RCGs
arePRCGs.

In (Boullier, 2000b)is presenteda parsingal-
gorithm which, for any RCG � and any input
string of length

�
, producesa parseforest in��� RX�YR ����	 time. The exponent � , called degree

of � , is the maximumnumberof free (indepen-
dent)boundsin a clause. For a non-bottom-up-
erasingRCG, � is lessthanor equalto themax-
imum value, for all clauses,of the sum A [��x�Z[
where,for a clauseQ , A [ is its arity and ��[ is the
numberof (different)variablesin its LHS predi-
cate.

3 PRCG to 1-PRCG Transformation
Algorithm

Thepurposeof thissectionis topresentatransfor-
mationalgorithmwhich takesasinputany PRCG� and generatesas output a 1-PRCG �H
 , such
that �e�x� � � 	 ����
��x� � �H
 	 .

Let ��� �"!$#&%'#)(*# � # � 	 be the initial PRCG
and let �H
�� �"! 
 #&% 
 #)( 
 # ��
 # ��
 	 be the gen-
erated1-PRCG.Informally, to eachA -ary predi-
catename

8
we shallassociateA unarypredicate

names
8 <

, eachcorrespondingto oneargumentof8
. Wedefine

! 
 � F�� ]Z��� 8
<
R 8 + !$# C�J�L�J�a~�uL�yo� � 8 	)�

and
% 
 � % ,

( 
�� ( , ��
��¡� 
 andthe setof
clauses��
 is generatedin theway describedbe-
low.

We saythat two strings
9

and ¢ , on someal-
phabet,sharea commonsubstring, andwe write£'�:9�# ¢ 	 , if f either

9
, or ¢ or bothareemptyor, if9 ��¤ � _ and ¢���¥ � � , we have R � Rg6¦C .

For any clause Q � -*.¦/ - 
�23232 - t*23232 -�4
in � , such that

- t � 8 t �:9 
t # 23232 #;9
4�§
t 	)# 7¨Jf J©5 # 5Yt��Bad��L:yª� � 8 t 	 , we generatethesetof5 . clauses« [ � � Q 
 # 23232 # Q 4�¬ � in the following

way. The clauseQb­ # CeJ®PxJ¯5 . hasthe form8 ­. �:9 ­. 	 /±° ­ wheretheRHS
° ­ is constructed

from the
- t ’s asfollows. A predicatecall

8 <t �:9
<
t 	

is in
° ­ if f thearguments

9 <t and
9 ­. shareacom-

monsubstring(i.e.,we have
£��:9 ­. #;9 <t 	 ).

As an example, the following set of clauses,
in which ² , ³ and ´ arevariablesand a and µ
areterminalsymbols,definesthe3-copy language

� _'_0_¶Ru_·+ � a # µ ��I�� whichis notaCFlanguage
[CFL] andeven lies beyond the formal power of
TAGs.

� � ²�³¸´ 	 / 8 � ² # ³ # ´ 	8 � ad² # a~³ # ar´ 	 / 8 � ² # ³ # ´ 	8 � µk² # µ)³ # µ¹´ 	 / 8 � ² # ³ # ´ 	8 �"ºd#kºd#kº�	 / º
ThisPRCGis transformedby theabovealgorithm
into a1-PRCGwhoseclausesetis

� 
 � ²�³i´ 	 / 8 
 � ² 	 8 � � ³ 	 8�» � ´ 	8 
 � ad² 	 / 8 
 � ² 	8 � � a~³ 	 / 8 � � ³ 	8�» � ar´ 	 / 8�» � ´ 	8 
 � µk² 	 / 8 
 � ² 	8 � � µ;³ 	 / 8 � � ³ 	8 »Z� µb´ 	 / 8 »Z� ´ 	8 
 �"ºu	 / º8 � �"ºu	 / º8 »Z�"ºu	 / º
It is notdifficult to show that ������
 .
This transformationalgorithm works for any

PRCG.Moreover, if we restrictourselves to the
classof PRCGsthat are non-combinatorialand
non-bottom-up-erasing, it is easyto checkthatthe
constructed1-PRCG is also non-combinatorial
andnon-bottom-up-erasing. It hasbeenshown in
(Boullier, 2000a)thatnon-combinatorialandnon-
bottom-up-erasing1-RCLscanbeparsedin cubic
time after a simple grammaticaltransformation.
In order to reachthis cubic parsetime, we as-
sumein thesequelthatany RCGathandis anon-
combinatorialandnon-bottom-up-erasingPRCG.

