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Abstract

In this paper, we present and com-
pare various single-word based align-
ment models for statistical machine
translation. We discuss the five
IBM alignment models, the Hidden-
Markov alignment model, smooth-
ing techniques and various modifica-
tions. We present different methods
to combine alignments. As evalua-
tion criterion we use the quality of
the resulting Viterbi alignment com-
pared to a manually produced refer-
ence alignment. We show that mod-
els with a first-order dependence and
a fertility model lead to significantly
better results than the simple mod-
els IBM-1 or IBM-2, which are not
able to go beyond zero-order depen-
dencies.

1 Introduction

In statistical machine translation we set up a
statistical translation model Pr(f{|e!) which
describes the relationship between a source
language (SL) string f{ and a target lan-
guage (TL) string e!. In (statistical) align-
ment models Pr(f{,a{|el), a ‘hidden’ align-
ment a{ is introduced which describes a map-
ping from source word f; to a target word e, .

We discuss here the IBM translation mod-
els IBM-1 to IBM-5 (Brown et al., 1993b) and
the Hidden-Markov alignment model (Vogel
et al., 1996; Och and Ney, 2000). The differ-
ent alignment models we present provide dif-
ferent decompositions of Pr(f{,aflel). An

alignment a{ for which holds

a{ = argmax Pr(f{,a{e])
ai

for a specific model is called Viterbi alignment
of this model.

So far, no well established evaluation crite-
rion exists in the literature for these align-
ment models. For various reasons (non-
unique reference translation, over-fitting and
statistically deficient models) it seems hard
to use training/test perplexity as in language
modeling. Using translation quality is prob-
lematic, as translation quality is not well de-
fined and as there are additional influences
such as language model or decoder proper-
ties. We propose in this paper to measure the
quality of an alignment model using the qual-
ity of the Viterbi alignment compared to a
manually produced alignment. This allows an
automatic evaluation, once a reference align-
ment has been produced. In addition, it re-
sults in a very precise and reliable evaluation
criterion that is well suited to assess various
design decisions in modeling and training of
statistical alignment models.

2 Models

In this paper we use the models IBM-1
to IBM-5 from (Brown et al., 1993b) and
the Hidden-Markov alignment model (HMM)
from (Vogel et al., 1996; Och and Ney, 2000).
All these models provide different decompo-
sitions of the probability Pr(f{,a{|el). The
alignment af may contain alignments aj =
0 with the ‘empty’ word ey to account for
French words that are not aligned to any En-



glish word. All models include lexicon pa-
rameters p(f|e) and additional parameters de-
scribing the probability of an alignment.

We now sketch the structure of the six mod-
els:

e In IBM-1 all alignments have the same
probability.

e IBM-2 uses a zero-order alignment model
p(a;lj, I, J) where different alignment
positions are independent from each
other.

e The HMM wuses a first-order model
p(ajlaj—1) where the alignment position
a; depends on the previous alignment po-
sition aj—1-

e In IBM-3 we have an (inverted) zero-
order alignment model p(j|a;, I, J) with
an additional fertility model p(¢|e) which
describes the number of words ¢ aligned
to an English word e.

e In IBM-4 we have an (inverted) first-
order alignment model p(j|j') and a fer-
tility model p(ole).

e The models IBM-3 and IBM-4 are defi-
cient as they waste probability mass on
non-strings. IBM-5 is a reformulation of
IBM-4 with a suitably refined alignment
model in order to avoid deficiency.

So the main differences of these models lie
in the alignment model (which may be zero-
order or first-order), in the existence of an
explicit fertility model and whether the model
is deficient or not.

For HMM, IBM-4 and IBM-5 it is straight-
forward to extend the alignment parameters
to include a dependence on the word classes of
the words around the alignment position. In
the HMM alignment model we allow for a de-
pendence from the class £ = C(eq;_,). Cor-
respondingly, we can include similar depen-
dencies on French and English word classes in
IBM-4 and IBM-5 (Brown et al., 1993b). The
classification of the words into a given number
of classes (here: 50) is performed automati-
cally by another statistical learning procedure
(Kneser and Ney, 1991).

3 Training!

The training of all alignment models is done
by the EM-algorithm using a parallel training
corpus (f(s),e(s)), s =1,...,5 . In the E-
step the counts for one sentence pair (f,e)
are calculated. For the lexicon parameters the
counts are:

c(f|e;f,e) = ZPr(a|f,e)Zé(f,fj)é(e,eaj)
a i)

In the M-step the lexicon parameters are:

p(fle) o< > c(fle £, el)
S
Correspondingly, the alignment and fertility
probabilities can be estimated.

