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Abstract

In this paper we propose adding
long-term grammaticalinformation in

a Whole SentenceMaximun Entropy

Language Model (WSME) in order
to improve the performanceof the
model. The grammaticalinformation
wasaddedto the WSME modelasfea-
turesandwereobtainedrom a Stochas-
tic Context-Freegrammar Finally, ex-

perimentssingapartof thePennTree-
bank corpuswere carried out and sig-

nificantimprovementsvereacheved.

1 Intr oduction

Languagenodelingis animportantcomponenin
computationabpplicationssuchasspeechecog-
nition, automatic translation, optical character
recognition, information retrieval etc. (Jelinek,
1997; Borthwick, 1997). Statistical language
modelshave gainedconsiderablecceptancelue
to the efficieney demonstratedn the fields in
whichthey have beenapplied(Bahaletal., 1983;
Jelineket al., 1991; Ratnapharkhi,l998; Borth-
wick, 1999).

Traditional statisticallanguagemodelscalcu-
latetheprobabilityof asentence usingthechain
rule:

p(s) = plwnws ... wa) = [[plwilhs) @)
=1
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whereh; = w; ... w;_1, whichis usuallyknown

asthe history of w;. The effort in the language
modelingtechniquess usuallydirectedto the es-
timationof p(w;|h;). Thelanguagenodeldefined
by the expressionp(w;|h;) is namedthe condi-

tional languagemodel. In principle, the deter

mination of the conditionalprobability in (1) is

expensve, becausahe possiblenumberof word

sequencess very great. Traditional conditional
languagemodelsassumethat the probability of

thewordw; doesnotdependntheentirehistory

andthe historyis limited by an equivalencerela-
tion ¢, and(1) is rewritten as:

n

p(s) = plwrws ... wy) = [ plwil¢(hs)) (2)

=1

Themostcommonlyusedconditionallanguage
modelis the n-grammodel.In then-grammodel,
the history is reduced(by the equialencerela-
tion) to the lastn — 1 words. The power of the
n-grammodelresidedn: its consistencavith the
training data,its simpleformulation,andits easy
implementation. However, the n-gram model
only usesthe information provided by the last
n — 1 wordsto predictthe next word andsoonly
makes useof local information. In addition,the
valueof n mustbelow (< 3 ) becausdor n > 3
thereareproblemswith theparameteestimation.

Hybrid modelshave beenproposed,n an at-
temptto supplementhe local information with
long-distanceinformation. They combine dif-
ferenttypesof models,like n-grams,with long-
distanceinformation, generallyby meansof lin-
ear interpolation, as hasbeenshawvn in (Belle-



garda,1998; Chelbaand Jelinek, 2000; Bened
andSanchez2000).

A formal framework to include long-distance
andlocalinformationin thesamdanguagemodel
is basedon the Maximum Entropy principle
(ME). Using the ME principle, we cancombine
information from a variety of sourcesinto the
samdanguagemodel(Bemeretal.,1996;Rosen-
feld, 1996). The goal of the ME principleis that,
givenasetof featureqpiecesof desirednforma-
tion containedn the sentence)a setof functions
f1,... fm (measuringthe contrikution of each
featureto themodel)andasetof constraints, we
have to find the probability distribution thatsatis-
fiesthe constraintandminimizestherelative en-
tropy (Divergenceof Kullback-Leibler)D(p||po),
with respecto thedistribution py.

ThegeneraMaximumEntropy probabilitydis-
tribution relative to a prior distrikution pg is given
by theexpression:

1 n . . S
p(s) = EpO(S)ezizl Aifi(s)

3)
whereZ is the normalizationconstantand \; are
parameterso befound. The \; representhe con-
tribution of eachfeatureto the distribution.

From (3) it is easyto derive the Maximum
Entropy conditionallanguagemodel (Rosenfeld,
1996): if X is the context spaceand W is the
vocahulary, then XxW is the statesspaceandif
(z,y) € XxW then:

7(@) (4)

p(ylz) =

andZ(z):
AHz) =3 e2imy Aifilay) (5)

Y

wherez(z) is thenormalizationconstantlepend-
ing on the contet z. Although the conditional
ME languaganodelis moreflexible thann-gram
models,thereis animportantobstacleto its gen-

eraluse:conditionalME languagemodelshave a

high computationakost (Rosenfeld,1996), spe-
cially theevaluationof thenormalizationconstant

(5).