However, evenif thiscubictimetransformation
is not performed,we canshow that the(theoreti-
cal) throughputof theparserfor ��
 cannotbeless
thanthe throughputof theparserfor � . In other
words,if weconsidertheparsersfor � and ��
 and
if werecalltheendof Section2, it is easyto show
thatthedegrees,say � and �g
 , of theirpolynomial
parsetimesaresuchthat � 
 J¼� . Theequalityis
reachediff themaximumvalue � in � is produced
by aunaryclausewhich is keptunchangedby our
transformationalgorithm.

ThestartingRCG � is calledthe initial gram-
marandit definestheinitial language� . Thecor-
responding1-PRCG�¸
 constructedby our trans-
formation algorithm is called the guiding gram-
marandits language��
 is theguidinglanguage.



If thealgorithmto reacha cubicparsetime is ap-
pliedto theguidinggrammar�¸
 , wegetanequiv-
alent
��»

-guiding grammar(it also defines ��
 ).
The various RCL parsersassociatedwith these
grammarsare respectively called initial parser,
guidingparserand

��»
-guidingparser. Theoutput

of a (
� »

-) guidingparseris calleda (
� »

-) guiding
structure. The termguideis usedfor theprocess
which, with the help of a guiding structure,an-
swers‘yes’ or ‘no’ to any questionasked by the
guidedprocess.In ourcase,theguidedprocesses
are the RCL parsersfor � called guidedparser
and
��»

-guidedparser.

4 Parsing with a Guide

Parsingwith a guide proceedsas follows. The
guidedprocessis split in two phases.First, the
sourcetext is parsedby theguidingparserwhich
builds the guiding structure. Of course,if the
sourcetext is parsedby the

� »
-guidingparser, the� »

-guidingstructureis thentranslatedinto aguid-
ing structure,asif thesourcetext hadbeenparsed
by theguidingparser. Second,theguidedparser
properis launched,askingtheguideto help(some
of) its nondeterministicchoices.

Our currentimplementationof RCL parsersis
like a (cached)recursive descentparserin which
thenonterminalcallsarereplacedby instantiated
predicatecalls. Assumethat,at someplacein an
RCL parser,

8 �"} 
 #k} � 	 is aninstantiatedpredicate
call. In a correspondingguidedparser, this call
canbe guardedby a call to a guide,with

8
,
} 


and
} � as parameters,that will checkthat both8 
 �"} 
 	 and

8 � �"} � 	 areinstantiatedpredicatesin
theguiding structure.Of course,variousactions
in a guidedparsercanbeguardedby guidecalls,
but the guidecanonly answerquestionsthat, in
somesense,have beenregisteredinto theguiding
structure. The guiding structuremay thus con-
tain more or lesscompleteinformation, leading
to severalguidelevels.

For example, one of the simplest levels one
may think of, is to only register in the guiding
structurethe(numbersof the)clausesof theguid-
ing grammarfor which at leastoneinstantiation
occursin their parseforest. In sucha case,dur-
ing thesecondphase,whentheguidedparsertries
to instantiatesomeclauseQ of � , it cancall the
guideto know whetheror not Q canbevalid. The

guidewill answer‘yes’ iff the guiding structure
containsthe set « [ of clausesin �H
 generated
from Q by thetransformationalgorithm.

At the opposite,we can register in the guid-
ing structurethe full parseforest output by the
guiding parser. This parseforest is, for a given
sentence,thesetof all instantiatedclausesof the
guiding grammarthat are usedin all complete
derivations. During the secondphase,whenthe
guidedparserhas instantiatedsomeclause Q of
the initial grammar, it builds the set of the cor-
respondinginstantiationsof all clausesin « [ and
askstheguideto checkthat this setis a subsetof
theguidingstructure.

