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Abstract

We developed a novel language
model for Japanese based on
grapheme-phoneme tuples, which
is one order of magnitude smaller
than word-based models. We also
developed an alignment algorithm
of graphemes and phonemes for
both ordinary text and OCR out-
put. We show, by experiment, that
the combination of the grapheme-
phoneme tuple ngram model and
the grapheme-phoneme alignment
algorithm  significantly  improve
character  recognition accuracy
if both grapheme and phoneme
representations are given.

1 Introduction

In this paper, we present an alignment algo-
rithm of kanji (Chinese character, grapheme)
and kana (syllabary, phoneme) representa-
tions of the same content, and its application
for recognizing handwritten characters of per-
sonal names.

Even for native Japanese, sometimes it
is very difficult to read Japanese personal
names, because there are about 7,000 Chinese
characters, and each character has several dif-
ferent readings.

Therefore, it is common practice to write a
person’s name in both kanj: and kana when
submitting formal documents, such as appli-
cation forms and questionnaires, as illustrated
in Figure 1. This use of a certain amount of
redundancy helps an operator avoid mistakes
in the data entry process. Therefore, it is very
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Figure 1: An (artificial) example of how a
Japanese person’s name is written in both
kanji (Chinese character, grapheme) and kana
(syllabary, phoneme).

likely that it could also be used to help com-
puters reduce the number of character recog-
nition errors they make.

There is an enormous need for making the
personal name (and address) entry process
automatic, especially in government, banks,
credit card companies, market research com-
panies, etc. However, current Japanese hand-
writing character recognition technology is
not reliable enough for this task. Character
recognition accuracy is now around 90% for
good quality documents, and around 70% for
noisy documents such as FAX output.

Most of the recent research on the applica-
tion of statistical language models to charac-
ter recognition in Japanese uses either char-
acter ngram models or word ngram mod-
els (Konno and Hongo, 1993; Araki et al.,
1994; Mori et al., 1996; Nagata, 1996; Na-
gata, 1998). These techniques require, at
least, a context of a couple of characters
to judge whether a character candidate is
good. Therefore, they cannot be applied to
the name recognition task because Japanese
first and last names are usually only from one
to three characters long (typically two char-
acters).

In this paper, we present a novel language



model that is based on grapheme-phoneme
tuples (a pair of kanji and kana representa-
tion). We also present an aligning algorithm
of graphemes and phonemes both for ordinary
text and OCR output. By experiment, we
show that the language model and the align-
ment algorithm can significantly improve the
overall recognition accuracy.

2 Grapheme-Phoneme Alignment
of Japanese

We define grapheme-phoneme alignment of
Japanese as the segmenting of a grapheme se-
quence (kanji representation) into minimum
uncompositional units, each having a cor-
responding subsequence in the phoneme se-
quence (kana representation), and the align-
ing of each unit to the corresponding subse-
quence.

For example, let graphemes and phonemes
of a family name “Fukuzawa” be f&{K and
7 7 ¥ U. The output of grapheme-phoneme
alignment is two grapheme-phoneme tuples,
%8/ 7 7 and IR/ U, where the left and right
side of ’/’ indicate graphemes and phonemes,
respectively.

Most grapheme-phoneme correspondence
in Japanese is one-to-many like the above
example. By one-to-many, we mean that
one grapheme corresponds to more than zero
phonemes.
one, many-to-many, and crossover correspon-
dences are possible, as illustrated below.

However, one-to-zero, zero-to-
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Many-to-many correspondence results from
semantic translation of the Chinese word to
Japanese. This semantic translation could re-
sult in a crossover correspondence because the
word order of Chinese and Japanese is differ-
ent, as in the last example above. But for
simplicity (and since it is very rare), we will

treat such a case as a many-to-many corre-
spondence.

The advantage of using grapheme-phoneme
tuples as basic units for the language model
is their compactness, which makes the model
one order of magnitude smaller than word-
based models.