The constraintsusually involve the equality between
theoreticalexpectationand the empirical expectationover
thetrainingcorpus.

Althoughwe canincorporatdocal information
(like n-grams)and somekinds of long-distance
information(like triggers)within the conditional
ME model, the global information containedin
the sentences poorly encodedn the ME model,
ashappensvith the otherconditionalmodels.

Thereis alanguagemodelwhichis ableto take
adwantageof thelocalinformationandatthesame
time allows for the useof the global propertiesof
the sentencethe Whole SentencéMlaximum En-
tropy model(WSME) (Rosenfeld1997).We can
include classicalinformation such us n-grams,
distancen-gramsor triggers and global proper
ties of the sentenceasfeaturesinto the WSME
framavork. Besidesthe fact that the WSME
model training procedureis lessexpensve than
the conditional ME model, the most important
training stepis basedon well-developedstatisti-
cal samplingtechniques.In recentworks (Chen
andRosenfeld;1999a) WSME modelshave been
successfullyrainedusingfeaturesf n-gramsand
distancen-grams.

In thiswork, we proposeaddinginformationto
theWSME modelwhichis providedby thegram-
matical structureof the sentence.The informa-
tion is addedin the form of featuresby means
of a StochasticContet-Free Grammar(SCFG).
The grammaticalinformation is combinedwith
featuresof n-gramsandtriggers.

In section2, we describahe WSME modeland
thetrainingproceduran orderto estimatethe pa-
rametersof the model. In section3, we define
thegrammaticafeaturesandtheway of obtaining
themfrom the SCFG.Finally, section4 presents
the experimentscarried out using a part of the
Wall StreetJournalin orderevalutethe behaior
of this proposal.

2 Whole SentenceMaximum Entropy
Model

ThewholesentencéMaximumEntropy modeldi-
rectly modelsthe probability distribution of the
completesentencd The WSME languagemodel
hastheform of (3).

In orderto simplify the notationwe write p; =
e, anddefine:

2By sentencewe understandiry sequencef linguistic
unitsthatbelongsto a certainvocahulary.



R(s) = [ wf® (6)
=1
s0(3) is written as:
p(s) = 5po(s)R(s) ™

wheres is a sentencendthe u; arenow the pa-
rametergo belearned.

Thetraining procedurdo estimateheparame-
tersof themodelis thelmprovedIteratve Scaling
algorithmn(lIS) (Della Pietraetal., 1995).1IS is
basednthechangeof thelog-likelihoodoverthe
training corpusf?, wheneachof the parameters
changedrom \; to \; + é;, 6; € R. Mathematical
considerationsnthechangen thelog-likelihood
give thetrainingequation:

3 p(s) fi(s)e® ) — ST f(s) fils) =0 (8)

s weN

where f#(s) = Y™, fi(s). In eachiterationof
thellS, we have to find the value of theimprove-
menté; in the parameterssolving(8) with respect
tod; foreachk =1...,m.

The main obstaclein the WSME training pro-
cessresidesin the calculationof the first sumin
(8). The sumextendsover all the sentences of
a given length. The greatnumberof suchsen-
tencesmakesit impossible from computingper
spectve,to calculatehesum,evenfor amoderate
Iengtﬁ”. Neverthelesssucha sumis the statisti-
calexpectedvalueof afunctionof w with respect
to the distribution p: E, [fie‘sif#]. As is well
known, it could be estimatedusingthe sampling
expectationas:

st Lo #(s7)
B, [fie "] ~ == 3" fils)B @)
j=1

wheres; ..., sy is arandomsamplefrom p and
Bi = e%.

Note that in (7) the constantZ is unknawvn,
so direct samplingfrom p is not possible. In
samplingfrom suchtypesof probability distribu-
tions, the Monte Carlo Markov Chain (MCMC)

3thenumberof sentences of lengthl is |[W)|*

sampling methodshave beensuccessfullyused
whenthe distribition is not totally knowvn (Neal,
1993). MCMC are basedon the convergenceof
certainMarkov Chainsto a tamget distribution p.
In MCMC, a path of the Markov chainis ran
for along time, after which the visited statesare
consideredas a samplingelement. The MCMC
samplingmethodshave beenusedin the param-
eter estimationof the WSME languagemodels,
specially the IndependenceMetropolis-Hasting
(IMH) andthe Gibb’s samplingalgorithms(Chen
and Rosenfeld,1999a; Rosenfeld,1997). The
bestresultshave beenobtaindedusingthe (IMH)
algorithm.

