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Abstract

In this paper we revisit Puste-
jovsky’s proposal to treat ontologi-
cally complex word meaning by so-
called dotted pairs. We use a higher-
order feature logic based on Ohori’s
record A-calculus to model the se-
mantics of words like book and Ili-
brary, in particular their behavior
in the context of quantification and
cardinality statements.

1 Introduction

The treatment of lexical ambiguity is one of
the main problems in lexical semantics and in
the modeling of natural language understand-
ing. Pustejovsky’s framework of the “Gen-
erative Lexicon” made a contribution to the
discussion by employing the concept of type
coercion, thus replacing the enumeration of
readings by the systematic context-dependent
generation of suitable interpretations, in the
case of systematic polysemies (Pustejovsky,
1991; Pustejovsky, 1995). Also, Pustejovsky
pointed to a frequent and important phe-
nomenon in lexical semantics, which at first
sight looks as another case of polysemy, but
is significantly different in nature.

1) The book is blue/on the shelf.

2) Mary burned the book.
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(1)

(2)

(3) The book is amusing.
(4) Mary understands the book.
()

5) The book is beautiful.

(6) Mary likes the book.

(7) Mary read the book.

Examples (1)-(4) suggest an inherent ambi-
guity of the common noun book: blue, on the
shelf, and burn subcategorize for a physical
object, while amusing and understand require
an informational object as argument. (5) and
(6) are in fact ambiguous: The statements
may refer either to the shape or the content
of the book. However, a thorough analysis of
the situation shows that there is a third read-
ing where the beauty of the book as well as
Mary’s positive attitude are due to the har-
mony between physical shape and informa-
tional content. The action of reading, finally,
is not carried out on a physical object alone,
nor on a pure informational object as argu-
ment, but requires an object which is essen-
tially a combination of the two. This indi-
cates a semantic relation which is conjunctive
or additive in character, rather than a dis-
junction between readings as in the ambiguity
case. In addition to the more philosophical ar-
gument, the assumption of a basically differ-
ent semantic relation is supported by observa-
tions from semantic composition. If the physi-
cal/informational distinction in the semantics
of book were just an ambiguity, (8) and (9)
would not be consistently interpretable, since
the sortal requirements of the noun modifier
(amusing and on the shelf, resp.) are incom-
patible with the selection restrictions of the
verbs burn and understand, respectively.

(8) Mary burned an amusing book.

(9) Mary understands the book on the shelf.

Pustejovsky concludes that ontologically
complex objects must be taken into account



to describe lexical semantics properly, and he
represents them as “dotted pairs” made up
form two (or more) ontologically simple ob-
jects, and being semantically categorized as
“dotted types”, e.g., P eI in the case of book.
He convincingly argues that complex types
are omnipresent in the lexicon, the phys-
ical/informational object distinction being
just a special case of a wide range of dotted
types, including container/content (bottle),
aperture/panel (door) building/institution
(library).

The part of the Generative Lexicon con-
cept which was not concerned with onto-
logically complex objects, i.e., type coer-
cion and co-composition mechanisms using
so-called qualia information, has triggered a
line of intensive and fruitful research in lexi-
cal semantics, which led to progress in repre-
sentation formalisms and tools for the com-
putational lexicon (see e.g. (Copestake and
Briscoe, 1995; Dolling, 1995; Busa and Bouil-
lon, forthcoming; Egg, 1999)). In contrast,
a problem with Pustejovsky’s proposal about
the complex objects is that the dotted-pair
notation has been formally and semantically
not clear enough to form a starting point for
meaning representation and processing.

In this paper, we present a formally sound
semantic reconstruction of complex objects,
using a higher-order feature logic based on
Ohori’s record A-calculus (1995) which has
been originally developed for functional- and
object-oriented programming. We do not
claim that our reconstruction provides a full
theory of the of the peculiar kind of ontolog-
ical objects, but it appears to be useful as a
basis for representing lexical entries for these
objects and modeling the composition pro-
cess in which they are involved. We will not
only show that the basic examples above can
be treated, but also that our treatment pro-
vides a straightforward solution to some puz-
zles concerning the behavior of dotted pairs
in quantificational, cardinality and identity
statements.

(10) Mary burned every book in the library.

(11) Mary understood every book in the
library.

(12) There are 2000 books in the library.
(13) All new books are on the shelf.

(14) The book on your book-shelf is the one
I saw in the library.

