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Abstract

The theoretical study of the range
concatenatiogrammarfRCG] formal-

ism hasrevealedmary attractve prop-

erties which may be used in NLP.

In particular rangeconcatenationan-

guages[RCL] can be parsedin poly-

nomial time and mary classicalgram-
matical formalisms can be translated
into equivalent RCGswithout increas-
ing their worst-caseparsingtime com-

plexity. For example, after transla-
tion into an equivalent RCG, ary tree
adjoining grammar can be parsedin

O(n®) time. In this paper we studya

parsingtechniquewhosepurposeis to

improve thepracticalefficiengy of RCL

parsers.The non-deterministigarsing
choicesof the main parserfor a lan-

guagel aredirectedby a guidewhich

usesthe sharedderivation forestoutput
by aprior RCL parseifor a suitablesu-
persetof L. The resultsof a practi-
cal evaluationof this methodon a wide

coverageEnglishgrammararegiven.

1 Intr oduction

Usually duringa nondeterministiprocessyhen
anondeterministichoiceoccursoneexploresall
possibleways, eitherin parallelor one after the
other usinga backtrackingmechanism.In both
cases,the nondeterministicprocessmay be as-
sistedby anothemprocesgo whichit asksits way.
This assistanmay be eithera guideor anoracle.

An oraclealwaysindicatesall the goodwaysthat
will eventually leadto successand thosegood
waysonly, while aguidewill indicateall thegood
waysbut mayalsoindicatesomewrongways.In
other words, an oracleis a perfectguide (Kay,
2000), and the worst guide indicatesall possi-
ble ways. Giventwo problemsP; and P, and
their respectie solutionsS; and .S, if they are
suchthat S; O Sy, ary algorithmwhich solves
P, is a candidateguide for nondeterministical-
gorithmssolving P,. Obviously, supplementary
conditionshave to befulfilled for P; to beaguide.
Thefirst onedealswith relative efficiengy: it as-
sumesthat problem P; can be solved more effi-
ciently thanproblem P,. Of course,parsersare
privileged candidatedo be guided. In this pa-
per we apply this techniqueto the parsingof a
subsebf RCLsthatarethe languagesiefinedby
RCGs.Thesyntacticformalismof RCGsis pow-
erful while stayingcomputationallytractable.In-
deed,the positive versionof RCGs[PRCGs]de-
fines positve RCLs [PRCLs] that exactly cover
theclassPTIME of languagesecognizablén de-
terministic polynomial time. For example, ary
mildly context-sensitve languagéas a PRCL.

In Section 2, we presentthe definitions of
PRCGsandPRCLs. Then,in Section3, we de-
signanalgorithmwhich transformsarny PRCL L
into anothePRCL L1, L C L, suchthatthe(the-
oretical) parsetime for L, is lessthanor equal
to the parsetime for L: the parserfor L will be
guidedby the parserfor L,. Last,in Section4,
we relatesomeexperimentsvith awide coverage
tree-adjoininggrammafTAG] for English.



2 Positive RangeConcatenation
Grammars

This sectiononly presentsthe basicsof RCGs,
moredetailscanbefoundin (Boullier, 2000b).

A positve range concatenation grammar
[PRCG]G = (N,T,V,P,S) is a5-tuplewhere
N is a finite set of nonterminalsymbols(also
called predicatenamey¥, T andV arefinite, dis-
joint setsof terminal symbolsand variablesym-
bols respectiely, S € N is the start predicate
nameandP is afinite setof clauses

Yo = V1. Ym
wherem > 0 andeachof g, 91,...,%y, isa
predicateof the form
Ao, ..., 04,...,0p)

wherep > 1 isits arity, A € N, andeachof
a; € (TUV)*, 1 <1< p,isanagument

Each occurrenceof a predicatein the LHS
(resp. RHS) of a clauseis a predicatedefini-
tion (resp.call). Clauseswhich definepredicate
name A are called A-clauses. Each predicate
nameA € N hasa fixed arity whosevalue is
arity(A). By definition arity(S) = 1. The ar
ity of an A-clauseis arity(A), and the arity k
of a grammar(we have a k-PRCG)is the max-
imum arity of its clauses. The sizeof a clause
c=Ay(...) = .. A(..)... An(...) isthe
integer |c| = Y_i%, arity(A;) andthe sizeof G is
Gl = Seeplel.