Although MCMC performswell, the distribu-
tion from which the samplés obtaineds only an
approximation of thetargetsamplingdistribution.
Thereforesamplesobtainedfrom such distribu-
tions may producesome bias in samplestatis-
tics, like samplingmean.Recently anothersam-
pling techniquewhich is also basedon Markov
Chainshasbeendevelopedby ProppandWilson
(ProppandWilson, 1996), the PerfectSampling
(PS) technique. PSis basedon the conceptof
Coupling From the Past. In PS, several pathsof
the Markov chainarerunningfrom the past(one
pathin eachstateof the chain). In all the paths,
the transitionrule of the Markov chainusesthe
samesetof randomnumbergo transitfrom one
stateto another Thusif two pathscoincidein the
samestatein time ¢, they will remainin thesame
stategherestof thetime. In sucha case we say
thatthetwo pathsarecollapsed.

Now, if all the pathscollapseatary giventime,
from that point in time, we are surethat we are
samplingfrom the true tamget distribution p. The
CouplingFromthePastalgorithm,systematically
goesto the pastandthenruns pathsin all states
andrepeatghis procedurauntil atime T hasbeen
found. OnceT hasbeenfound,the pathsthatbe-
gin in time —T all pathscollapseattimet¢ = 0.
Thenwe run a path of the chainfrom the state
attime ¢t = —T to the actualtime (¢ = 0), and
the last statearrived is a samplefrom the target
distribution. The reasonfor going from pastto
currenttime is technical,andis detailedin (Propp
andWilson, 1996). If the statespaceis huge(as
is the casewherethe statespaceis the setof all
sentencesye mustdefinea stochastiorderover



the statespaceandthenrun only two paths:one
beginning in the minimum stateandthe otherin
the maximum state,following the samemecha-
nismdescribedabore for thetwo pathsuntil they
collapse. In this way, it is proved that we geta
samplefrom the exact target distribution andnot
from an approximate distribution asin MCMC
algorithms(ProppandWilson, 1996). Thus,we
hopethatin samplegyeneratedvith perfectsam-
pling, statisticalparameteestimatorsnaybeless
biasedthanthosegeneratedavith MCMC.

Recently(Amaya and Bened, 2000), the PS
was successfullyused to estimatethe param-
eters of a WSME languagemodel . In that
work, a comparisonvas madebetweenthe per
formanceof WSME modelstrainedusingMCMC
andWSME modelstrainedusingPS.Featureof
n-gramsandfeatureof triggerswereusedn both
kinds of models,and the WSME model trained
with PShadbetterperformanceWe thenconsid-
eredit appropriatg¢o usePSin thetrainingproce-
dureof theWSME.

Themodelparametersierecompletedvith the
estimationof the global normalizationconstant
Z. Using(7), we candeducehatZ = E, [R(s)]
andthusestimateZ usingthe samplingexpecta-
tion.

M

Fpo [RG)] ~ 12 Y R(s)
j=1

wheresi, ..., s) is a randomsamplefrom py.
Becauseve havetotal controloverthedistribition
Po, IS easyto sampldromit in thetraditionalway.

3 The grammatical features

Themaingoalof this papelis theincorporatiorof
gramaticalfeaturesto the WSME. Grammatical
information may be helpful in mary aplications
of computationallinguistics. The grammatical
structureof the sentenceprovides long-distance
informationto themodel,therebycomplementing
theinformationprovidedby othersourcesandim-
proving the performancef themodel. Grammat-
ical featuresgive a betterweightto suchparam-
etersin grammaticallycorrectsentenceshanin
grammaticallyincorrectsentencesherebyhelp-
ing themodelto assigrbetterprobabilitiesto cor
rect sentence$rom the languageof the applica-

tion. To capturethe grammaticainformation,we
useStochasticContet-FreeGrammargSCFG).

Overthelastdecadetherehasbeenanincreas-
ing interestin StochasticContet-FreeGrammars
(SCFGs)for usein different tasks (K., 1979;
Jelinek, 1991; Ney, 1992; Sakakibara,1990).
The reasonfor this can be found in the capa-
bility of SCFGsto modelthe long-termdepen-
denciesestablishedetweenthe differentlexical
units of a sentenceand the possibility to incor
poratethe stochastidnformation that allows for
an adequateanodelingof the variability phenom-
ena.Thus,SCFGshave beensuccessfullyisedon
limited-domaintasksof low perpleity. However,
SCFGswork poorlyfor largevocalulary, general-
purposdasksbecaus¢heparametelearningand
the computationof word transition probabilities
presenseriousproblemsfor comple realtasks.