The models IBM-1, IBM-2 and HMM have
a particularly simple mathematical form so
that the EM algorithm can be performed ex-
actly, i.e. in the E-step it is possible to effi-
ciently consider all alignments. For the HMM
we do this using the Baum-Welch algorithm
(Baum, 1972).

Since there is no efficient way in the fertil-
ity models IBM-3 to 5 to avoid the explicit
summation over all alignments in the EM-
algorithm, the counts are collected only over
a subset of promising alignments. For IBM-
3, IBM-4 and IBM-5 we perform the count
collection only over a small number of good
alignments. In order to keep the training fast
we can take into account only a small fraction
of all alignments. We will compare three dif-
ferent possibilities of using subsets of different
size:

e The simplest possibility is to perform
Viterbi training using only the best align-
ment that can be found. As the calcula-
tion of the Viterbi alignment itself is very
time-consuming it is computed only ap-
proximately using the method described
in (Brown et al., 1993b).

e In (Al-Onaizan et al., 1999) it was sug-
gested to use also the neighboring align-
ments (i.e. alignments differing by one

1Our implementation of the IBM translation mod-
els is based on GiZA which is part of the publicly avail-
able toolkit for statistical machine translation EGYPT
(Al-Onaizan et al., 1999).



move/swap) from the best alignment
reachable.

e In (Brown et al., 1993b) an even larger
set of alignments was used including also
the ‘pegged’ alignments.

The different models are trained in succes-
sion on the same data, where the final param-
eter values of a simpler model serve as starting
point for a more complex model. In section 8
we will show that by using the HMM instead
of IBM-2 while bootstrapping to IBM-4/IBM-
5 the alignment quality can be significantly
improved.

4 Smoothing

To overcome the problem of over-fitting on
the training data and to cope better with
rare words we apply smoothing on alignment
and fertility probabilities. For the alignment
probabilities of the HMM (and correspond-
ingly for IBM-4 and IBM-5) we perform an
interpolation with a constant distribution:

1
P'(ajlaj1,1) = - 7 T (1 —a)-plajlaj-1,1)

For the fertility probabilities we assume
that there is a dependence on the number of
letters g(e) of e and estimate also a distribu-
tion p(¢|g) using the EM-algorithm. Figure
1 shows the relation between the number of
letters g of a (German) word and the average

fertility (#(g) = Xy ¢ - p(#lg)). We can see
that longer words have a higher fertility.

The fertility distribution used in training is
then computed as follows:

' n(e) B
p'(dle) = mp(qﬂe) + B+ ne)
Here n(e) denotes the frequency of e in the
training corpus. This ensures that for fre-
quent words, i.e. n(e) > f, the specific
distribution p(¢|e) dominates and for rare
words, i.e. n(e) < f, the general distribu-
tion p(¢|g(e)) dominates.

The interpolation parameters o and 8 are
optimized with respect to alignment quality
on a validation corpus.

p(¢lg(e))

Average fertility

T S s 4 s 6 7 5 9 1011251415 16 17 1 19 20 21 2
#Letters

Figure 1: Average fertility as a function of

the length (in letters) of a German word (on

VERBMOBIL task, see later).

5 Is deficiency a problem?

When using the EM-algorithm on IBM-3 and
IBM-4, we observed that during the EM-
iterations more and more words are aligned to
the empty word. This results in a bad align-
ment quality as too many words are aligned
to the empty word. This does not occur when
using the other models. We believe that the
reason of this lies in the fact that IBM-3 and
IBM-4 are deficient.

The use of the EM-algorithm guarantees
that the likelihood an alignment model as-
signs to the training corpus is steadily increas-
ing. This is true for deficient and for non-
deficient models likewise. However, for defi-
cient models the likelihood can be increased
simply by reducing the amount of deficiency.
In IBM-3 and IBM-4 as defined in (Brown
et al., 1993b) the distortion model for real
words is deficient, but the distortion model for
the empty word is non-deficient, so the EM-
algorithm can increase likelihood by simply
aligning more and more words to the empty
word. 2

Therefore, we changed IBM-3 and IBM-4
slightly to obtain also a deficient distortion
model for the empty word. The distortion
probability is set to p(j) = 1/J for every
French word aligned to the empty word.

