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Abstract

In this paper we present part-of-
speech taggers based on hidden
Markov models, which adopt a less
strict Markov assumption to con-
sider rich contexts. In models whose
parameters are very specific like
lexicalized omes, sparse-data prob-
lem is very serious and also condi-
tional probabilities tend to be es-
timated unreliably. To overcome
data-sparseness, a simplified version
of the well-known back-off smooth-
ing method is used. To mitigate
unreliable estimation problem, our
models assume joint independence
instead of conditional independence
because joint probabilities have the
same degree of estimation reliabil-
ity. In experiments for the Brown
corpus, models with rich contexts
achieve relatively high accuracy and
some models assuming joint inde-
pendence show better results than
the corresponding HMMs.

1 Introduction

Part-of-speech (POS) tagging can be defined
as a process in which a proper POS tag
is assigned to each word in texts and so
it can be viewed as a classification prob-
lem (Mitchell, 1997). Over a decade, many
works for POS tagging have used a wide
range of machine learning techniques such
as a hidden Markov model (HMM) (Char-
niak et al., 1993), a maximum entropy
model (Ratnaparkhi, 1996), transformation
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rules (Brill, 1994), a decision tree (Lee et
al., 1999), relaxation labeling (Padré, 1996),
Bayesian inference (Samuelsson, 1993), dis-
criminative learning (Lin, 1992), a neural net-
work (Schmid, 1994), and so on.

In this paper we propose hidden Markov
models for part-of-speech tagging, which
adopt a less strict Markov assumption(Cinlar,
1975) to consider rich contexts. Because such
models have a large number of parameters,
they must suffer from sparse-data problem
unless they have an enough volume of train-
ing corpus. Moreover, because such models
assume conditional independence, the prob-
ability estimates of their parameters may
have statistically different reliability that de-
pends on the number of samples of condi-
tional terms. To overcome the first problem,
a simplified version of the well-known back-off
smoothing method is used. To mitigate unre-
liable estimation problem, our models assume
joint independence between random variables
instead of conditional independence because
joint probabilities have the same degree of es-
timation reliability.

2 HMM-based POS tagging

Figure 1 shows a lattice structure of an En-
glish sentence, “Flies like a flower.”, where
each node has a word and its POS tag and
where the sequence connected by bold lines
indicates the most likely sequence.

2.1 Standard model

We basically follow the notation of (Char-
niak et al., 1993) to describe Bayesian mod-
els for POS tagging. In this paper, we as-

sume that {w!, w? ..., w*} is a set of
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Figure 1: A lattice of “Flies like a flower .”

words, {t!, t?, ..., t"} is a set of POS
tags, a sequence of random variables Wy, =
Wy Wy W, is a sentence of n words,
and a sequence of random variables 77, =
Ty Ty ... T, is a sequence of n POS tags. Be-
cause each of random variables W can take as
its value any of the words in the vocabulary,
we denote the value of W; by w; and a par-
ticular sequence of values for W ; (i < j) by
w; ;. In a similar way, we denote the value of
T; by t; and a particular sequence of values for
T;; (i < j) by t;j. For generality, terms wj
and t; ; (i > j) are defined as being empty.

The purpose of Bayesian models for POS
tagging is to find the most likely sequence of
POS tags for a given sequence of words, as
follows:

T(wl,n)
= argmaxPr(T1» =tin | Win =wia) (1)
t1m

= argmaxPr(t1,» | wi,n) (2)

t1,n
= argmax Pr(tl,"a wl,")
t1,n r(wi,n)

= argmaxPr(ti,n, wi,n) (3)
ti,n

Egn. 1 becomes Eqn. 2 because reference to
the random variables themselves can be omit-
ted. Eqn. 2 is then transformed into Eqn. 3
since Pr(w; ;) is constant for all ¢; .

Then, the probability Pr(¢; ,,w ) is bro-
ken down into Eqn. 4 by using the chain rule.

