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Abstract

This paper presents a corpus-based al-
gorithm capable of inducing inflectional
morphological analyses of both regu-
lar and highly irregular forms (such as
brought—bring) from distributional pat-
terns in large monolingual text with
no direct supervision. The algorithm
combines four original alignment models
based on relative corpus frequency, con-
textual similarity, weighted string simi-
larity and incrementally retrained inflec-
tional transduction probabilities. Start-
ing with no paired <inflection,root> ex-
amples for training and no prior seeding
of legal morphological transformations,
accuracy of the induced analyses of 3888
past-tense test cases in English exceeds
99.2% for the set, with currently over
80% accuracy on the most highly irreg-
ular forms and 99.7% accuracy on forms
exhibiting non-concatenative suffixation.

1 Task Definition

This paper presents an original and successful al-
gorithm for the nearly unsupervised induction of
inflectional morphological analyzers, with a focus
on highly irregular forms not typically handled by
other morphology induction algorithms. It is use-
ful to consider this task as three separate steps:

1) Estimate a probabilistic alignment between
inflected forms and root forms in a given lan-
guage

2) Train a supervised morphological analysis
learner on a weighted subset of these aligned
pairs.

3) Use the result of Step 2 as either a stand-
alone analyzer or a probabilistic scoring com-
ponent to iteratively refine the alignment in
Step 1.

The target output of Step 1 is an inflection-root
mapping such as shown in Table 1, with optional
columns giving the hypothesized stem change and
suffix analysis as well as part of speech.

STEM
ROOT | CHANGE  SUFFIX | INFLECTION | POS
take | ake — ook +e¢ took VBD
take e e +ing taking VBG
take € e +s takes VBZ
take e e +en taken VBN
skip €—=Dp +ed skipped VBD
defy y—i +ed defied VBD
defy y — ie +s defies VBZ
defy €—e€ +ing defying VBG
jugar | gar - eg +a Jjuega VPI3S
jugar | gar - eg +an juegan VPI3P
jugar ar — € +amos | jugamos VPIIP
tener | ener — ien +en tienen VPI3P

Table 1: Target output (English and Spanish)

This suffix-focused transformational model is
not, as given, sufficient for languages with pre-
fixal, infixal and reduplicative morphologies. But
it is remarkably productive across Indo-European
languages in its current form and can be extended
to other affixational schema when appropriate.

For many applications, once the vocabulary list
achieves sufficiently broad coverage, this align-
ment table effectively becomes a morphologi-
cal analyzer simply by table lookup (indepen-
dent of necessary contextual ambiguity resolu-
tion). While the probabilistic analyzer trained
in Step 2 remains useful for previously unseen
words, such words are typically quite regular and
most of the difficult substance of the lemmatiza-
tion problem can often be captured by a large
root+POs<+rinflection mapping table and a sim-
ple transducer to handle residual forms. This is
not the case for agglutinative languages such as
Turkish or Finnish, or for very highly inflected
languages such as Czech, where sparse data be-
comes an issue. But for many languages, and to a
quite practical degree, inflectional morphological
analysis and generation can be viewed primarily
as an alignment task on a broad coverage wordlist.



Thus, while this paper will discuss our imple-
mentation of a stand-alone probabilistic analyzer
and retraining process in Steps 2 and 3, the chal-
lenge of large-coverage inflection-root alignment
expressed in Step 1 is the core of this work.

1.1 Required and Optional Resources

In further clarification of the task description, the
morphological induction described in this paper
assumes, and is based on, only the following lim-
ited set of (often optional) available resources:

(a) A table (such as Table 2) of the inflectional
parts of speech of the given language, along
with a list of the canonical suffixes for each
part of speech. These suffixes not only serve
as mnemonic tags for the POS labels, but
they can also be used to obtain a noisy set of
candidate examples for each part of speech.!

(b) A large unannotated text corpus.

(c¢) A list of the candidate noun, verb and adjec-
tive roots of the language (typically obtain-
able from a dictionary), and any rough mech-
anism for identifying the candidate parts of
speech of the remaining vocabulary based on
aggregate models of context or tag sequence,
not morphological analysis. Our concurrent
work (Cucerzan and Yarowsky, 2000) focuses
on the problem of bootstrapping approxi-
mate tag probability distributions by mod-
elling relative word-form occurrence proba-
bilities across indicative lexical contexts (e.g.
“the <NOUN> are” and “been <VBG> the”),
among other predictive variables, with the
goal of co-training with the models presented
here. It is not necessary to select the part of
speech of a word in any given context, only
provide an estimate of the candidate tag dis-
tributions across a full corpus. The source of
these candidate tag estimates is unimportant,
however, and the lists can be quite noisy.
Their major function is to partially limit the
potential alignment space from unrestricted
word-to-word alignments across the entire vo-
cabulary.

(d) The current implementation assumes a list of
the consonants and vowels of the language.

(e) While not essential to the execution of the
algorithm, a list of common function words of

!The lists need not be exhaustive, and any missing
irregular suffixes (e.g. the English past tense +t) can
be captured via a stem change and null suffix (e.g.
send: d—t +e = sent), similar to the representation
of take: ake— o0k +€ = took).

the given language is useful to the extraction
of context similarity features.