Table 1 shows the number of word to-
kens, word types, grapheme-phoneme tokens,
and grapheme-phoneme types in a Japanese
telephone directory of about 45,000,000 res-
idential subscribers. This data was origi-
nally made for an automatic telephone di-
rectory assistance system (Higashida, 1994).
For directory assistance use, grapheme (kanyji)
and phoneme (kana) representations of names
were manually aligned.  Considering the
fact that Japan has a total population of
120,000,000 people, this is a fairly large and
extensive sample of Japanese personal names.

Selecting names (including both first names
and last names) that appeared at least 5
times results in a name list of 301K words,
which covers more than 98% of the entire sub-
scribers. But about the same coverage can be
obtained by only 21K grapheme-phoneme tu-
ples.

The problem with the language model
based on grapheme-phoneme tuples lies in its
ambiguity. In Japanese, each Chinese char-
acter usually has two different readings: one
comes from its Chinese pronunciation (on-
yomi), and the other comes from its semantic
translation to Japanese (kun-yomi). However,
it is common for one Chinese character to
have several different Chinese-origin readings
because of (a) pronunciation differences that
developed with the passage of time, and (b)
regional pronunciation differences in China.
It is also common for one Chinese character
to have several different Japanese-origin read-
ings because of its semantic ambiguity.

As a result, both grapheme-to-phoneme
and phoneme-to-grapheme conversions are
very ambiguous. Moreover, in general, char-
acter readings for personal names are more
ambiguous than those for ordinary text be-
cause there are a lot of readings that are
used exclusively for personal names. Table 2



Table 1: Distribution of words and grapheme-phoneme tuples in a Japanese telephone directory

word tokens word types g-p tokens g-p types
>=10 | 88.7M | 97.6% 196K | 14.8% | 174M | 97.0% | 15K | 16.7%
>=5 | 89.3M | 98.4% 301K | 22.6% | 176M | 97.8% | 21K | 23.4%
>=2 | 90.1M | 99.1% 594K | 44.8% | 177M | 98.8% | 40K | 44.4%
all 90.8M 1,327K 179M 90K

Table 2: Comparison of Grapheme-to-
Phoneme and Phoneme-to-Grapheme Ambi-
guity in personal names (telephone directory)
and ordinary text (free kanji dictionary)

directory | dictionary
max | ave | max | ave
G-to-P | 258 | 10.9 36 | 3.2
P-to-G | 1110 | 12.1 | 306 | 6.2

shows the maximum and average ambigu-
ity of grapheme-to-phoneme and phoneme-to-
grapheme correspondences in the telephone
directory. For comparison, the same numbers
in a public domain Japanese kanji dictionary
(KANJIDIC)! are also shown to give a rough
estimate of ambiguity in ordinary text. Ta-
ble 2 shows that personal name readings are
significantly more ambiguous than ordinary
text readings, and that phoneme-to-grapheme
mapping is more ambiguous than grapheme-
to-phoneme mapping.

3 The Language Model and the
OCR Model

3.1 Language Model

We formulate the alignment of graphemes
and phonemes for OCR output in the noisy
channel paradigm. Let input graphemes and
phonemes be G and P, OCR output be G’
and P’. The task is finding the most proba-
ble graphemes G and phonemes P that max-
imize P(G, P|G',P’). By using Bayes’ rule,
we obtain:

(G, P) = arg 1}}18;3(P(G, P|G', P")

= arglgag{P(G/7 P'|G,P)P(G,P) (1)

Ytp:/ /ftp.cc.monash.edu.au/pub/nihongo/

We call P(G, P) the language model, and
P(G',P'|G,P) the OCR model. We con-
sider a language model based on smallest
grapheme-phoneme tuples. P(G,P) is ap-
proximated by the bigram model of a tuple
of a grapheme p; and a phoneme ¢; as fol-
lows, where <bos> and <eos> represent the
beginning and end of the sequence.