_ - Pr(t; | t1,i-1,w1,i-1)
Pr(tl,n, wl,n) - H ( X Pr(w, | tl,i,wl,i—l) (4)

=1

However, it is either implausible or impossible
to compute Pr(t; | ¢1,—1,w1,-1) and Pr(w; |
tl,i,wl,i_l) in Eqn. 4.

The standard HMM simplifies them by
making the following two strict Markov as-
sumption (conditional independence), Eqn. 5
and Eqn. 6, to get a more tractable form,
Eqn. 7.

Pr(ti | t1,i—1,w1,i—1) = Pr(t; | ti—k,i-1) (5)
Pr(w; | t1,i,wi,i-1) = Pr(w; | t;) (6)

i Pr(t; | ti—k,i—1
Pr(tin,win) = H ( X I(’r(1|1)z | t:) : ) ™

=1

The standard HMM assumes that the prob-
ability of a current tag ¢; conditionally de-
pends on only the previous K tags t; k; 1
and that the probability of a current word
w; conditionally depends on only the current
tag!. In the standard model (K=1), for ex-
ample, the probability of a node “a/AT” of
the most likely sequence in Figure 1 is calcu-
lated as follows:

Pr(AT | NNS,VB)
x Pr(a | AT)

Generally, the standard HMM has a limita-
tion that it can not solve complicated ambi-
guities because it does not consider rich con-
texts. To overcome this limitation, the stan-
dard HMM should be extended so that it can
consult rich information in contexts.

2.2 Extended models

An extended HMM, A(T(K’J), W(L,I))7 for
POS tagging is defined by making the follow-
ing two less strict Markov assumption, Eqn. 8
and Eqn. 9, as follows:

Pr(t: [t1,i-1,w1:1) = Pr(ts | tik,io1, wi-gi-1) (8)
Pr(w; | t1,:,w1,i-1) = Pr(w; | ti—ri,wi—ri—1) (9)
A(T(K,J), W(L,I)) '= Pr(tl,n, ’wl,n)

N - Pr(t; | ti—k,i—1,Wi—J,i—1)
~ l l ( X Pr(w; | timr,5,Wi—1,i—1) (10)
i=1

In a model A(T(k 5y, W(z 1)), the probability
of the current tag ; conditionally depends on
'Usually, K is determined as 1 (bigram as in (Char-

niak et al., 1993)) or 2 (trigram as in (Merialdo,
1991)).



both the previous K tags t;_k ;—1 and the pre-
vious J words w;_;—1 and the probability of
the current word w; conditionally depends on
the current tag and the previous L tags t;_r, ;
and the previous I words w;_z;_1. In exper-
iments, we set K as 1 or 2, JasOor K, L as
lor2,and I as 0 or L. If J and I are zero,
the above models are non-lexicalized models.
Otherwise, they are lexicalized models.

In an extended model A(T(y9), W(a,2)), for
example, the probability of a node “a/AT” of
the most likely sequence in Figure 1 is calcu-
lated as follows:

Pr(AT | NNS,V B, Flies,like)
« Pr(a | AT, NNS,V B, Flies, like)

3 Parameter estimation

Because the extended models have a large
number of parameters, they must suffer from
both sparse-data problem and unreliable es-
timation problem. The models adopt a sim-
plified back-off smoothing technique as a so-
lution to the first problem, and joint indepen-
dence assumption as a solution to the second.

3.1 Simplified back-off smoothing

In supervised learning, the simpliest pa-
rameter estimation is the maximum like-
lihood(ML) estimation(Duda et al., 1973)
which maximizes the probability of a train-
ing set. The ML estimate of tag (K+1)-gram
probability, Prasr,(t; | ti—k,i—1), is calculated
as follows:

Fq(ti- k)

Fq(ti—k,i-1) D

Pr(t; | ticki— =
MII‘,(Zl i—K,i 1)

where the function Fq(z) returns the fre-
quency of z in the training set. When using
the ML estimation, data sparseness is even
more serious in the extended models than in
the standard models because the former has
even more parameters than the latter.
(Chen, 1996), where various smoothing
techniques was tested for a language model by
using the perplexity measure, reported that a
back-off smoothing(Katz, 1987) performs bet-
ter on a small traning set than other meth-
ods. In the back-off smoothing, the smoothed

probability of tag (K+1)-gram Prgpo(t; |
ti—k,i—1) is calculated as follows:

Pr (¢ | tickio1) =
SBIb(Z| i—K,i 1)

d, PI“ML(tz' | ti—K,i—l) ifr>0 (12)
a(ti—k,i—1) Prspo(ti | tick41,i-1)if r =0

where r = Fq(ti—k;), r* = (r+ 1)nT+1
n

T
r !T—I—l XMl

T n
dy = L

1_ T+1)Xnr41

n1

In the equation above, n, denotes the num-
ber of (K+1)-gram whose frequency is 7,
and the coefficient d, is called the discount
ratio, which reflects the Good-Turing es-
timate(Good, 1953)2. Eqn. 12 says that
Prspo(ti | ti—k,—1) is under-estimated by
d, than its maximum likelihood estimate, if
r > 0, or is backed off by its smoothing term
PISBo(t,‘ | ti,Kjl_l,i,l) in pI“OpOI“tiOH to the
value of the function a(t;—x—1) of its condi-
tional term ¢;_g;_1, if r = 0.

However, because Eqn. 12 requires compli-
cated computation in a(t;—k i—1), we simplify
it to get a function of the frequency of a con-
ditional term, as follows:

a(Fq(ti-ki-1) = f) =
E[Fq(ti-k,i-1) = f]
B Y72 ElFa(ti-k,i-1) = f]

(13)
where
Yotiigir>0 Prspo(tilti-ki—1)
Eti—K,i,7'>0 PIML(ti|ti—K,i—1) ’
ElFq(ti- k1) = f] =
Pr (¢;]¢,— i
Z SBrO( Z‘ i—K+1, 1)

ti_k41,i,r=0,Fq(ti_x,i—1)=f

A=1-—

In Eqn. 13, the range of f is bucketed into 7
regions such as f = 0,1,2,3,4,5 and f > 6
since it is also difficult to compute this equa-
tion for all possible values of f.

Using the formalism of our simplified back-
off smoothing, each of probabilities whose
ML estimate is zero is backed off by its
corresponding smoothing term. In experi-
ments, the smoothing terms of Prgpo(t; |

*In (Katz, 1987) d» = 1 if r > 5.



tiKi-1,Wwi—Ji—1) are determined as follows:

Prsgol(ti | bi-K+1i-1, ) ifK>1,J>1

Wi— J+1,i—1
Prspo(ti | ti—k,i—1) ifK>1,J=1
Prspo(ti | tick+1-1) K >1,J=0
Prap (i) HK=1J=0

Also, the smoothing terms of Prgpo(w; |
ti—r, wi—1,;—1) are determined as follows:

Prspo(w; | bi-rt1,i ) ifL>1,T>1
Wi—141,4—1

Prspo(w; | ti—1,) fL>1,I=1

Prspo(w; | ti—r41,) ifL>1,1=0

Prap(w;) if L=0,1=0

In the equations above, the unigram prob-
abilities are calculated by using an additive
smoothing with § = 1072 which is chosen
through experiments. The equation for the
additive smoothing (Chen, 1996) is as follows:

Fq(tZ Kz) +6
Et (Fa(ti- KZ) +6)

AD (t |tz Ki— 1)

3.2 Joint independence

The parameters of an HMM may have differ-
ent degree of statistical reliability because pa-
rameter reliability depends on the frequency
of conditional term. For example, let a corpus
consist of 1 million words and let the follow-
ing parameters be extracted from the corpus
by using the maximum likelihood estimation.

Pr(a) =0.01 Pr(d|a)=0.1
Pr(b) = 0.001 Pr(d|b) = 0.1
Pr(c) = 0.0001 Pr(d|c) = 0.1

In this case, three conditional probabilities,
Pr(d | a), Pr(d | b), and Pr(d | ¢) are all
0.1 but Pr(d | a) is statistically more reliable
than others because its sample size (10,000
words = 1 millionx Pr(a)) is bigger than oth-
ers. Actually, this phenomenon is very serious
in extended models, even though parameters
of the models are seen in the training corpus.