Foragivenstringw = a; ...a, € T*, apair
of integers(i,j) s.t.0 < i < j < niscalleda
rangeandis denotedi..j),,: i isits lowerbound
Jj is its upperboundandj — i is its size For a
given w, the setof all rangesis notedR,,. In
fact, (i..j),, denoteghe occurrenceof the string
@iyl ---aj inw. Two ranges(i..j),, and(k..l),
canbeconcatenateiff thetwo boundsj andk are
equal,theresultis therange(:..l),,. Variableoc-
currencer more generallystringsin (7" U V)*
can be instantiatedto ranges. However, an oc-
currenceof the terminal¢ canbe instantiatedto
therange(j — 1..5),, iff t = a;. Thatis, in a
clause,several occurrence®f the sameterminal
maywell beinstantiatedo differentrangeswhile
severaloccurrencesf the samevariablecanonly
be instantiatedo the samerange. Of course the

concatenatioron stringsmatcheshe concatena-
tion onranges.

WesaythatA(p, . . ., pp) is aninstantiatiorof
thepredicated(as, ..., qp) iff p; € Ry, 1 <0 <
p and eachsymbol (terminal or variable) of «;,
1 <4 < pisinstantiatedo arangein R, S.t. o;
is instantiatedo p;. If, in aclauseall predicates
areinstantiatedye have aninstantiatealause

A binary relation derive denotedG:iu, is de-

fined on strings of instantiatedpredii:ates. If
I'; v 'y isastringof instantiategredicateandif
~ is the LHS of someinstantiatecclausey — T,
thenwe haveT'; v Ty G:z} I'IT,.

An input string w c T, |lw| = nis a sen-
tenceiff the empty string (of instantiatedoredi-
catesxanbedervedfrom S({0..n),, ), theinstan-
tiation of the startpredicateon the whole source
text. Sucha sequencef instantiatepredicatess
calledacompletederivation £L(G),thePRCLde-
finedby aPRCGG, is thesetof all its sentences.

For a given sentencew, asin the contet-free
[CF] case,a single completederivation can be
representedby a parsetreeandthe (unbounded)
setof completederivationshby a finite structure,
the parseforest All possiblederivation stratgies
(i.e.,top-davn, bottom-up....) areencompassed
within both parsetreesandparseforests.

A clauseis:

e combinatorialf atleastoneamgumentof its
RHS predicatesioesnot consistof a single
variable;

e bottom-uperasing(resp.top-davn erasiny
if thereis at leastone variableoccurringin
its RHS (resp.LHS) which doesnot appear
in its LHS (resp.RHS);

e erasingif thereexists a variable appearing
only in its LHS or only in its RHS;

e linearif noneof its variablesoccurstwicein
its LHS or twicein its RHS;

e simple if it is non-combinatorial, non-
erasingandlinear.

Thesedefinitionsextend naturallyfrom clause
to setof clauseqi.e.,grammar).

In this paperwe will not considernegative
RCGs, since the guide constructionalgorithm



presenteds Section3 is not valid for this class.
Thus,in the sequel,we shallassumeghat RCGs
arePRCGs.

In (Boullier, 2000b)is presentedh parsingal-
gorithm which, for any RCG G and ary input
string of length n, producesa parseforestin
O(|G|n?) time. The exponentd, called degree
of G, is the maximumnumberof free (indepen-
dent) boundsin a clause. For a non-bottom-up-
erasingRCG, d is lessthanor equalto the max-
imum value, for all clausespof the sump, + v,
where,for a clausec, p. is its arity and v, is the
numberof (different) variablesin its LHS predi-
cate.

3 PRCG1to 1-PRCG Transformation
Algorithm

Thepurposeof thissectionis to presentaitransfor
mationalgorithmwhich takesasinputarny PRCG
G and generatess outputa 1-PRCGG,, such
thatL = L(G) C L1 = L(G).

Let G = (N,T,V, P, S) betheinitial PRCG
andlet Gy = (N, Th1,V1, P, S1) be the gen-
erated1-PRCG.Informally, to eachp-ary predi-
catenameA we shallassociate unarypredicate
namesA’, eachcorrespondingo oneargumentof
A. Wedefine

N1 =Uaen{A* | A€ N,1<i<arity(A)}
andTy, = T,V, =V, S; = S!' andthe setof
clausesP; is generatedn the way describedbe-
low.