To capturethelong-termrelationsandto solve
themainproblemderived from theuseof SCFGs
in large-vocalulary comple tasks,weconsider
the proposalin (Bened and Sanchez2000): de-
fine a catgory-basedSCFG and a probabilistic
modelof word distribution in the cateyories. The
useof catgoriesasterminal of the grammarre-
duceghenumberof rulesto take into accountand
thus, the time complity of the SCFGlearning
procedure.The useof the probabilisticmodelof
word distribution in the cateyories, allows us to
obtainthe bestdervation of the sentenceé the
application.

Actually, we have to solve two problems:the
estimationof the parameterof the modelsand
their integrationto obtainthe bestderiation of a
sentence.

The parametersof the two models are esti-
matedfrom a training sample.Eachword in the
trainingsamplehasa part-of-speectag (POStag)
associatedo it. ThesePOStagsreconsidereds
word cateyoriesand are the terminal symbolsof
our SCFG.

Givenacategory, theprobabilitydistribution of
aword is estimatedoy meansof the relative fre-
gueng of theword in the catgory; i.e. therela-
tive frequenyg whichtheword w hasbeenlabeled
with a POStagaword w maybelongto different
catgyories).

To estimatethe SCFG parameterssereral al-
gorithmshave beenpresentedK. andS.J.,1991;



Pereiraand Shabes 1992; Amayaet al., 1999;
SanchezandBened, 1999). Taking into account
the goodresultsachieved on real tasks(Sanchez
and Bened, 1999), we usedthemto learn our
catgyory-baseCFG.

To solwe the integration problem,we usedan
algorithm that computesthe probability of the
bestderiation that generatesa sentencegiven
the cateyory-basedgrammarand the model of
word distribution into cateyories (Bened and
Sanchez,2000). This algorithmis basedon the
well-knowvn Viterbi-like schemédor SCFGs.

Once the grammaticalframework is defined,
we arein positionto make use of the informa-
tion providedby the SCFG.In orderto definethe
grammaticafeatureswe first introducesomeno-
tation.

A Context-Free Grammar G is a four-tuple
(N, %, P,S), whereN is thefinite setof nonter
minals,: is afinite setof terminals(V N X # (),
S € N istheinitial symbolof thegrammarmnd P
is thefinite setof productionsor rulesof theform
A = awhered € N anda € (NUZX)". We
consideronly context-free grammarsn Chomsky
normal form, thatis grammarswith rulesof the
foorm A —- BC or A — v whereA,B,C € N
andv € X.

A Sochastic Context-Free Gramar G is apair
(G, p) whereG is acontet-freegrammarmndp is
aprobability distribution overthegrammarrules.

The grammaticalfeaturesare definedas fol-
lows: let s = wy ... w,, asentencef thetrain-
ing set.As mentionedabove, we cancomputethe
bestderivationof thesentence, usingthedefined
SCFGandobtainthe parsetreeof the sentence.

Oncewe have theparsereeof all thesentences
in thetrainingcorpus,we cancollectthesetof all
the productionrulesusedin the derivation of the
sentencem thecorpus.

Formally: we define the set E(s) =
{(z,y,2) |z = zy}, wherez,y,z € SUN. E(s)
is the set of all grammaticalrules usedin the
derivation of s. To includethe rulesof the form
A — v,whered € N andv € %, inthesetE(s),
we malke useof a specialsymbol$ which is not
in theterminalsnorin thenon-terminalslif arule
of theform A — w occursin the derivationtree
of s, thecorrespondinglemenin E(s) is written
as(4,u,$). ThesetE = UsenE(s) (whereQ is

the corpus),s the setof grammaticafeatures.