During our experiment, several guide levels
havebeenconsidered,however, theresultsin Sec-
tion 5 arereportedwith a restrictedguidingstruc-
ture which only containsthe set of all (valid)
clausenumbersandfor eachclausethesetof its
LHS instantiatedpredicates.

The goal of a guidedparseris to speedup a
parsingprocess.However, it is clearthat thethe-
oreticalparsetimecomplexity is not improvedby
this techniqueandeventhatsomepracticalparse
time will getworse.For example,this is thecase
for the above 3-copy language. In that case,it
is not difficult to checkthat theguidinglanguage��
 is

% I
, andthat the guidewill alwaysanswer

‘yes’ to any questionaskedby theguidedparser.
Thusthetime takenby theguidingparserandby
the guide itself is simply wasted. Of course,a
guidethatalwaysanswer‘yes’ is not a goodone
and we shouldnote that this casemay happen,
evenwhentheguidinglanguageis not

% I
. Thus,

from apracticalpointof view thequestionis sim-
ply “will thetime spentin theguidingparserand
in the guide be at leastrecoupedby the guided
parser?”Clearly, in thegeneralcase,no definite
answercanbe broughtto sucha question,since
the total parsetime may dependnot only on the
inputgrammar, the(qualityof) theguidinggram-
mar (e.g.,is ��
 not a too “large” supersetof � ),
the guide level, but also it may dependon the
parsedsentenceitself. Thus,in our opinion,only
the resultsof practicalexperimentsmayglobally
decideif usingaguidedparseris worthwhile.

Anotherpotentialproblemmaycomefrom the
size of the guiding grammaritself. In partic-
ular, experimentswith regular approximationof



CFLsrelatedin (Nederhof,2000)show thatmost
reportedmethodsare not practical for large CF
grammars,becauseof thehigh costsof obtaining
theminimal DFSA.

In our case,it caneasilybeshown that the in-
creasein sizeof theguidinggrammarsis bounded
by a constantfactorandthusseemsa priori ac-
ceptablefrom apracticalpointof view.

The next sectiondepictsthe practical exper-
iments we have performedto validate our ap-
proach.

5 Experiments with an English
Grammar

In orderto comparea(normal)RCL parserandits
guidedversions,we looked for anexisting wide-
coveragegrammar. We chosethe grammarfor
Englishdesignedfor the XTAG system(XTAG,
1995), becauseit both is freely available and
seemsrathermature. Of course,that grammar
usesthe TAG formalism.1 Thus, we first had
to transformthat English TAG into an equiva-
lent RCG.To performthis task,we implemented
the algorithm describedin (Boullier, 1998) (see
also(Boullier, 1999)),which allows to transform
any TAG into anequivalentsimplePRCG.2

However, Boullier’s algorithm was designed
for pure TAGs, while the structuresused in
the XTAG systemare not trees,but rather tree
schemata,grouped into linguistically pertinent
treefamilies,which have to beinstantiatedby in-
flectedformsfor eachgiveninput sentence.That
importantdifferencestemsfrom the radical dif-
ferencein approachesbetween“classical” TAG
parsingand“usual” RCL parsing.In the former,
throughlexicalization, the input sentenceallows
theselectionof treeschematawhich arethenin-
stantiatedon the correspondinginflectedforms,
thustheTAGisnotreallypartof theparser. While
in thelatter, the(non-lexicalized)grammaris pre-
compiledinto anoptimizedautomaton.3

Since the instantiation of all tree schemata
1Weassumeherethatthereaderhasatleastsomecursory

notionsof this formalism. An introductionto TAG canbe
foundin (Joshi,1987).

2We first strippedthe original TAG of its featurestruc-
turesin orderto geta purefeaturelessTAG.