2This effect did not occur in (Brown et al., 1993b)
as IBM-3 and IBM-4 were not trained directly.
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Figure 2: Example of a manual alignment
with S(ure) (filled dots) and P(ossible) con-
nections.

6 Evaluation methodology

In the following, we present an annotation
scheme for single-word based alignments and
a corresponding evaluation criterion. For a
different approach to assess alignment qual-
ity see (Ahrenberg et al., 2000).

It is well known that manually performing
a word alignment is a complicated and am-
biguous task (Melamed, 1998). Therefore, we
developed an annotation scheme that makes it
possible to annotate explicitly the ambiguous
alignments. We allowed human experts who
performed the annotation to specify two dif-
ferent kinds of alignments: an S (sure) align-
ment which is used for alignments that are
unambiguous and a P (possible) alignment
which is used for alignments that might or
might not exist. The P relation is used espe-
cially to align words within idiomatic expres-
sions, free translations, and missing function
words (S C P).

The thus obtained reference alignment may
contain many-to-one and one-to-many rela-
tionships. Figure 2 shows an example of a
manually aligned sentence with S and P re-
lations.

The quality of an alignment A =

{(4,a;)|a; > 0} is then computed by appro-
priately redefined precision and recall mea-
sures:

AN S|
S|

|AN P
Al

recall = , precision =

and the following error rate:

|[ANS|+|ANP|

AER(S,P;A) = 1 —
(5, P 4) AT 5]

Thereby, a recall error can only occur if a
S(ure) alignment is not found and a precision
error can only occur if a found alignment is
not even P(ossible).

The set of sentence pairs for which the man-
ual alignment is produced is randomly se-
lected from the training corpus. As the align-
ment is learned unsupervised, these sentence
pairs may also be used in training.

Normally, the annotation is performed by
two annotators, producing sets Sy, Pi, So,
P,. To increase the quality of the refer-
ence alignment the annotators are presented
the mutual errors and are asked to improve
their alignment if possible. From these align-
ments we finally generate a reference align-
ment which contains only those S(ure) con-
nections where both annotators agree and it
contains all the P(ossible) connections from
both annotators. This can be done by form-
ing the intersection of the sure alignments
(S = 51N S3) and the union of the possible
alignments (P = P; U P,). Thereby, we en-
force that, if we compare the sure alignments
of every single annotator with the combined
reference alignment we obtain an AER of zero
percent.

7 Generalized alignments

The baseline alignment model does not per-
mit a source word to be aligned with two or
more target words. Therefore, lexical corre-
spondences like ‘Zahnarzttermin’ for dentist’s
appointment cause problems because a single
source word must be mapped on two or more
target words.

To solve this problem, we perform a train-
ing in both translation directions (source to
target, target to source). Thus we obtain two



alignment vectors af and b! for each sentence
pair. In the following, A; = {(a;,7)|a; > 0}
and Ay = {(4,b;)|b; > 0} denote the sets of
links in the two Viterbi alignments. We in-
crease the quality of the alignments with re-
spect to precision, recall or AER by combin-
ing A; and Aj into one alignment matrix A
using the following combination methods:

e Intersection: A = A1 N Ay
e Union: A = A1 U Ay

e Refined: In a first step the intersection
A = A; N Ay is determined. The el-
ements within A are justified by both
Viterbi alignments and are therefore very
reliable. We now extend the alignment A
iteratively by adding links (4, j) occurring
only in Ay or in Ay if neither f; nor e;
have an alignment in A or if the following
conditions hold:

— the link (%, j) has a horizontal neigh-
bor (: — 1,7), (i + 1,7) or a vertical
neighbor (4,7 — 1), (4,7 + 1) that is
already in A, and

— the set AU {(4,7)} does not contain
alignments with both horizontal and
vertical neighbors.

Obviously, the intersection leads to an align-
ment that has only one-to-one alignments
with higher precision and a lower recall. The
union leads to a higher recall and a lower pre-
cision of the combined alignment. We typi-
cally observe that the refined combination is
able to produce an alignment with better re-
call and precision.

8 Experiments

We present results on the VERBMOBIL and
the HANSARDS task (Table 1). For both tasks
we manually aligned a randomly chosen sub-
set of the training corpus (Table 2). From
this corpus the first 100 sentences were used
as validation corpus to optimize the smooth-
ing parameters and the remaining sentences
were used as test corpus.