P(G,P)~ P(g1.pi|<bos>)[].25 P(gi.pilgi—1.pi-1)

P(<eos>|g1npn) (2)

The bigram probabilities P(g;,pilgi—1,Pi—1)
are estimated from the counts in the cor-
responding events in a corpus that is ei-
ther manually or automatically aligned. The
bigram probability of unknown tuples (not
found in the dictionary) is estimated from
their unigram probability by linear interpo-
lation. The unigram probability of unknown
tuples is estimated as the product of length
probability P(l,,l,), grapheme spelling prob-
ability P(g), and grapheme phoneme proba-
bility P(p), where [, and [, are the length of
a grapheme g and a phoneme p.

P(g,p) = P(ly,1,)P(9)P(p) (3)

We use empirical distribution learned from
training data for length probability P(l,,1,).
We approximate grapheme spelling probabil-
ity P(g) by zerogram model (uniform dis-
tribution) because virtually any combination
of characters could be a legitimate Japanese
name:

ly

P(g) = [[ Plegy) =1/ICyl"  (4)

J=1



where cg; is the individual character in
grapheme sequence, and |Cy| is the character
set size of graphemes.

We approximate phoneme spelling proba-
bility P(p) by bigram model because there
are certain phonetic constraints in phoneme
sequences.

P(p) = P(cpi|<bos>)[[;Z5 P(cpilepi—1)
P(<eos>|cpy) (5)

where c¢p; is the individual character in a
phoneme sequence.

3.2 OCR Model

For the OCR model, we assume that
graphemes and phonemes are independently
recognized, and that each character is also in-
dependently recognized within the graphemes
and phonemes.

P(G,P|G,P) = P(G'|G)P(P'|P)
= TIZ P(eglleg:) T2 P(collep;)  (6)

Ideally, the probability that an input
character ¢; will be recognized as an out-
put character c; should be estimated em-
pirically.  However, since there are 6879
graphemes (kanji) and 87 phonemes (kana)
in the Japanese character set, JIS X 0208, it
is impossible to estimate the probability em-
pirically due to data sparseness. Therefore,
we approximate it based on two parameters:
the accuracy of the first candidate p; and the
cumulative accuracy of all candidates p,,.

P1
P(cjlei) m Bt

o= otherwise

if ¢; is the first candidate

(7)
where n is the number of candidates for the
character, and |C| is the character set size.
In this OCR model, regardless of the in-
put and output character pairs, the first can-
didate is always assigned the probability p;.
For candidates other than the first candidate,
the remaining cumulative accuracy p, — p1
is distributed uniformly. For characters not
among the candidates, the remaining proba-
bility mass 1 — p,, is distributed uniformly.

else if ¢; is among the candidates

Too < {<bos>}
¢0y0(<bOS>) — 1
for s, =0 to [, do
for s, =0 to [, do
foreach (gi—1,pi-1) € Ts, s,
for t, =s.+1tol, do
for t, = s, +1 to [, do
(9i,pi) = (cglz, cpy)
if (gi,pi) & Tt. .+, then
th-ty — th,ty u {(g1p7~)}
()btm,ty (gl~p1) — 0
endif
if (¢, .5, (9i-1,pi-1)P(gi,pilgi-1,pi-1)
> ¢t,t,(gi,pi)) then
13 Gt, b, (9i,Di)
¢sx,sy(gi—l7pi—1)P(gi7pi‘gi—17pi—1)
14 endif

do

© 00~ O Uik WWhN —

—
o= o

12 end
12 end
13 end
14 end
15 end
Figure 2: Grapheme-phoneme alignment

algorithm (two-dimensional morphological
analysis algorithm)

4 Grapheme-Phoneme Alignment
Algorithm

4.1 Ordinary Text (a Pair of Strings)

First, we describe a Japanese grapheme-
phoneme alignment algorithm for ordinary
text, where its input is a pair of graphemes
and phonemes. Although the algorithm does
not identify word boundaries or parts of
speech, we call this alignment task “syn-
chronous morphological analysis” because
grapheme-phoneme tuples in Japanese per-
sonal names can be thought of as a minimal
compositional unit that has a certain mean-
ing, which is the technical definition of mor-
phemes. Moreover, the algorithm is a two-
dimensional extension of a Japanese morpho-
logical analysis algorithm (Nagata, 1994).