3The advantagesof this approachmight be balancedby
thesizeof theautomaton,but weshallseelateronthatit can
bemadeto stayreasonable,at leastin thecaseathand.

by the completedictionary is impracticable,we
designeda two-stepprocess.For example,from
the sentence“George loved himself .”, a lexer
first producesthe sequence“George � n-n nxn-

n nn-n
�

loved � tnx0vnx1-v tnx0vnx1s2-

v tnx0vs1-v
�

himself � tnx0n1-n nxn-n
�

. � spu-punct spus-punct
�
”, and, in a second

phase,this sequenceis usedas actual input to
our parsers. The namesbetweenbracesare
pre-terminals. We assumethat each terminal
leaf v of every elementarytree schema ½ has
beenlabeledby a pre-terminalnameof the formyi�¿¾ - Q�À - L�Á where ¾ is the family of ½ , Q is the
categoryof v (verb,noun,. . . ) and L is anoptional
occurrenceindex.4

Thus, the associationGeorge “ � n-n nxn-n

nn-n
�
” meansthat the inflectedform “George”

is a noun(suffix -n) thatcanoccurin all treesof
the“n”, “nxn” or “nn” families(everywhereater-
minal leafof category nounoccurs).

Since,in this two-stepprocess,the inputsare
not sequencesof terminal symbolsbut instead
simple DAG structures,as the one depictedin
Figure 1, we have accordinglyimplementedin
our RCGsystemtheability to handleinputsthat
aresimpleDAGsof tokens.5

In Section3, we have seenthat the language� 
 definedby a guiding grammar � 
 for some
RCG � , is a supersetof � , the languagedefined
by � . If � is a simple PRCG, �¸
 is a simple
1-PRCG,and thus ��
 is a CFL (see(Boullier,
2000a)).In otherwords,in thecaseof TAGs,our
transformationalgorithmapproximatestheinitial
tree-adjoininglanguageby a CFL, andthe steps
of CF parsingperformedby the guiding parser
canwell beunderstoodin termsof TAG parsing.

Theoriginal algorithmin (Boullier, 1998)per-
formsa one-to-onemappingbetweenelementary
trees and clauses,initial trees generatesimple
unaryclauseswhile auxiliary treesgeneratesim-
ple binaryclauses.Our transformationalgorithm
leaves unary clausesunchanged(simple unary
clausesare in fact CF productions). For binary8

-clauses,our algorithm generatestwo clauses,

4The usageof Â as componentof Ã is due to the fact
that in the XTAG syntacticdictionary, lemmasare associ-
atedwith treefamily names.

5This is donerathereasilyfor linearRCGs.Theprocess-
ing of non-linearRCGswith latticesasinput is outsidethe
scopeof thispaper.



0 George 1

n-n

loved 2

tnx0vnx1-v

himself 3

tnx0n1-n

. 4

spu-punct

spus-punctnxn-ntnx0vnx1s2-v

tnx0vs1-v

nxn-n

nn-n

Figure1: Actual sourcetext asasimpleDAG structure

an
8 
 -clausewhichcorrespondsto thepartof the

auxiliary treeto the left of the spineandan
8 � -

clausefor thepart to theright of thespine.Both
areCF clausesthat theguidingparsercalls inde-
pendently. Therefore,for a TAG, the associated
guidingparserperformssubstitutionsaswould a
TAG parser, while eachadjunctionis replacedby
two independentsubstitutions,suchthat thereis
no guaranteethatany coupleof

8 
 -treeand
8 � -

treecangluetogetherto form avalid (adjoinable)8
-tree. In fact, guiding parsersperform some

kind of (deep-grammarbased)shallow parsing.
For our experiments,we first transformedthe

EnglishXTAG into an equivalentsimplePRCG:
theinitial grammar� . Then,usingthealgorithms
of Section3, we built, from � , the correspond-
ing guiding grammar �¸
 , and from �¸
 the

� »
-

guidinggrammar. Table1 givessomeinformation
on thesegrammars.6

RCG initial guiding
� »