We saythattwo stringsa and 5, on someal-
phabet,sharea commonsubstring andwe write
S(a, B), iff eithera, or 3 or bothareemptyor, if
a = wow andf = zvy, we have |v| > 1.

For ary clausec = g — ¥1...¢;...¢¥np
in P, suchthat¢; = Aj(aj,...,a;”),0 <
Jj < m,m; = arity(A;), we generatethe setof
mg clausesC, = {c,...,c™} in thefollowing
way. Theclausec®,1 < k < mg hasthe form
Ak (ak) — Uk wherethe RHS ¥ is constructed
from they;’s asfollows. A predicatecall A% ()
isin U* iff theargumentsy; andaf shareacom-
monsubstring(i.e.,we have S(af, o).

As an example, the following set of clauses,
in which X, Y and Z arevariablesanda andb
areterminalsymbols defineghe 3-copy language

{www | w € {a, b}*} whichisnotaCFlanguage
[CFL] andevenlies beyond the formal power of
TAGs.

S(XYZ) ~ A(X,Y,Z)
A(aX,aY,aZ) — A(X.,Y,Z)
ABX,bY,07) — A(X,Y,Z)
A(e,e,¢) — €

ThisPRCGis transformedy theabore algorithm
into a 1-PRCGwhoseclausesetis

SUXYZ) — AYX)A%2(Y) A3(2)
Al(aX) - AY(X)

A%(aY) —  A%(Y)

A3(aZ) — A3(Z)

AlX) - AYX)

A%(bY) —  AX(Y)

A3(bZ) — A3Z)

Al(e) - ¢

A2(e) — €

A3(¢) — €

It is notdifficult to shaw thatL C L;.

This transformationalgorithm works for ary
PRCG.Moreover, if we restrictoursehesto the
classof PRCGsthat are non-combinatoriabnd
non-bottom-up-erasin it is easyto checkthatthe
constructed1-PRCG s also non-combinatorial
andnon-bottom-up-erasin It hasbeenshavn in
(Boullier, 2000a)thatnon-combinatoriahndnon-
bottom-up-erasing-RCLscanbeparsedn cubic
time after a simple grammaticaltransformation.
In orderto reachthis cubic parsetime, we as-
sumein thesequethatary RCGathandis anon-
combinatoriaBndnon-bottom-up-erasingRCG.

However, evenif thiscubictimetransformation
is not performedwe canshav thatthe (theoreti-
cal)throughpubf theparserfor L; cannotbeless
thanthe throughputof the parserfor L. In other
words,if we considettheparserdor L. andZ; and
if werecalltheendof Section2, it is easyto shav
thatthedegreessayd andd; , of their polynomial
parsetimesaresuchthatd; < d. Theequalityis
reachedff themaximumvalued in G is produced
by aunaryclausewhichis keptunchangedby our
transformatioralgorithm.

ThestartingRCG G is calledthe initial gram-
marandit definegheinitial languagd.. Thecor
respondindl-PRCGG; constructedby ourtrans-
formation algorithmis called the guiding gram-
marandits languagel; is the guidinglanguage



If thealgorithmto reacha cubicparsetime s ap-
pliedtotheguidinggrammai(,, we getanequi-
alent n3-guiding grammar(it also definesL;).
The various RCL parsersassociatedvith these
grammarsare respectiely called initial parser
guiding parserandn?-guiding parser The output
of a(n3-) guiding parseiis calleda (n3-) guiding
structure Theterm guideis usedfor the process
which, with the help of a guiding structure,an-
swers'yes’ or ‘no’ to ary questionasled by the
guidedprocesslin our casetheguidedprocesses
arethe RCL parsersfor L called guided parser
andn?-guidedparser

4 Parsing with a Guide

Parsingwith a guide proceedsas follows. The
guidedprocesss split in two phases.First, the
sourcetext is parsedoy the guiding parsermwhich
builds the guiding structure. Of course,if the
sourcetext is parseddy then?®-guiding parseythe
n3-guidingstructures thentranslatednto a guid-
ing structureasif thesourcetext hadbeenparsed
by the guiding parser Secondthe guidedparser
properis launchedaskingtheguideto help(some
of) its nondeterministichoices.