In the following graphs, we display the
AER for every iteration of the EM-algorithm.

AER

" viterbi ——
+neighbors ---x---
+pegging ---*--- |

0.06 |-

T T S S S R SO R R
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Figure 3: Effect of using more alignments in
training of IBM-3/4/5 (VERBMOBIL task.)

Unless noted otherwise, we used for training
of IBM-3/4 our modified version described in
section 5.

The number of alignments in training

Figure 3 compares the results obtained by
using different numbers of alignments in the
training of the sophisticated alignment mod-
els on the VERBMOBIL task. In order to
reduce training time we restricted the num-
ber of pegged alignments by using only those
alignments where Pr(f,ale) is not too much
smaller than the probability of the Viterbi
alignment. If we use only the Viterbi align-
ment, the results are significantly worse than
additionally using the neighborhood of the
Viterbi alignment. By doing ‘pegging’, we ob-
tain an additional small improvement.

Table 3 shows the computing time for per-
forming one iteration of the EM-algorithm.
Using a larger set of alignments significantly
increases the training time for the models
IBM-4 and IBM-5. As ‘pegging’ yields only a
moderate improvement, all following results
are obtained using the neighborhood of the
Viterbi alignment.

IBM-2 or HMM

Figure 4 compares the results of using IBM-
2 or HMM in bootstrapping the fertility on
the VERBMOBIL task. The HMM alignment
model yields significantly better results than
IBM-2. The best results are obtained if IBM-
3 is omitted in the training and the HMM



Table 1: Training corpora sizes.

Languages Words Vocabulary

Corpus SL/TL Sentences SL ‘ TL SL | TL
VERBMOBIL | English/German 34k 343076 329625 3505 | 5936
HANSARDS(50k) | French/English 50k 825713 751 849 19900 | 25000
HANSARDS(200k) | French/English 200k 3273640 | 2980160 | 44475 | 34865
HANSARDS(500k) | French/English 500k 8173413 | 7440097 | 64293 | 50323
HANSARDS(1500k) | French/English 1500k 24338195 | 22163092 | 100270 | 78 333

Table 2: Manually annotated test corpora.

Words
Corpus | SL ‘ TL | Sentences
VERBMOBIL | 3233 | 3109 354
HANSARDS | 8749 | 7946 500

model parameters are used to directly esti-
mate the IBM-4 model parameters. In the
later iterations, IBM-4 is able to reduce the
advantage of using HMM. But in the end
we still obtain better results when using in
bootstrapping HMM (AER: 5.8 %) instead of
IBM-2 (AER: 7.4 %).

In the HANSARDS(50k) task (see Figure 5),
the error rates are higher especially because
of the high vocabulary size. The use of HMM
in training yields an even stronger reduction
in AER. Interestingly, already the AER of the
final iteration of HMM (18.0%) yields better
results than the best EM-iteration when us-
ing IBM-2 in bootstrapping (20.0%). We con-
clude that it is important to start the training
of the sophisticated alignment models with
good initial parameters.

The use of IBM-3 after HMM makes results
worse, but finally IBM-4 produces best re-
sults (15.0%). Astonishingly, IBM-5 produces
worse results than IBM-4. This is maybe be-
cause IBM-) has a lot more training parame-
ters and the distortion model uses only a de-
pendence on the French word class. For the
following experiments we use training scheme
1-HMM — 4.

Effect of Smoothing

Figure 6 shows the effect of using our mod-
ified IBM-4 (section 5) and smoothing the
alignment /fertility probabilities. We see that

Table 3: Computing time on the VERBMOBIL
task (on 600 Mhz Pentium II machine).

seconds per iteration
IBM-3 | IBM-4 | IBM-5

alignment set

Viterbi 17 220 870
~+neighbors 25 400 1600
+pegging 190 3500 | 33000

1 ‘1 i ‘1 ‘1 2/‘H Z)H 2/‘H 2/‘H Z)H 3‘/4 3}4 3‘/4 3‘/4 3‘/4 “‘ A“ 1‘1 1‘1 “‘ 5‘ 5‘: 5
Figure 4: Comparison of using IBM-2 or
HMM in bootstrapping IBM-3/4/5 (VERB-
MOBIL task).

using the standard version of IBM-4 yields
a higher AER which is mainly due to a
worse recall. Without smoothing, we also ob-
serve early over-fitting: AER increases after
the second iteration of HMM. Analyzing the
alignments shows that the smoothing of fertil-
ity probabilities also significantly reduces the
problem that rare words often form ‘garbage
collectors’ in that they tend to align to a lot
of words (see (Brown et al., 1993a)).
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Figure 5: Comparison of wusing IBM-
2 or HMM in bootstrapping IBM-3/4/5
(HANSARDS(50k) task).
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Figure 6: Effect of smoothing (VERBMOBIL
task).