In (10), the quantification is about physical
objects, whereas in (11), it concerns the books
qua informational unit. (12) is ambiguous be-
tween a number-of-copies and a number-of-
titles reading. The respective readings in (10)
and (11) appear to be triggered by the sortal
requirements of the verbal predicate, as the
ambiguity in (12) is due to the lack of a se-
lection restriction. However, (13) — uttered
towards a customer in a book store — has a
natural reading where the quantification re-
lates to the information level and the pred-
icate is about physical objects. Finally, (14)
has a reading where a relation of non-physical
identity is ascribed to objects which are both
referred to by physical properties.

2 The Record-)\-Calculus F=<

In order to reduce the complexity of the calcu-
lus, we will first introduce a feature A-calculus
F and then extend it to F<. F, is an exten-
sion of the simply typed A-calculus by feature
structures (which we will call records). See
Figure 1 for the syntactical categories of the
raw terms.

We assume the base types e (for individu-
als) and ¢ (for truth values), and a set £ =

{€1,0s,...} of features. The set of well-typed
T u= e|t|T—>T
| g7 Ty
(Types: o, f3,...)
M = X|c|(MN)|AX7.M | M.
| {¢t =My,...,0"=M,}
(Formulae A, B, ...)
Y u= 0|%,[e:T] (Signature)
' == 0| [X:7] (Environment)

Figure 1: Syntax

terms is defined by the inference rules in Fig-
ure 2 for the typing judgment I' Fx, A: . The
meaning of this judgment is that term A has



type a € T relative to the (global) type as-
sumptions in the signature ¥ and the (lo-
cal) type assumptions I' (the context) for the
variables. As usual, we say that a term A
is of type a (and often simply write A, to
indicate this), iff I' Fyx A:« is derivable by
these rules.  We will call a type a record

[c:a] € &
'ty ca

[X:a] el
'y X:a
Fr'Fs Aiy > a 'y Ciy
'y AC:
X[l ks At
ks AXg. A8 = «
Fky At f...,0a,.. .}
'y A«

Fl—g Al:al
Dhs {6 =A,,...

'k Ay,
,En = An}}

Figure 2: Well-typed terms in F

type (with features ¢;), iff it is of the form
{li:an,... 0y an}}. Similarly, we call an F-
term A a record, iff it has a record type.
Note that record selection operator “.” can
only be applied to records. In a slight abuse
of notation, we will also use it on record types
and have A,.0: o.b.

It is well-known that type inference with
these rules is decidable (as a consequence we
will sometimes refrain from explicitly mark-
ing types in our examples), that well-typed
terms have unique types, and that the calcu-
lus admits subject reduction, i.e that the set
of well-typed terms is closed under well-typed
substitutions.

The calculus F is equipped with an (op-
erational) equality theory, given by the rules
in Figure 3 (extended to congruence relations
on F-terms in the usual way). The first two
are just the well-known 7 equality rules from
A-calculus (we assume alphabetic renaming
of bound variables wherever necessary). The

second two rules specify the semantics of the
record dereferencing operation “.”. Here we
know that these rules form a canonical (i.e.
terminating and confluent), and type-safe (re-
duction does not change the type) reduction
system, and that we therefore have unique
Bnp-normal forms. The semantics of F< is a
straightforward extention of that of the sim-
ply typed A-calculus: records are interpreted
as partial functions from features to objects,
and dereferencing is only application of these
functions. With this semantics it is easy to
show that the evaluation mapping is well-
typed (Z,(Aa) € D,) and that the equalities
in Figure 3 are sound (i.e. if A =g,, B, then
I,(A) = Z,(B)).

(A\X5.A)B —5 [B/X]A
X ¢ free(A)
(AX.AX) —, A

{...¢=A,.. 34—, A
r |_§] A: {{El:al,...,ﬁn:an}}
o =Adb,... ly=ALY} =, A

Figure 3: Operational Equality for F.