Our currentimplementatiorof RCL parserds
like a (cachedyecursve descenparserin which
the nonterminalcalls arereplacedby instantiated
predicatecalls. Assumethat, at someplacein an
RCL parser A(p1, p2) is aninstantiategredicate
call. In a correspondingyuidedparser this call
canbe guardedby a call to a guide, with A, p;
and p, as parametersthat will checkthat both
Al(p1) and A%(py) areinstantiatedpredicatesn
the guiding structure. Of course variousactions
in a guidedparsercanbe guardedby guidecalls,
but the guide canonly answerquestionghat, in
somesensehave beenregisterednto theguiding
structure. The guiding structuremay thus con-
tain more or lesscompleteinformation, leading
to severalguidelevels

For example, one of the simplestlevels one
may think of, is to only registerin the guiding
structurethe (numbersf the) clauseof theguid-
ing grammarfor which at leastone instantiation
occursin their parseforest. In sucha case,dur
ing theseconghasewhentheguidedparsetries
to instantiatesomeclausec of G, it cancall the
guideto know whetheror not ¢ canbevalid. The

guide will answer'yes’ iff the guiding structure
containsthe set K, of clausesin G; generated
from ¢ by thetransformatioralgorithm.

At the opposite,we canregisterin the guid-
ing structurethe full parseforest outputby the
guiding parser This parseforestis, for a given
sentencethe setof all instantiatecclausef the
guiding grammarthat are usedin all complete
derwations. During the secondphase whenthe
guided parserhasinstantiatedsomeclausec of
the initial grammay it builds the setof the cor
respondingnstantiationsof all clausesn K. and
asksthe guideto checkthatthis setis a subsebf
theguidingstructure.

During our experiment, several guide levels
have beenconsideredhowever, theresultsin Sec-
tion 5 arereportedwith arestrictedguidingstruc-
ture which only containsthe set of all (valid)
clausenumbersandfor eachclausethe setof its
LHS instantiatecpredicates.

The goal of a guidedparseris to speedup a
parsingprocess However, it is clearthatthethe-
oreticalparseiime compleity is notimprovedby
this techniqueandeventhatsomepracticalparse
time will getworse.For example,thisis the case
for the above 3-copy language. In that case,it
is not difficult to checkthatthe guidinglanguage
L, is T, andthat the guidewill alwaysanswer
‘yes’ to ary questionasled by the guidedparser
Thusthetime taken by the guiding parserandby
the guideitself is simply wasted. Of course,a
guidethatalwaysansweryes’ is nota goodone
and we should note that this casemay happen,
evenwhenthe guidinglanguagés notT*. Thus,
from apracticalpoint of view thequestionis sim-
ply “will thetime spentin the guiding parserand
in the guide be at leastrecoupedby the guided
parser?”Clearly in the generalcase no definite
answercanbe broughtto sucha question,since
the total parsetime may dependnot only on the
inputgrammaythe (quality of) theguidinggram-
mar (e.g.,is L1 notatoo “large” supersebf L),
the guide level, but alsoit may dependon the
parsedsentencétself. Thus,in our opinion,only
the resultsof practicalexperimentsmay globally
decideif usinga guidedparselis worthwhile.

Anotherpotentialproblemmay comefrom the
size of the guiding grammaritself. In partic-
ular, experimentswith regular approximationof



CFLsrelatedin (Nederhof,2000)shav thatmost
reportedmethodsare not practicalfor large CF
grammarsbecausef the high costsof obtaining
theminimal DFSA.

In our case|t caneasilybe shavn thatthe in-
creasén sizeof theguidinggrammarss bounded
by a constantfactorandthus seemsa priori ac-
ceptabldrom a practicalpoint of view.

The next sectiondepictsthe practical exper
iments we have performedto validate our ap-
proach.

5 Experimentswith an English
Grammar

In orderto comparea (normal)RCL parsemndits
guidedversionswe looked for an existing wide-
coveragegrammar We chosethe grammarfor
Englishdesignedor the XTAG system(XTAG,
1995), becauseit both is freely available and
seemsrathermature. Of course,that grammar
usesthe TAG formalism! Thus, we first had
to transformthat English TAG into an equia-
lent RCG. To performthis task,we implemented
the algorithm describedin (Boullier, 1998) (see
also(Boullier, 1999)),which allows to transform
ary TAG into anequivalentsimplePRCG?