To consider such statistical reliability of a
probability estimate, we introduce the con-
cept of weighting Markov assumption, as fol-

lows:

Pr(t; | t1i—1,wi,i-1) &
Pr(t; [ ti ki1, wigi-1) (14)
X W(ti—K,i—1,Wi—Ji—1)
Pr(w; | t14,wii-1) =
Pr(w; | ti—ri, wi—ri—1) (15)
X W (timr,i, Wi—1,i—1)

If the probability function, Pr, is used as
the weight function, W, the equations above
become equations assuming joint indepen-
dence between random variables as follows:

Pr(t; | t1i—1,wii—1) =
Pr(ti, ti—k,i—1,wi—zi-1)
Pr(w; | t14,wii1) =
Pr(w;, ti—r.i, Wi—r,i-1)

(16)
(17)

The equations above assume that the prob-
ability of the current tag t¢; jointly depends
on both the previous K tags t;_k ;—1 and the
previous J words w; j; 1 and that the prob-
ability of the current word w; jointly depends
on the current tag and the previous L tags
t;—r; and the previous I words w;_r;—1. If a
Bayesian model assumes joint independence,
we call it a joint independence model (JIM).

Actually, using the probability function as
the weight function is mathematically incor-
rect and implausible. For example, while the
sum of probabilities of all sentences with the
same length becomes 1.0 in an HMM, it be-
comes naturally less than 1.0 in a JIM. There-
fore, JIMs should not be used in calculating
the probability of a sentence. However, if we
want to find the most likely sequence for each
sentence and the joint probability of each pa-
rameter is regarded as a score, JIMs have no
problem.

By replacing corresponding parameters, an
extended HMM can be transformed into the
corresponding JIM, which is defined as fol-
lows:

(I)(T(K J)> W(L] ) = Pr(tl ny, W1 n)
Pr(t;,t; K i—1s Wi— Ji— 1)
~ 18
H(XPI’U)Z,tz LZ)w’L IZ 1) ( )
In an extended JIM, ®(T(33), W(2,2)), for
example, the probability of a node “a/AT” of



the most likely sequence in Figure 1 is calcu-
lated as follows:

Pr(AT,NNS,V B, Flies,like)
x Pr(a, AT, NNS,V B, Flies, like)

The parameters of a JIM are estimated by
using the parameters of the corresponding
HMM as follows:

Prspo(ti, ti—ki—1,Wi—ji—1) =
Prspo(ti | ti— ki1, Wi—ji-1)
X Prap(ti—k,i—1,wi—yi—1)
Prspo(wi, ti—r i, wi—15-1) =
Prspo(w; | ti—L4, Wi—1,i—1)
X Prap(ti—r: wi—r,i-1)
Falti—k 1)
Pr(ti—K,i) = q( ? K,z) +
AD Eti—K,i (Fq(ti—K,i) +4)

4 Experiments

For experiments, we used the Brown corpus
which consists of 1,113,180 words and 53,885
sentences and is tagged with 82 POS tags®.
It was segmented into two parts, the training
set of 90% and the test set of 10%, in the
way that each sentence in the test set was
extracted from every 10 sentence. In the same
way, we made 10-fold data set for 10-fold cross
validation.

In order to assign all possible tags to each
word, we made two assumption: closed vo-
cabulary assumption and open vocabulary as-
sumption. For closed vocabulary assump-
tion, we looked up a dictionary tailored to
the Brown corpus. In this case, the aver-
age number of tags per word became 1.64.
For open vocabulary assumption, we looked
up a dictionary tailored only to a training
set in order to assign possible tags to fre-
quent words whose frequency is greater than
5. In case of rare words, tags in the dictionary
were assigned and then 6 tags with highest
score were assigned by using a naive Bayesian
classifier(Mitchell, 1997) considering charac-
ter features as follows:

Pr(ti,wi) = Pr(ti) X PI‘(’LUZ | ti)

3Note that some sentences, which have composite
tags(such as “HV+TO” in “hafta”’), “ILLEGAL” tag,
or “NIL” tag, were removed from the Brown corpus
and tags with “*”(not) such as “BEZ*” were replaced
by corresponding tags without “*” such as “BEZ”.