Let input graphemes and phonemes be G =
cg1--.cgi, and P = cpy ...cpy,, where cg and
cp are individual graphemes and phonemes.
In order to find a sequence of grapheme-
phoneme tuples gi1,p1,..-,9n, Pn that maxi-
mizes P(G, P) described in Equation (2), we
use two-dimensional dynamic programming,
as shown in Figure 2.

In Figure 2, T, , is a table that holds
grapheme-phoneme tuples ending at position



(2,Y). b2.y(gi,pi) holds the maximum prob-
ability of grapheme-phoneme tuple sequences
starting from (0, 0) and ending at (z,y) whose
final tuple is (gs,p:).

The algorithm starts from (0,0) which
corresponds to the beginning of graphemes
and phonemes, and proceeds toward the end
of graphemes and phonemes (l,4,[,), charac-
ter by character, for both graphemes and
phonemes. At every point (z,y) in the region
0<z<l,,0<y <l this algorithm updates
the maximum probability for the subsequence
of grapheme-phoneme tuples ¢, ,(gi,p;) (line
12 and 13 in Figure 2). Thus, at (I4,1,), we
can obtain a sequence of tuples that maxi-
mizes P(G, P).
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Figure 3: A snapshot of the grapheme-
phoneme alignment for ordinary text

Figure 3 is a snapshot of the grapheme-
phoneme alignment, where the input
graphemes and phonemes are fEIRFTE and
7 7% U 2%F and the current point is
(2,4). There are four grapheme-phoneme
tuples ending here, and three tuples starting
here. All combinations of these tuples are
searched, and the maximum probabilities
up to the ending point of each tuples are
updated.

4.2 OCR output (a Pair of Character
Matrices)

Next, we describe a grapheme-phoneme align-
ment algorithm for OCR output. We assume
there are no segmentation errors in the OCR
output, which in practical terms means that
the form has a grid for each character. In this

case, we call the OCR output character ma-
trix, in which each character has a list of sev-
eral candidates ordered by their certainties.
In fact, it is not difficult to extend the align-
ment algorithm to handle a character lattice,
which is a data structure that considers the
possibility of segmentation errors. However,
we limited the input to a character matrix
because we don’t know how to make an OCR
model that takes segmentation errors into ac-
count.

The alignment algorithm for OCR output
is basically the same as shown in Figure 2.
However, since there are sometimes no cor-
rect characters among the candidates, we in-
troduce an approximate match between the
grapheme-phoneme tuples in the dictionary
and those in the character matrix (Here, we
define a substring of a character matrix as a
substring that is formed by selecting one char-
acter from each candidate list).

At each point (z,y), first, we retrieve
grapheme-phoneme tuples using graphemes
as keys:

1. List all tuples in the dictionary whose
graphemes are a substring in the char-
acter matrix of graphemes starting from
x.

2. Compute the minimum edit distance of
their phonemes and substrings in the
character matrix of phonemes starting
from y.

3. Filter those tuples by edit distance and
frequency.

As a threshold of edit distance, we filtered
out tuples whose edit distance of phonemes
is more than or equal to [,/2, except when
[, = 1. Note if [, = 1, edit distance cannot
be used for filtering because it is either 0 or 1.
Thus, we sorted the tuples by frequencies and
selected the top 5 tuples. These thresholds
were determined through experiments.

We then retrieve grapheme-phoneme tuples
using phonemes as keys:

1. List all tuples in the dictionary whose
phonemes are a substring in the charac-
ter matrix of graphemes starting from y.



2. Compute the minimum edit distance of
their graphemes and substrings in the
character matrix of graphemes starting
from .