Using a larger training corpus

Table 4 shows the effect of using differ-
ent amounts of training data. As expected,
more training data helps to improve align-
ment quality for all models. However, for
IBM-1 the relative improvement is very small
compared to the relative improvement using
HMM and IBM-4.

Generalized Alignments

Table 5 shows precision, recall and AER of
the last iteration of IBM-4 for both transla-
tion directions. Especially for the language
pair German-English (VERBMOBIL task) we
observe that by using German as source lan-
guage the AER is much higher than by us-
ing English as source language. This is be-

Table 4: Effect of using different amount
of training data (HANSARDS task, training
scheme 1 - HMM — 4).

AER [%]
Corpus IBM-1 | HMM | IBM-4
HANSARDS(50k) 34.3 18.0 15.6
HANSARDS(200k) | 31.3 14.3 12.5
HANSARDS(500k) | 30.3 12.8 10.7
HANSARDS(1500k) | 29.4 11.0 | 94

cause the baseline alignment representation
as a vector af does in that case forbid that
the often occurring German word compounds
align to more than only one English word.

The effect of merging alignments by form-
ing the intersection, the union or the refined
combination of the Viterbi alignments (see
section 7) of both translation directions is
shown in Table 6. By using the refined combi-
nation we can increase precision and recall on
all tasks. The lowest AER on the VERBMOBIL
task is obtained using the refined combination
method. The lowest AER on the HANSARDS
task is obtained using intersection.

By forming a union or intersection of the
alignments we can obtain recall or precision
values (but not both) over 96 %.

9 Conclusion

We have discussed various extensions to sta-
tistical alignment models. An evaluation cri-
terion, i.e. the alignment error rate, was sug-
gested and results on different tasks were pre-
sented. We have shown that sophisticated
alignment models with a first-order depen-
dence and a fertility model lead to signifi-
cantly better results than the simple models
IBM-1 or IBM-2. We have described vari-
ous heuristics that improve precision, recall
or both by combining Viterbi alignments of
both translation directions.

Further improvements in producing better
alignments are expected from making use of
cognates, and from statistical alignment mod-
els that are based on word groups rather than
single words.



Table 5: Alignment quality in last iteration of IBM-4 of both translation directions.

SL — TL TL — SL
Corpus | prec ‘ rec ‘ AER | prec ‘ rec ‘ AER
VERBMOBIL | 93.2 | 95.5 | 5.8 | 90.0 | 87.9 | 10.9
HANSARDS(50k) | 80.5 | 91.2 | 15.6 | 80.0 | 90.8 | 16.0
HANSARDS(200k) | 84.3 | 93.1 | 12.5 | 84.2 | 93.4 | 124
HANSARDS(500k) | 86.5 | 94.2 | 10.7 | 86.9 | 94.4 | 10.3
HANSARDsS(1500k) | 88.1 | 94.9 | 9.4 | 88.5| 950 | 9.0

Table 6: Effect of combination of IBM-4 Viterbi alignments from both translation directions.

Intersection Union Refined

Corpus | prec ‘ rec ‘ AER | prec ‘ rec ‘ AER | prec ‘ rec ‘ AER

VERBMOBIL | 979 | 85.4 | 80 | 873 |98.0| 86 | 933|964 | 54

HANSARDs(50k) | 95.7 | 85.6 | 9.0 | 72.6 | 96.6 | 20.2 | 85.9 | 92.3 | 11.7

HANSARDS(200k) | 96.7 | 89.0 | 6.8 | 77.5 | 97.5 | 16.3 | 88.3 | 94.5 | 9.4

HANSARDS(500k) | 96.9 | 90.9 | 5.8 | 80.7 | 97.8 | 13.8 | 90.1 | 95.1 | 8.0

HANSARDS(1500k) | 96.8 | 91.9 | 5.3 | 83.0 | 98.0 | 12.1 | 90.4 | 95.6 | 7.6
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