E is the setrepresentatiorof the grammati-
cal information containedin the deriation trees
of the sentencesind may be incorporatedo the
WSME model by meansof the characteristic
functionsdefinedas:

1 if (z,y,2) € E(s)

0 Othevise (10)

f(w,y,z) (3) = {
Thus, whenerer the WSME model processesa
sentences, if it is looking for a specificgram-
matial feature say(a, b, ¢), we getthe derivation
treefor s andtheset E(s) is calculatedrom the
derivationtree. Finally, the modelasksif thethe
tuple (a, b, c) is anelementof E(s). If it is, the
featureis actve; if not, the feature(a, b, c) does
not contritute to the sentencegrobability There-
fore,asentencenaybeagrammaticallyincorrect
sentencdrelative to the SCFGused),if deriva-
tionswith low frequeny appears.

4 Experimental Work

A part of the Wall StreetJournal(WSJ)which
hadbeenprocesseth thePennTreebanckProject
(Marcusetal., 1993)wasusedn theexperiments.
This corpuswasautomaticallyiabelledandman-
ually checled. Thereweretwo kindsof labelling:
POStaglabelling and syntacticlabelling. The
POStagvocahulary was composedf 45 labels.
The syntacticlabelsare 14. The corpuswasdi-
videdinto sentenceaccordingo the bracleting.

We selectedl2 sectionsof the corpusat ran-
dom. Six wereusedastraining corpus,threeas
testsetandthe otherthreesectionswvereusedas
held-outfor tuningthe smoothing SME model.
Thesetsaredescribedasfollow: thetrainingcor
pushas11,201sentencesthe testsethas6,350
sentencesand the held-out set has 5,796 sen-
tences.

A base-lineKatz back-of smoothedtrigram
model was trained using the CMU-Cambridge
statisticalLanguageModeling Toolkit 4 andused
asprior distribution in (3) i.e. pg. The vocatu-
lary generatedy the trigram modelwasusedas
vocahulary of the WSME model. The sizeof the
vocalulary was19,997words.

4Availableat:
http://svewww.eng.cam.ac.ukgrc14/toolkit.html



The estimationof the word-catgory probabil-
ity distribution was computedfrom the training
corpus. In orderto avoid null values,the unseen
events were labeledwith a special “unknown”
symbolwhich did not appearin the vocalulary,
sothatthe probabilitieof the unseererventwere
positive for all the categories.

The SCFGhadthe maximumnumberof rules
which can be composedf 45 terminal symbols
(the number of POStags)and 14 non-terminal
symbols(the numberof syntacticlabels). The
initial probabilitieswererandomlygenerateénd
threedifferentseedswveretested. However, only
one of them s here given that the resultswere
very similar.

The size of the sampleusedin the ISSwases-
timatedby meansof an experimentalprocedure
andwassetat 10,000elements. The procedure
usedto generateghe samplemadeuseof the “di-
agnosisof corvergence”(Neal, 1993),a method
by meansof which aninicial portion of eachrun
of the Markov chain of suficient lengthis dis-
carded.Thus,the statesn the remainingportion
come from the desiredequilibrium distribution.
In this work, a discardedportion of 3,000 ele-
mentswasestablichedThusin practice we have
to generated 3,000instance®f theMarkov chain.

DuringthellS, every samplewastaggedusing
thegrammarestimatechbove, andthenthe gram-
maticalfeaturesvereextracted pbeforecombining
themwith otherkinds of features.The adequate
numberof iterationsof thellS wasestablishe@x-
perimentallyin 13.

We trained several WSME modelsusing the
PerfectSamplingalgorithmin the IIS anda dif-
ferentsetof features(including the grammatical
features)for eachmodel. The different setsof
featuresusedin the modelswere: n-grams(1-
grams,2-grams,3-gramsjriggers; n-gramsand
grammaticalfeatures;triggers and grammatical
feautres;n-grams triggersand grammaticalfea-
tures.

The n-gram features,(N), was selected by
meanof its frequeng in thecorpus.We selectall
theunigramsthe bigramswith frequenyg greater
than 5 and the trigramswith frequeng greater
thanl0,in orderto mantaintheproportionof each
type of n-gramin the corpus.

The triggers,(T), weregeneratedisinga trig-

| Feat. | N | T | N+T |
Without 143.197| 145.432| 129.639
With 125.912| 122.023| 116.42
% Improv. | 12.10% | 16.10% | 10.2%

Table 1: Comparisonof the perpleity between
models with grammaticalfeaturesand models
without grammaticalfeaturesfor WSME mod-
els over part of the WSJ corpus. N meansfea-
turesof n-grams, T meansfeaturesof Triggers.
The perplity of the trainedn-grammodelwas
PP=162.049

ger toolkit developedby Adam Bemer ®. The
triggerswere selectedn acordancevith de mu-
tualinformation. Thetriggersselectedverethose
with mutualinformationgreaterthan0.0001.