However, Boullier's algorithm was designed
for pure TAGs, while the structuresused in
the XTAG systemare not trees, but rathertree
schemata,groupedinto linguistically pertinent
treefamilies,which have to beinstantiatedy in-
flectedformsfor eachgiveninput sentenceThat
importantdifferencestemsfrom the radical dif-
ferencein approachedetween“classical” TAG
parsingand“usual” RCL parsing.In theformer,
throughlexicalization, the input sentenceallows
the selectionof tree schematavhich arethenin-
stantiatedon the correspondingnflectedforms,
thusthe TAG is notreally partof theparserWhile
in thelatter, the (non-lexicalized)grammaiis pre-
compiledinto anoptimizedautomatory.

Since the instantiation of all tree schemata

We assumérerethatthereadethasatleastsomecursory
notionsof this formalism. An introductionto TAG canbe
foundin (Joshi,1987).

2\We first strippedthe original TAG of its featurestruc-
turesin orderto getapurefeatureles§AG.

3The adwantagesf this approactmight be balancecby
thesizeof theautomatonbut we shallseelateron thatit can
bemadeto stayreasonableat leastin the caseathand.

by the completedictionaryis impracticable,we
designeda two-stepprocess.For example,from
the sentence'George loved himself ”, a lexer
first producesthe sequencéGeorge {n-n nxn-
n nn-n} loved {tnxOvnxl-v tnxOvnxls2-
v tnxOvsl-v} himself {tnxOni-n nxn-n}
. {spu-punct spus-punct }", and,in a second
phase,this sequencds usedas actualinput to
our parsers. The namesbetweenbracesare
pre-terminals We assumethat each terminal
leaf | of every elementarytree schemar has
beenlabeledby a pre-terminalnameof the form
t = f-c[-i] wheref is the family of 7, ¢ is the
catgyory of [ (verb,noun,...) andi is anoptional
occurrencendex.*

Thus, the associationGeoge “{n-n nxn-n
nn-n}” meansthat the inflected form “Geomge”
is a noun(suffix - n) thatcanoccurin all treesof
the“n”, “nxn” or“nn” families(everywhereater-
minal leaf of cateyory nounoccurs).

Since,in this two-stepprocessthe inputsare
not sequence®f terminal symbolsbut instead
simple DAG structures,as the one depictedin
Figure 1, we have accordinglyimplementedin
our RCG systemthe ability to handleinputsthat
aresimpleDAGs of tokens®

In Section3, we have seenthat the language
L, definedby a guiding grammarG; for some
RCGG, is asupersebf L, the languagedefined
by G. If G is asimple PRCG,G; is a simple
1-PRCG,and thus L; is a CFL (see(Boullier,
2000a)).In otherwords,in the caseof TAGs,our
transformatioralgorithmapproximatesheinitial
tree-adjoininglanguageby a CFL, andthe steps
of CF parsingperformedby the guiding parser
canwell beunderstoodn termsof TAG parsing.

Theoriginal algorithmin (Boullier, 1998)per
formsa one-to-onemappingbetweerelementary
treesand clauses,initial trees generatesimple
unaryclauseswhile auxiliary treesgeneratesim-
ple binary clauses.Our transformatioralgorithm
leaves unary clausesunchanged(simple unary
clausesarein fact CF productions). For binary
A-clauses,our algorithm generateswo clauses,

“The usageof f ascomponentof t is dueto the fact
thatin the XTAG syntacticdictionary lemmasare associ-
atedwith treefamily names.

®Thisis donerathereasilyfor linearRCGs.Theprocess-
ing of non-linearRCGswith latticesasinput is outsidethe
scopeof this paper
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Figurel: Actual sourcetext asa simpleDAG structure

an A'-clausewhich correspondso the partof the
auxiliary treeto the left of the spineandan A2-
clausefor the partto theright of the spine. Both
are CF clauseghatthe guiding parsercallsinde-
pendently Therefore,for a TAG, the associated
guiding parserperformssubstitutionsaswould a
TAG parserwhile eachadjunctionis replacedoy
two independensubstitutions suchthat thereis
no guaranteghatary coupleof A'-treeand A2-
treecangluetogetherto form avalid (adjoinable)
A-tree. In fact, guiding parsersperform some
kind of (deep-grammabasedkshallav parsing.