Up to now, we have a calculus for so-
called closed records that exactly pre-
scribe the features of a record. The se-
mantics given above also licenses a slightly
different interpretation: a record type p =
{l1:an, ...,y an} is descriptive, i.e. an F-
term of type p would only be required to
have at least the features ¢1,...£,, but may
actually have more. This makes it neces-
sary to introduce a subtyping relation <,
since a record {¢ = A,} will now have the
types {£:a} and {}. Of course we have
{e:a} < {}, since the latter is less restric-
tive. The higher-order feature logic F< we
will use for the linguistic analysis in section 3



is given as F extended by the rules in Fig-

ure 4.  The first rule specifies that record
k<n
{{El:al,...,én:an}} S {{él:al,...,fn:ak}}
'y Aia a<pB
'y A:p
a € BT a<d p<p
<« o 2 B<a—=p

Figure 4: The open record calculus F<

types that prescribe more features are more
specific, and thus describe a smaller set of
objects. The second rule is a standard weak-
ening rule for the subtype relation. We need
the reflexivity rule for base types in order to
keep the last rule, which induces the subtype
relation on function types from that of its do-
main and range types simple. It states that
function spaces can be enlarged by enlarg-
ing the range type or by making the domain
smaller (intuitively, every function can be re-
stricted to a smaller domain). We say that <
is covariant (preserving the direction) in the
range and contravariant in the domain type
(inverting the direction).

For F<, we have the same meta-logical re-
sults as for F< (the type-preservations, sub-
ject reduction, normal forms, soundness,...)
except for the unique type property, which
cannot hold by construction. Instead we have
the principal type property, i.e. every F=<-
term has a unique minimal type.

To fortify our intuition about F<, let us
take a look at the following example: It
should be possible to apply a function F
of type {li:a} — [ to a record with
features £1,¢s, since F only expects /5.
The type derivation in Figure 5 shows that
F{¢, = AL 0o = A2} is indeed well-typed.
In the first block, we use the rules from Fig-
ure 4 (in particular contravariance) to estab-
lish a subtype relation that is used in the sec-
ond block to weaken the type of F, so that it

(in the third block) can be applied to the ar-
gument record that has one feature more than
the feature ¢; required by F’s type.

1<2
{{Elzal,ézz(n} S {élzoq}
{éﬁOél} —)ﬂ < H(12a1,£22a2} —)ﬂ

F:{li:au} =B *
F: {{Elzal,ézz(n} — ﬁ

Tks A'q;
* I |—z‘, {él = Aél,éz = AZQBZ {{Elzal,ézz(n}

Ths F{ti=A.  =A.}:8

Figure 5: A F< example derivation

3 Modeling ontologically complex
objects

We start with the standard Montagovian
analysis (Montague, 1974), only that we base
it on F=< instead of the simply typed -
calculus.

For our example, it will be sufficient to
take the set L of features as a superset of
{P,I,H} (where the first stand for physical,
and informational facets of an object). In our
fragment we use the extension F< to struc-
ture type e into subsets given by types of
the form {¢i:e,...,0,:e}. Note that throw-
ing away all feature information and mapping
each such type to a type E in our examples
will yield a standard Montagovian treatment
of NL expressions, where E takes the role
that e has in standard Montague grammar.
Linguistic examples are the proper name
Mary, which translates to mary’: {H: e}, shelf
which translates to shelf’: {P:e} — ¢, and
the common noun book which translates to
book”: {P:e,I: e} — t.

A predicate like blue requires a physical ob-
ject as argument. To be precise, the argument
need not be an object of type {P:e}, like a
shelf or a table. blue can be perfectly ap-
plied to complex objects as books, libraries,
and doors, if they have a physical realization,



irrespective of whether it is accompanied by
an informational object, an institution, or an
aperture. At first glance, this seems to be a
significant difference from kind predicates like
shelf and book. However, it is OK to interpret
the type assignment for kind predicates along
with property denoting expressions: In both
cases, the occurrence of a feature £ means that
¢ occurs in the type of the argument object.
Thus, {¢:e} — ¢ is a sortal characterization
for a predicate A with the following impact:

1. A has a value for feature ¢, possibly
among other features,

2. the semantics of A is projective, i.e.,
the applicability conditions of A and ac-
cordingly the truth value of the result-
ing predication is only dependent of the
value of /.

Note that 1. is exactly the behavior that we
have built the extension F< for and that we
have discussed with the example in Figure 5.
We will now come to 2.

Although type e never occurs as argument
type directly in the translation of NL expres-
sions, representation language constants with
type-e arguments are useful in the definition
of the semantics of lexical entries. E.g., the
semantics of book can be defined using the
basic constant book™ of type e — e — t,
as Az.(book™*(x.P, 2.)), where book* expresses
the book-specific relation holding between
physical and informational objects!.