The grammaticalfeatures,(G), were selected
using the parsertree of all the sentencesn the
training corpusto obtainthe setsE(w) andtheir
union E asdefinedin section3.

The size of the initial set of featureswas:
12,023n-grams,39,428triggersand258gramati-
calfeaturesin total51,709%eatures At theendof
the training procedurethe numberof active fea-
tureswasssignificantly reducedto 4,000features
onaverage.

During the training procedure,some of the
u; =~ 0 and, so, we smooththe model. We
smoothedt usinga gaussiarprior technique.In
the gaussiartechnique , we assumedhat the y;
paramterdradagaussiarinormal)prior probabil-
ity distribution (ChenandRosenfeld,1999b)and
found the maximumaposterioriparametedistri-
bution. Theprior distributionwasy; ~ N(0, 0?),
andwe usedthe held-outdatato find the o2 pa-
rameters.

Table 1 shavs the experimentalresults: the
first row representshe setof featuresused. The
secondrow shaws the perpleity of the models
without using grammaticalfeatures. The third
row shaws the perplity of the models using
grammaticalfeaturesand the fourth row shawvs
theimprovementin perpleity of eachmodelus-
ing grammaticaffeaturesover the corresponding
modelwithout grammaticalfeatures. As canbe
seenin Tablel, all the WSME modelsperformed

SAvailableat:
htpp://wwwcs.cmu.edu/afs/cs/user/atperwww/



betterthanthen-grammodel,howeverthatis nat-
ural becausein theworstcase(if all 4; = 1), the
WSME modelsperformlik e then-grammodel.

In Table 1, we seethat all the models us-
ing grammaticafeaturesperformbetterthanthe
modelsthatdo not useit. Sincethetraining pro-
cedurewasthe samefor all the modelsdescribed
and since the only differencebetweenthe two
kinds of modelscomparedverethe grammatical
featuresthenwe concludethatthe improvement
mustbedueto theinclusionof suchfeaturednto
the setof features.The averagepercentagef im-
provementwasabout13%.

Also, althoughthe model N+T performsbet-
terthanthe othermodelwithout grammaticafea-
tures(N,T), it beharesworsethanall the models
with grammaticafeatureg N+G improved 2.9%
andT+G improvd 5.9%over N+T).

5 Conclusionsand futur e work

In this work, we have sucessfullyaddedgram-
maticalfeatureso a WSME languagemodelus-
ing a SCFGto extract the grammaticalinforma-
tion. We have shavn that the the use of gram-
maticalfeaturesn a WSME modelimprovesthe
performanceof the model. Adding grammatical
featuresto the WSME model we have obtained
areductionin perpl«ity of 13% on averageover
modelghatdonotusegrammaticafeatures Also
areductionin perpleity betweenapproximately
22% and 28% over the n-grammodel hasbeen
obtained.

We areworking ontheimplementatiorof other
kindsof grammaticafeaturesvhich arebasecdn
the POStagsentence®sbtainedusingthe SCFG
thatwe have defined.The prelimaryexperiments
have shavn promisingresults.

We will alsobe working on the evaluation of
theword-errorrate (WER) of the WSME model.
In the caseof WSME modelthe WER may be
evaluatedn atype of post-procesingisingthen-
bestutterances.

References
F. AmayaandJ.M. Bened. 2000. UsingPerfectSam-

F. Amaya, J. A. Sanchez,andJ. M. Bened. 1999.
Learning stochasticcontet-free grammarsfrom
bracletedcorporaby meansof reestimationalgo-
rithms. Proc. VIII Spanish Symposium on Pattern
Recognition and Image Analysis, pagesl19-126.

L.R. Bahal, F.Jelinek,andR. L. Mercer 1983. A
maximunlik elihoodapproactto continuousspeech
recognition. |[EEE Trans. on Pattern analysis and
Machine Intelligence, 5(2):179-190.

J.R. Bellegarda.1998. A multispanlanguagemodel-
ing framework for largevocahulary speectrecogni-
tion. |EEE Transactions on Speech and Audio Pro-
cessing, 6 (5):456-467.

J.M.Bened andJ.A. Sanchez.2000. Combinationof
n-gramsand stochasticcontext-free grammarsfor
languageamodeling. Porc. International conference
on computational lingustics (COLING-ACL), pages
55-61.