For our experiments,we first transformedhe
EnglishXTAG into an equvalentsimple PRCG:
theinitial grammarG. Then,usingthealgorithms
of Section3, we built, from G, the correspond-
ing guiding grammarG;, andfrom G the n3-
guidinggrammar Tablel givessomeinformation
onthesegrammarg.

RCG || initial | guiding | n3-guiding
V]| 22 33 4204
IT] 476| 476 476
P[ | 1144 1696 5554
|G| | 15578 15618 17722

degree 27 27 3

Tablel: RCGsG = (N, T,V, P, S) facts

For our experimentswe have useda testsuite
distributedwith the XTAG system.It contains31
sentencesangingfrom 4 to 17 words, with an
averagelengthof 8. All measuresiave beenper
formedon a 800 MHz Pentiumlll with 640 MB
of memory runningLinux. All parserave been

5Note that the worst-caseparsetime for both the initial
and the guiding parsersis O(n*7). As explainedin Sec-
tion 3, thisidenticalpolynomialdegreesi = d; = 27 comes
from anuntransformedinaryclausewhichitselfis theresult
of thetranslatiorof aninitial tree.

compiledwith gccwithout any optimizationflag.

We have first comparedhe total time takento
producethe guiding structures both by the n3-
guiding parserandby the guiding parser(seeTa-
ble 2). Onthis sampleset,then?”-guiding parser
is twice as fast as the n3-guiding parser We
guessthat, on such short sentencesthe benefit
yielded by the lowest degree has not yet offset
the time neededo handlea much greaternum-
ber of clauses. To validatethis guess,we have
tried longersentencesWith a 35-word sentence
we have notedthatthen3-guidingparseiis almost
six times fasterthan the n?”-guiding parserand
besideswe have verified that the even crossing
point seemdo occurfor sentencesf around16—
20words.

parser guiding | n3-guiding
sampleset 0.990 1.870
35-wordsent.|| 30.560 5.210

Table2: Guidingparserdimes(sec)

parser loadmodule
initial 3.063
guided 8.374
n3-guided 14.530

Table3: RCL parsersizes(MB)

parser | sampleset| 35-word sent.
initial 5.810 3679.570
guided 1.580 63.570
n3-guided 2.440 49.150
XTAG 4282.870 >5days

Table4: Parsetimes(sec)



Thesizesof theseRCL parsergload modules)
arein Table 3 while their parsetimesarein Ta-
ble 4.” We have also notedin the last line, for
reference,the times of the latest XTAG parser
(February2001)2 on our samplesetand on the
35-word sentencé.

6 Guiding Parser asTreeFilter

In (Sarkar 2000), thereis someevidenceto in-
dicatethatin LTAG parsingthe numberof trees
selectedby the wordsin a sentencga measure
of thesyntactidexical ambiguityof the sentence)
is a betterpredictorof compleity thanthe num-
berof wordsin the sentence Thus,the accurag
of the tree selectionprocessmay be crucial for
parsingspeedsin this sectionwe wishto briefly
compardhetreeselectiongperformedpntheone
handby thewordsin a sentencend,ontheother
hand, by a guiding parser Suchfilters can be
used,for example,as pre-processorms classical
[L]JTAG parsing.With aguidingparserastreefil-
ter, atree(i.e.,aclause)s kept,notbecausd has
beenselectedy awordin theinputsentencehut
becausaninstantiationof thatclausebelongsto
theguidingstructure.

Therecallof bothfiltersis 100%,sinceall per
tinenttreesare necessarilyselectedby the input
words and presentin the guiding structure. On
the otherhand for thetreeselectiorby thewords
in asentencetheprecisionmeasure@n our sam-

"Thetime taken by thelexer phasds linearin thelength
of theinput sentenceandis nagligible.