The fragment in Figure 6 provides represen-
tations for some of the lexical items occurring
in the examples of Section 1, in terms of the
basic expressions

mary*:e, shelf*, blue*, amusing*:e —t
on*, book* , burn*, understand*:e — e — t,
read*:e > e —e—t

Observe that the representations nicely re-
flect the distinction between linguistic arity
of the lexical items, which is given by the \-
prefix (e.g., two-place in the case of read), and

!Pustejovsky conjectures that the relation holding
among different ontological levels is more than just a

set of pairs. We restrict ourselves to the extensional
level here.

[ Word | Meaning/Type |

Mary {H = mary™}: {H: e}
shelf Az.(shelf*(z.P)): {P:e} = ¢t
book Az.book™ (z.P,z.I)
{P:e,I:e} — ¢
amusing | Ar.amusing™ (z.I)
{L:e} —> ¢
on Azy.on”™ (z.P,y.P)
{P:e} - {P:e} >t
burn Azy.burn™ (z. H, y.P)
{P:e} - {P:e} >t
underst. | Azy.understand” (z.H, z.I)
{H: e} — {T:e} — ¢
read Ary.read” (z.H, y.P,y.I)
{H: e} — {P:e,Lie} — ¢

Figure 6: A tiny fragment of English

the “ontological arity” of the underlying ba-
sic relations (e.g., the 3-place-relation holding
between a person, the physical object which
is visually scanned, and the content which is
acquired by that action). In particular, all
of the meanings are projective, i.e. they only
pick out the features from the complex argu-
ments and make them available to the basic
predicate. Therefore, we can reconstruct the
meaning term R = Azy.read*(z.H, y.IP,y.I)
of read if we only know the relevant features
(we call them selection restrictions) of the ar-
guments, and write R as read*[{H}{P, 1}].

The interpretation of sentence (2) via basic
predicates is shown in (15) to (17). For sim-
plicity, the definite noun phrase is translated
by an existential quantifier here. (15) shows
the result of the direct one-to-one-translation
of lexical items into representation language
constants. In (16), these constants are re-
placed by A-terms taken from the fragment.
(17) is obtained by f-reduction and n-equality
from (16): in particular, {H = mary*.H} is
replaced by the p-equivalent mary*.

(15) Jv.book! (v) A burn/({H = mary*},v)

(16) Fv.(Az.book™* (z.IP, z.T))(v) A
(Azy.burn™(z.H, z.P))({H = mary* }, v)

(17) Fv.book* (v.P,v.I) A burn*(mary*,v.IP)



(18) and (19) as semantic representations for
(4) and (7), respectively, demonstrate how the
predicates understand and read pick out ob-
jects of appropriate ontological levels. (20)
and (21) are interpretations of (8) and (9) re-
spectively, where nested functors coming with
different sortal constraints apply to one ar-
gument. The representations show that the
functors select there appropriate ontological
level locally, thereby avoiding global inconsis-
tency.

(18) Fv(book™(v.P,v.I)) A

(understand*(mary*,v.I))

(19) Fv(book*(v.P,v.I)) A
(read*(mary*,v.P,v.I))

(20) Fv(book™(v.P,v.I)) A amusing*(v.I) A
(burn*(mary*,v.IP))

(21) Fv(book*(v.IP,v.I)) A Jushel f*(v.IP) A
on*(v.P,u.lP) A
(understand*(mary*,v.I))

The lexical items beautiful and like in (5) and
(6), resp., are polysemous because of the lack
of strict sortal requirements. They can be
represented as relational expressions contain-
ing a parameter for the selection restrictions
which has to be instantiated to a set of fea-
tures by context. like, e.g., can be translated
to like[S]), with like[{P}]', like[{I}], and
like[{P,1}] as (some of the) possible readings.
Of course this presupposes the availability of
a set of basic predicates like; of different on-
tological arities.

4 Quantifiers and Cardinalities

We now turn to the behavior of non-
existential quantifiers and cardinality oper-
ators in combination with complex objects.
The choice of the appropriate ontological level
for an application of these operators may
be guided by the sortal requirements of the
predicates used (as in (10)-(12)), but as (13)
demonstrates it is not determined by the
lexical semantics. We represent quantifiers
and cardinality operators as second-order re-
lations, according to the theory of gener-
alized quantifiers (Montague, 1974; Barwise

and Cooper, 1981) and take them to be pa-
rameterized by a context variable S C L for
selection restrictions in the same manner as
the predicates like and beautiful. The value
of § may depend on the general context as
well as on semantic properties of lexical items
in the utterance.