3. Filter those tuples by edit distance and
frequency.

We also set the thresholds of edit distance
and frequency of graphemes as [,/2 and 5.

Finally, for unknown tuples, we list all com-
binations of the prefixes of the first candidates
of graphemes starting from x and those of
phonemes starting from y, if they are not al-
ready listed by the above approximate match.

(3,5)
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Figure 4: A snapshot of grapheme-phoneme
alignment for OCR output

Figure 4 is a snapshot of grapheme-
phoneme alignment for OCR output.
For each character position of the input
graphemes f&IRG 5 and input phonemes 7
7 ¥ U XF, two recognition candidates
are presented. Note there are three types of
grapheme-phoneme tuples: exactly matched,
approximately matched, and unknown. For
example, from (2, 4) to (3,5), the tuple i/ =
is generated because both grapheme Fi and
phoneme = are in the matrix. From (2,4) to
(3,6), the tuple /=% is generated because
phoneme =% is in the matrix, and the
tuple is highly frequent. Also from (2,4) to
(3,6), an unknown tuple Fi/ X 7 is generated
because #il and 7 are the prefixes of the
first candidates of graphemes and phonemes.

5 Experiment

5.1 Training and Test Data

We used a Japanese name list of 1.3M words,
which was originally made for an automatic
telephone directory of about 45,000,000 res-
idential subscribers (Higashida, 1994). Al-
though the grapheme-phoneme alignment of
the name list was manually done, because
of the enormous amount of data in the tele-
phone directory, grapheme-phoneme align-
ment of lower frequency names is slightly
noisy. Therefore, we filtered out names which
appeared no more than five times in the
Japanese telephone directory.

This resulted in a name list of 301K words,
which covers more than 98% of the entire sub-
scribers. As shown in Table 1, there are 176M
grapheme-phoneme tuple tokens in the name
list, and there are 21K different grapheme-
phoneme tuple types. We used 90% of the
name list of 301K words for training, and non-
overlapping 1000 names (words) for testing.

5.2 Grapheme-Phoneme Alignment
Accuracy for Ordinary Text

Other than the grapheme-phoneme align-
ment model trained from manually aligned
data, we made an alignment model which
is bootstrapped from a public domain
Japanese grapheme-to-phoneme dictionary
(KANJIDIC). We call the former a supervised
model, and the latter an unsupervised model.
As shown in Table 2, KANJIDIC has 3.2
readings for each Chinese character on the av-
erage. To make an alignment model, we con-
sider the dictionary itself as a corpus, that is,
we assign a uniform probability to all possi-
ble grapheme-phoneme tuples. The sum of
the probabilities of unknown tuples is esti-
mated by the Witten-Bell method (Witten
and Bell, 1991), and redistributed based on
the unknown tuple model, Equation (3).
Table 3 shows the grapheme-phoneme
alignment accuracies of the supervised and
unsupervised model. It was expected that the
supervised model would achieve a very high
grapheme-phoneme alignment accuracy. Sur-
prisingly, however, the unsupervised model



Table 3: Grapheme-Phoneme Alignment Ac-
curacy

recall | precision f
Supervised 99.6% 99.5% | 99.5
Unsupervised | 98.6% 98.7% | 98.7

also achieves a very high accuracy, although
it is not as good as that of the supervised
model. This suggests the possibility that, for
OCR purposes at least, no manually aligned
data are in fact necessary.

5.3 Grapheme-Phoneme Alignment
Accuracy for OCR output

In order to test the grapheme-phoneme align-
ment algorithm for OCR output, we used
an OCR simulator that generates a char-
acter matrix from an input string, whose
parameters are the first candidate accuracy
and the cumulative accuracy of all candi-
dates. We made four test sets whose first
candidate accuracy and cumulative accuracy
were (60%,90%), (70%,92.5%), (80%,95%),
and (90%,97.5%), respectively. These param-
eters were selected based on the typical per-
formance of Japanese handwriting OCR.
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Figure 5: Character recognition accuracy be-
fore NLP and after NLP

Figure 5 shows the character recogni-
tion accuracy of the baseline OCR (before
NLP) and that of synchronous analysis of
graphemes and phonemes (after NLP). In

Table 4: Difference of the recognition ac-
curacy between supervised and unsupervised
models

supervised unsupervised

graph. | phon. | graph. [ phon.