81t implementsa chart-basedead-corneparsingalgo-
rithm for lexicalized TAGs, see(Sarkar 2000). This parser
canberunin two phasesthe secondone beingdevotedto
the evaluationof the featuresstructureson the parseforest
built during the first phase. Of course,the timesreported
in that paperareonly thoseof thefirst pass.Moreover, the
variousparameterfiave beensetso thattheresultingparse
treesandoursaresimilar. Almost half the samplesentences
give identicalresultsin both that systemandours. For the
otherhalf, it seemghatthe differencescomefrom the way
the co-anchoringroblemis handledn both systemsTo be
fair, it mustbenotedthatthetime takento outputacomplete
parseorestis notincludedin theparseimesreportedor our
parsers. Outputingthoseparseforests,similar to Sarkars
ones takesoneseconcdon the whole samplesetand80 sec-
ondsfor the35-word sentencétherearemorethan3 600000
instantiatectlausesn the parseforestof thatlastsentence).

9Consideringhelastline of Table2, onecannoticethat
the times taken by the guided phasesof the guided parser
andthen?-guidedparsemrenoticeablydifferent,whenthey
shouldbethesame.Thisanomalynot presenbnthesample
set,is currentlyunderinvestigation.

ple setis 15.6%o0n the average while it reaches
100%for the guiding parser(i.e., eachandevery
selectedreeis in thefinal parseforest).

7 Conclusion

The experimentrelatedin this papershaws that
somekind of guiding techniquehasto be con-
sideredwhen one wantsto increaseparsingeffi-
cieng. With a wide coverageEnglish TAG, on
a small sampleset of shortsentencesa guided
parseris on the averagethreetimes fasterthan
its non-guidedcounterpartyhile, for longersen-
tencesmorethanoneorderof magnitudemaybe
expected.

However, theguidedparsertspeeds very sensi-
tive to the level of the guide,which mustbe cho-
senvery carefully sincepotentialbenefitsmaybe
overcomeby thetime taken by the guiding struc-
turebook-keepingprocedures.

Of course thefiltering principlerelatedin this
paperis not novel (seefor example(Lakshmanan
and Yim, 1991)for deductve databaseshut, if
we considerthe variousattemptsof guidedpars-
ing reportedin the literature,oursis one of the
very few examplesin which important savings
are noted. One reasonfor that seemsto be the
extreme simplicity of the interface betweenthe
guiding and the guided process:the guide only
performsa direct accessnto the guiding struc-
ture. Moreover, this guiding structureis (part
of) the usualparseforest output by the guiding
parserwithout ary transductior(seefor example
in (Nederhof,1998)how a FSA canguidea CF
parser).

As alreadynotedby mary authors(seefor ex-
ample(Carroll, 1994)),the choiceof a (parsing)
algorithm, asfar asits throughputis concerned,
cannotrely only on its theoretical compleity
but mustalsotake into accountpracticalexperi-
ments.Compl«ity analysisgivesworst-caseup-
per boundswhich may well not be reachedand
which implies constantghat may have a prepon-
deranteffect on the typical sizerangesof the ap-
plication.

We have also notedthat guiding parserscan
be usedin classicalTAG parsersasefficient and
(very) accuratdreeselectorsMore generallywe
are currently investigatingthe possibility to use
guidingparsersasshallov parsers.



Theabove resultsalsoshav that(guided)RCL
parsingis a valuablealternatve to classical(lex-
icalized) TAG parserssince we have exhibited
parsetime savings of severalordersof magnitude
overthemostrecentXTAG parser Thesesavings
evenallow to considettheparsingof mediumsize
sentencewith the EnglishXTAG.

The global parsetime for TAGs might also
be furtherimproved usingthe transformatiorde-
scribedin (Boullier, 1999)which, startingfrom
ary TAG, constructsan equivalentRCG thatcan
be parsedn O(n%). However, this improvement
is not definite, since,on typical input sentences,
theincreasen sizeof theresultinggrammamay
well ruin the expectedpractical benefits,as in
the caseof then3-guiding parsemprocessinghort
sentences.

We mustalso notethata (guided) parsermay
also be usedas a guide for a unification-based
parserin which featuretermsare evaluated(see
the experiment related in (Barthelemy et al.,
2000)).

Although the related practical experiments
have beenconductedon a TAG, this guidetech-
niqueis not dedicatedo TAGs, andthe speedof
all PRCLparsersnaybethusincreasedThis per
tainsin particularto the parsingof all languages
whosegrammarsanbetranslatednto equivalent
PRCGs— MC-TAGs,LCFRS,...
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