A.L. Berger, V.J. Della Pietra,and S.A. Della Pietra.
1996. A Maximun Entropy aproachto natural
languajeprocessing. Computational Linguistics,
22(1):39-72.

A. Borthwick. 1997. Surwey paperon statisticallan-
guagemodeling. Technicalreport,New York Uni-
versity.

A. Borthwick. 1999. A Maximum Entropy Approach
to Named Entity Recognition. PhD Dissertation
ProposalNew York University.

C. Chelbaand F. Jelinek. 2000. Structuredlan-
guagemodeling. Computer Speech and Language,
14:283-332.

S. ChenandR. Rosenfeld.1999a. Efficient sampling
andfeatureselectionin whole sentencanaximum
entropy languagemodels. Proc. |EEE Int. Confer-
ence on Acoustics, Soeech and Sgnal Processing
(ICASSP).

S. ChenandR. Rosenfeld. 1999h A gaussiarprior
for smoothingmaximumentrogy models. Techni-
calReportCMU-CS-99-108Carngyie Mellon Uni-
versity,

S. Della Pietra,V. Della Pietra,andJ. Lafferty. 1995.
Inducingfeaturesof randomfields. TechnicalRe-
portCMU-CS-95-144Carngie Mellon University.

F. Jelinek,B. Merialdo, S. Roukos, and M. Strauss.
1991. A dynamiclanguaganodelfor speechiecog-
nition. Proc. of Speech and Natural Language
DARPA Work Shop, pages293—-295.

pling in ParametelEstimationof a Wole Sentence F. Jelinek. 1991. Up from trigrams! the strug-

Maximum Entropy LanguageModel. Proc. Fourth
Computational Natural Language Learning Work-
shop, CoNLL-2000.

gle for improved languagemodels. Proc. of EU-
ROSPEECH, European Conference on Speech Co-
munication and Technology, 3:1034—-1040.



F. Jelinek. 1997. Satistical Methods for Speech
Recognition. The MIT PressMassachusettsti-
tut of TechnologyCambridgeMassachusetts.

Lari K. andYoungS.J.1991. Applicationsof stochas-
tic context-free grammarausingthe inside-outside
algorithm. Computer Speech and Language, pages
237-257.

Baker J. K. 1979. Trainablegrammarsfor speech
recognition. Speech comunications papers for the
97th meeting of the Acoustical Society of America,
pages47-550.

M. P. Marcus,B. Santorini,andM.A. Marcinkiewicz.
1993. Building alarge annotategorpusof english:
thepenntreebanck Computational Linguistics, 19.

R. M. Neal. 1993. Probabilisticinferenceusing
markov chainmontecarlo methods.TechnicalRe-
port CRG-TR-93-1Departamendf ComputerSci-
ence University of Toronto.

H. Ney. 1992. Stochasticgrammarsand pattern
recognition. In P. LafaceandR. De Mori, editors,
Foeech Recognition and Under standing. Recent Ad-
vances, pages319-344 SpringerVerlag.

F. PereiraandY. Shabes1992. Inside-outsudeeesti-
mationfrom partially bracketedcorpora. Proceed-
ings of the 30th Annual Meeting of the Assotia-
tion for Computational Linguistics, pagesl28-135.
Universityof Delawvare.

J. G. ProppandD. B. Wilson. 1996. Exactsampling
with coupledmarkov chainsandapplicationgo sta-
tistical mechanics. Random Sructures and Algo-
rithms, 9:223-252.

A. Ratnapharkhi1998. Maximum Entropy model s for
natural language ambiguity resolution. PhD Dis-
sertationProposalUniversity of Pensyhania.

R.Rosenfeld.1996. A MaximunEntropy approacho
adaptve statisticallanguagemodeling. Computer
Foeech and Language, 10:187—-228.

R. Rosenfeld.1997. A whole sentencélaximim En-
tropy languagemodel. |EEE workshop on Speech
Recognition and Understanding.

Y. Sakakibara1990. Learningcontect-freegrammars
from structuraldatain polinomilatime. Theoretical
Computer Science, 76:233-242.

J. A. SanchezandJ. M. Bened. 1999. Learningof
stochasticontext-free grammardy meansof esti-
mation algorithms. Proc. of EUROSPEECH, Eu-
ropean Conference on Speech Comunication and
Technology, 4:1799-1802.