-guiding

R ! R 22 33 4204
R % R 476 476 476
R ��R 1144 1696 5554
RX�ÄR 15578 15618 17722

degree 27 27 3

Table1: RCGs �·� �"!$#&%'#)(*# � # � 	 facts

For our experiments,we have useda testsuite
distributedwith theXTAG system.It contains31
sentencesrangingfrom 4 to 17 words, with an
averagelengthof 8. All measureshave beenper-
formedon a 800MHz PentiumIII with 640MB
of memory, runningLinux. All parsershave been

6Note that the worst-caseparsetime for both the initial
and the guiding parsersis Å0ÆlÇ@È"ÉËÊ . As explained in Sec-
tion 3, thisidenticalpolynomialdegreesÌ�Í Ì|Î�Í�ÏbÐ comes
from anuntransformedunaryclausewhichitself is theresult
of thetranslationof aninitial tree.

compiledwith gccwithout any optimizationflag.
We have first comparedthe total time taken to

producethe guiding structures,both by the
� »

-
guidingparserandby theguidingparser(seeTa-
ble 2). On this sampleset,the

� �ËÑ -guidingparser
is twice as fast as the

� »
-guiding parser. We

guessthat, on suchshort sentences,the benefit
yielded by the lowest degreehasnot yet offset
the time neededto handlea much greaternum-
ber of clauses. To validatethis guess,we have
tried longersentences.With a 35-word sentence
wehavenotedthatthe

� »
-guidingparseris almost

six times fasterthan the
� �ËÑ -guiding parserand

besideswe have verified that the even crossing
point seemsto occurfor sentencesof around16–
20 words.

parser guiding
� »

-guiding

sampleset 0.990 1.870
35-word sent. 30.560 5.210

Table2: Guidingparserstimes(sec)

parser loadmodule

initial 3.063
guided 8.374� »
-guided 14.530

Table3: RCL parsersizes(MB)

parser sampleset 35-word sent.

initial 5.810 3679.570
guided 1.580 63.570� »
-guided 2.440 49.150

XTAG 4282.870 Ò 5 days

Table4: Parsetimes(sec)



Thesizesof theseRCL parsers(loadmodules)
are in Table3 while their parsetimesare in Ta-
ble 4.7 We have also notedin the last line, for
reference,the times of the latest XTAG parser
(February2001),8 on our samplesetandon the
35-word sentence.9

6 Guiding Parser asTreeFilter

In (Sarkar, 2000), thereis someevidenceto in-
dicatethat in LTAG parsingthe numberof trees
selectedby the words in a sentence(a measure
of thesyntacticlexical ambiguityof thesentence)
is a betterpredictorof complexity thanthenum-
berof wordsin thesentence.Thus,theaccuracy
of the tree selectionprocessmay be crucial for
parsingspeeds.In thissection,wewish to briefly
comparethetreeselectionsperformed,ontheone
handby thewordsin asentenceand,on theother
hand, by a guiding parser. Such filters can be
used,for example,aspre-processorsin classical
[L]TAG parsing.With aguidingparserastreefil-
ter, a tree(i.e.,aclause)is kept,notbecauseit has
beenselectedby aword in theinputsentence,but
becausean instantiationof thatclausebelongsto
theguidingstructure.

Therecallof bothfilters is 100%,sinceall per-
tinent treesarenecessarilyselectedby the input
words and presentin the guiding structure. On
theotherhand,for thetreeselectionby thewords
in asentence,theprecisionmeasuredonoursam-

7Thetime takenby thelexer phaseis linearin thelength
of theinputsentencesandis negligible.

8It implementsa chart-basedhead-cornerparsingalgo-
rithm for lexicalizedTAGs,see(Sarkar, 2000). This parser
canbe run in two phases,the secondonebeingdevotedto
the evaluationof the featuresstructureson the parseforest
built during the first phase. Of course,the times reported
in thatpaperareonly thoseof thefirst pass.Moreover, the
variousparametershave beensetso that theresultingparse
treesandoursaresimilar. Almost half thesamplesentences
give identicalresultsin both that systemandours. For the
otherhalf, it seemsthat thedifferencescomefrom theway
theco-anchoringproblemis handledin bothsystems.To be
fair, it mustbenotedthatthetimetakento outputacomplete
parseforestisnotincludedin theparsetimesreportedfor our
parsers.Outputingthoseparseforests,similar to Sarkar’s
ones,takesonesecondon thewholesamplesetand80 sec-
ondsfor the35-wordsentence(therearemorethan3600000
instantiatedclausesin theparseforestof thatlastsentence).