F .
~ Pr(t;) x H Pr(f] | )

=1

where ff indicates j-th character features of
w; and F'(=12) is the number of character fea-
ture types including prefixes (whose length
is 1 through 4), suffixes (whose length is 1
through 4), if w; contains numbers, if w; con-
tains an initial uppercase letter, if w; contains
any non-initial uppercase letter, if w; contains
hyphens. In this case, the average number of
tags per word became 2.00 and the rate of
words that have the correct tag among all as-
signed tags became 99.85%.

Figure 2 illustrates graphs showing the av-
erage accuracy rates of HMMs and JIMs un-
der the closed vocabulary assumption. Here,
labels in the x-axis specify models in the
way that IL(,’f denotes A(T(k, 1), W(r,1)) or
®(T(x,7), W(z,r))- The models are arranged
by the ascending order of theoretical num-
ber of parameters. The first two models are
standard models and the others are extended
models. The average accuracy rates beyond
the range of each graph are just below the
figure.

In this figure, we can observe that the sim-
plified back-off smoothing technique mitigates
sparse-data problems in both HMMs and
JIMs. As expected, JIMs achieves higher ac-
curacy than the corresponding HMMs in some
extended models consulting rich contexts.
It is statistically significant with confidence
99that the model, ®(T{22), W(1,1)) (98.05%),
is better than any other models including
the standard bigram HMM, A(T(I,O)aW(O,O))
(9727%) and the best HMM, A(T(l,l)a W(l,O))
(97.93%).

Figure 3 depicts graphs indicating the av-
erage accuracy rates of HMMs and JIMs un-
der the open vocabulary assumption. Unlike
Figure 2, the model, A(T{2,0), W(1,0)), achieves
the best accuracy rate (96.86%) with confi-
dence 99%.

5 Conclusion

We have presented the extended HMMs for
English POS tagging, which can consider rich



98.1

98.0 |-
X X
97.8 | .
> X X
97.6 L
X

97.4
97.2 - ;
97.0 | | | | | | | | | | | | | | | N | |

1,0 2,0 1,0 20 11 11 10 20 1,1 1,0 20 1,1 22 22 22 22 10 20 1,1 22

0,0 0,0 10 1,0 00 1,0 20 20 20 1,0 1,1 1,1 00 1,0 2,0 1,l 22 22 22 22
94.90 95.18 95.50 95.49 95.67 95.50 96.83

Figure 2: Results under the closed vocabulary assumption

information in contexts. In the models, a sim-
plified version of back-off smoothing is used to
mitigate data sparseness problem. The mod-
els assume joint independence between ran-
dom variables in order to make the parameter
estimation more reliable.

From the experiments, we have observed
that extended models achieved even better
results than the standard models in case of
both HMMs and JIMs, that the simplified
back-off smoothing technique mitigated data
sparseness quite effectively, and that some ex-
tended JIMs outperformed the corresponding
HMDMs. Under the closed vocabulary assump-
tion, the best JIM outperformed the best
HMM. On the contrary, under the open vo-
cabulary assumption, the best HMM outper-
formed the best JIM. Intuitively speaking, it
is empirically proven that the joint indepen-
dence assumption is more effective than the
Markov assumption in some models that con-
sult specific features such as lexicalized ones.

Generally, the uniform extension of mod-
els requires rapid increase of parameters, and
hence suffers from large storage and sparse
data. Recently in many areas where HMMs
are used, many efforts to extend models non-
uniformly have been made, sometimes result-
ing in noticeable improvement. For this rea-

son, we are trying to transform our uniform
models into non-uniform models, which may
be more effective in terms of both space com-
plexity and reliable estimation of paremeters,
without loss of accuracy.

And also, we are trying to apply our models
to different areas such as information extrac-
tion in the bio-molecular domain, noun phrase
chuncking, and so on.
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