We define the semantics of a parameter-
ized quantifier Q|s by applying its respec-
tive basic, non-parameterized variants to the
S-projections of their argument predicates P
and @ to features in S, which we write as P|gs
and Qls, respectively. Formally Pl .1 is

Azy ... zp.Ju.P(u)Axy = uliA. .. Axy = uly

A first proposal is given in (22). (23)
gives the representation of sentence (13) in
the “bookstore reading” (omitting the seman-
tics of new and representing on the shelf as
an atomic one-place predicate, for simplicity),
(24) the reduction of (23) to ordinary quan-
tification on the S-projections, which is equiv-
alent to the first-order formula (25), which in
turn can be spelled out as (26) using basic
predicates.

Qls(P,Q) & Q(Pls,Qls)
every|ry(book', on_shel f')

22

24) every* (book'|{]1}, 0”—3helfl|{]l})

)
)
)
25) V.Ju.(z = u.l A book' (u))

= Jv.z = v.I A on_shel f'(v)

(26) Vz.3u.(x = u.l A book™* (u.P,u.I))
= Jv.x = v.I A on_shel f*(v.P)

As one can easily see, the instantiation of S
to {I} triggers the wanted V3 reading (“for
all books (as informational objects) there is a
physical object on the shelf”), where the in-
stantiation to {P} would have given the ¥V
reading, since on_shelf' is projective for P
only, and as a consequence we have

on_shel f'| ipy

= \z.Ju.on_shelf'(u) Nz = u.P

= Az.Ju.on_shel f*(u.P) ANz = u.lP
< Az.Ju.on_shel f*(z) Nz = u.P
& Az.on_shel f*(z)



The extension to cases (10)-(12) is straight-
forward.

The proposed interpretation may be too
permissive. Take a situation, where new pub-
lications are alternatively available as book
and on CD-ROM. Then (22)-(26) may come
out to be true even if no book at all is on
the shelf (only one CD-ROM containing all
new titles). We therefore slightly modify the
general scheme (22) by (27), where the re-
striction of the quantifier is repeated in the
nuclear scope.

Q(Pls, (Az.P(z) A B(z))]s)

For ordinary quantification, this does not
cause any change, because of the monotonic-
ity of NL quantifiers. In our case of level-
specific quantification, it guarantees that the
second argument covers only projections orig-
inating from the right type of complex ob-
jects. We give the revised first-order repre-
sentation corresponding to (26) in (28).

(28) Vz.Ju.(x = u.l A book™(u.P,u.I))
= dvaz =
v.I A book™* (v.P,v.I) A on_shel f*(v.P)

5 Conclusion

Our higher-order feature logic F< provides
a framework for the simple and straightfor-
ward modeling of ontologically complex ob-
jects, including the puzzles of quantification
and cardinality statements. In this frame-
work, a number of interesting empirical ques-
tions can be further pursued:

The ontology for complex objects can be in-
vestigated. So far, we constrained ourselves to
the simplest case of “dotted pairs”, and may
even have taken over a wrong classification
from the literature, talking about the dualism
of physical and informational objects, where a
type/token distinction might have been more
adequate. The reality about books (as well as
bottles and libraries) might be more complex,
however, including both the P/T distinction as
well as hierarchical type/token structures.

The linguistic selection restrictions are
probably more complex than we assumed in

this paper: As Pustejovsky argues (1998),
we may have to take distinguish exocentric
and endocentric cases of dotted pairs, as well
as projective and non-projective verbal pred-
icates.

Another fruitful question might be whether
the framework could be used to reconsider the
mechanism of type coercion in general: It may
be that at least some cases of reinterpretation
may be better described by adding an onto-
logical level, and thus creating a complex ob-
ject, rather than by switching from one level
to another.

We would like to conclude with a very gen-
eral remark: The data type of feature struc-
tures as employed in our formalism has been
widely used in grammar formalisms, among
other things to incorporate semantic informa-
tion. In this paper, a logical framework for
semantics is proposed, which itself has fea-
ture structures as a part of the meaning rep-
resentation. It may be worthwhile to consider
whether this property can be used to tell a
new story about treating syntax and seman-
tics in a uniform framework.
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