9Consideringthelast line of Table2, onecannoticethat
the times taken by the guidedphasesof the guidedparser
andthe Ç~Ó -guidedparserarenoticeablydifferent,whenthey
shouldbethesame.Thisanomaly, notpresentonthesample
set,is currentlyunderinvestigation.

ple setis 15.6%on the average,while it reaches
100%for theguidingparser(i.e., eachandevery
selectedtreeis in thefinal parseforest).

7 Conclusion

The experimentrelatedin this papershows that
somekind of guiding techniquehas to be con-
sideredwhenonewantsto increaseparsingeffi-
ciency. With a wide coverageEnglish TAG, on
a small sampleset of short sentences,a guided
parseris on the averagethree times fasterthan
its non-guidedcounterpart,while, for longersen-
tences,morethanoneorderof magnitudemaybe
expected.

However, theguidedparserspeedis verysensi-
tive to thelevel of theguide,which mustbecho-
senvery carefullysincepotentialbenefitsmaybe
overcomeby thetime takenby theguidingstruc-
turebook-keepingprocedures.

Of course,thefiltering principlerelatedin this
paperis not novel (seefor example(Lakshmanan
and Yim, 1991) for deductive databases)but, if
we considerthevariousattemptsof guidedpars-
ing reportedin the literature,ours is one of the
very few examplesin which important savings
are noted. One reasonfor that seemsto be the
extremesimplicity of the interface betweenthe
guiding and the guidedprocess:the guide only
performsa direct accessinto the guiding struc-
ture. Moreover, this guiding structureis (part
of) the usualparseforest output by the guiding
parser, without any transduction(seefor example
in (Nederhof,1998)how a FSA canguidea CF
parser).

As alreadynotedby many authors(seefor ex-
ample(Carroll, 1994)),the choiceof a (parsing)
algorithm,as far as its throughputis concerned,
cannot rely only on its theoreticalcomplexity
but mustalsotake into accountpracticalexperi-
ments.Complexity analysisgivesworst-caseup-
per boundswhich may well not be reached,and
which impliesconstantsthatmayhave a prepon-
deranteffect on thetypical sizerangesof theap-
plication.

We have also noted that guiding parserscan
beusedin classicalTAG parsers,asefficient and
(very)accuratetreeselectors.Moregenerally, we
are currently investigatingthe possibility to use
guidingparsersasshallow parsers.



Theabove resultsalsoshow that(guided)RCL
parsingis a valuablealternative to classical(lex-
icalized) TAG parserssince we have exhibited
parsetimesavingsof severalordersof magnitude
over themostrecentXTAG parser. Thesesavings
evenallow to considertheparsingof mediumsize
sentenceswith theEnglishXTAG.

The global parsetime for TAGs might also
befurther improvedusingthe transformationde-
scribedin (Boullier, 1999)which, startingfrom
any TAG, constructsanequivalentRCG thatcan
beparsedin

�������
	
. However, this improvement

is not definite,since,on typical input sentences,
theincreasein sizeof theresultinggrammarmay
well ruin the expectedpractical benefits,as in
thecaseof the

� »
-guidingparserprocessingshort

sentences.
We mustalsonotethat a (guided)parsermay

also be usedas a guide for a unification-based
parserin which featuretermsareevaluated(see
the experiment related in (Barth́elemy et al.,
2000)).

Although the related practical experiments
have beenconductedon a TAG, this guidetech-
niqueis not dedicatedto TAGs,andthespeedof
all PRCLparsersmaybethusincreased.Thisper-
tainsin particularto theparsingof all languages
whosegrammarscanbetranslatedinto equivalent
PRCGs— MC-TAGs,LCFRS,. . .
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