60% (90.0%) | 86.4% | 92.6% | 86.3% | 92.6%
70% (92.5%) | 89.9% | 96.0% | 90.1% | 96.1%
80% (95.0%) | 92.1% | 97.0% | 92.0% | 97.1%
90% (97.5%) | 94.8% | 98.8% | 94.8% | 98.8%

Figure 5, grapheme (kanji) and phoneme
(kana) accuracies are presented separately.
For comparison, the accuracies obtained by
using simple character bigram model are also
presented.  For example, if the baseline
OCR recognition accuracy is 70%, by align-
ing graphemes and phonemes, the accuracies
of graphemes and phonemes are improved to
89.9% and 96.6%, respectively. If we do not
align them and apply language models in-
dependently, they are as low as 77.4% and
85.8%. It is obvious that the alignment algo-
rithm successfully takes advantage of the re-
dundancy to improve the overall recognition
accuracy.

Table 4 shows the difference in character
recognition accuracy between the supervised
and unsupervised alignment models. Here,
the unsupervised alignment model is made
from the training data aligned by using the
initial estimate of the unsupervised alignment
model described in the previous section, i.e.
the model is made by one reestimation.

There are virtually no differences in ac-
curacy between the supervised and unsuper-
vised models. This means that, if we have an
initial grapheme-to-phoneme dictionary and
a large amount of unaligned grapheme and
phoneme representation of the same contents,
we can automatically align them and use
them as a language model for OCR, which
significantly improves the overall recognition
accuracy.

6 Discussion and Related Works

Grapheme-phoneme alignment is usually dis-
cussed in the context of text-to-speech syn-
thesis applications. In recent years, a large
number of works have been published on



grapheme to phoneme conversion, in partic-
ular, using finite state techniques. However,
they dealt with either grapheme-to-phoneme
conversion or phoneme-to-grapheme conver-
sion (one is input and the other is out-
put), while we are working on synchronous
analysis of graphemes and phonemes (both
grarphemes and phonemes are inputs and
their alignments are output). Thus, there is
little relevance between these.

As far as the authors know, the only pa-
per that addresses the issue of grapheme-
phoneme alignment accuracy in Japanese is
one by Baldwin and Tanaka (1999). They re-
ported 98.29% accuracy for general vocabu-
lary words taken from a Japanese dictionary,
by using an alignment model based on a score
similar to TF-IDF, and an incremental unsu-
pervised learning algorithm. It is very dif-
ficult to compare their results with ours be-
cause of the differences in the training and
test data used. However, since we assume, in
general, the name task is significantly more
difficult than the general vocabulary task, we
consider our result of 99.6% recall by super-
vised model and 98.6% recall by unsupervised
model to have greater significance than their
results.

Nagata (1998) proposed a Japanese OCR
error correction method using word-based
language model and character shape sim-
ilarity. Compared with our simple OCR
model Equation (6), their model can sort cor-
rection candidates with the same edit dis-
tance based on character shape similarity.
This would be a very effective way to filter
out grapheme-phoneme tuples retrieved from
phonemes as keys in approximate match-
ing, since phoneme-to-grapheme conversion is
more ambiguous. Thus, we are considering
implementing their OCR model as a subject
for future work.

7 Conclusion

We developed a novel language model based
on grapheme-phoneme tuples, which is one
order of magnitude smaller than word-based
models. We also developed an alignment al-
gorithm of graphemes and phonemes for both

ordinary text and OCR output. By using the
language model and the alignment algorithm,
we were able to significantly improve char-
acter recognition accuracy if both grapheme
and phoneme representations of the input are
given at the same time.
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