(f) If available, the various distance/similarity
tables generated by this algorithm on previ-
ously studied languages can be useful as seed
information, especially if these languages are
closely related (e.g. Spanish and Italian).

2 Related Work

There is a rich tradition of supervised and un-
supervised learning in the domain of morphol-
ogy. Rumelhart and McClelland (1986), Egedi
and Sproat (1988), Ling (1994) and Mooney and
Califf (1995) have each investigated the supervised
learning of the English past tense from paired
training data, the first two using phonologically-
based connectionist models and the latter two
performing comparative studies with ID3 decision
trees and first-order decision lists respectively.
Brent (1993, 1999), de Marcken (1995), Kaza-
kov (1997) and Goldsmith (2000) have each fo-
cused on the problem of unsupervised learning of
morphological systems as essentially a segmenta-
tion task, yielding a morphologically plausible and
statistically motivated partition of stems and af-
fixes. Brent and de Marcken both have used a
minimum description length framework, with the
primary goal of inducing lexemes from bound-
aryless speech-like streams. Goldsmith specif-
ically sought to induce suffix paradigm classes
(e.g. NULL.ed.ing vs. e.ed.ing vs. e.ed.es.ing
vs. ted.tion) from raw text. However, handling
of irregular words was largely excluded from this
work, as Goldsmith assumed a strictly concatena-
tive morphology without models for stem changes.
Morphology induction in agglutenative lan-
guages such as Turkish and Finnish presents a
problem similar to parsing or segmenting a sen-
tence, given the long strings of affixations allowed
and the relatively free affix order. Voutilainen
(1995) has approached this problem in a finite-
state framework, and Hakkani-Tiir et al. (2000)
have done so using a trigram tagger, with the as-
sumption of a concatenative affixation model.
The two-level model of morphology (Kosken-
niemi, 1983) has been extremely successful in
manually capturing the morphological processes
of the world’s languages. The context sensi-
tive stem-change models used in this current pa-
per have been partially inspired by this frame-
work. For example, a two-level equivalent cap-
turing happy + er = happier is y:i & p:p -, quite
similar in spirit and function to our probabilis-
tic model P(y—1i|...app, +er). Theron and Cloete



Part of Speech VB VBD VBZ VBG VBN
+ed +en
Canonical +e (+t) +s +ing +ed
. Suffixes +e (+t)
English : Te
Examples jump jumped jumps jumping jumped
(not used in announce | announced | announces | announcing | announced
training) take took takes taking taken
Part of Speech || VRoot | VPI1s | VPI2s | VPI3s | VPIlp | VPI2p | VPI3p
Spanish: Canonical +ar +o +as +a +amos | +dis +an
’ Suffixes +er +es +e +emos +éis +en
+ir +imos +is

Table 2: Example parts of speech and their associated canonical suffixes in English and Spanish

(1997) sought to learn a 2-level rule set for En-
glish, Xhosa and Afrikaans by supervision from
0(4000) aligned inflection-root pairs extracted
from dictionaries. Single character insertion and
deletions were allowed, and the learned rules sup-
ported both prefixation and suffixation. Their su-
pervised learning approach could be applied di-
rectly to the aligned pairs induced in this paper.

Finally, Oflazer and Nirenburg (1999) have de-
veloped a framework to learn two-level morpho-
logical analyzers from interactive supervision in
a Elicit-Build-Test loop under the Boas project.
Humans provide as-needed feedback regarding er-
rors and omissions. Recently applied to Polish,
the model also assumes concatenative morphol-
ogy and treats non-concatenative irregular forms
through table lookup.

Thus there is a notable gap in the research
literature for induction of analyzers for irregu-
lar morphological processes, including significant
stem changing. The algorithm described below
directly addresses this gap, while successfully in-
ducing more regular analyses without supervision
as well.

3 Lemma Alignment by Frequency
Similarity

The motivating dilemma behind our approach to
morphological alignment is the question of how
one determines that the past tense of sing is sang
and not singed. The pairing sing— singed requires
only simple concatenation with the canonical suf-
fix, +ed, and singed is indeed a legal word in our
vocabulary (the past tense of singe). And while
few irregular verbs have a true word occupying the
slot that would be generated by a regular mor-
phological rule, a large corpus is filled with many
spelling mistakes or dysfluencies such as taked (ob-
served with a frequency of 1), and such errors can
wreak havoc in naive alignment-based methods.
How can we overcome this problem? Rel-
ative corpus frequency is one useful evidence

source. Observe in Table 3 that in an 80 mil-
lion word collection of newswire text the relative
frequency distribution of sang/sing is 1427/1204
(or 1.19/1), which indicates a reasonably close
frequency match, while the singed/sing ratio is
0.007/1, a substantial disparity.

VBD:VB | XBE [ [og(YED)
sang/sing 1427/1204 | 1.19 0.17
singed /sing 9/1204 | 0.007 | -4.90
singed/singe 9/2 4.5 1.50
sang/singe 1427/9 158.5 5.06
All VBD/VB .85 -0.16

Table 3: Example inflection-root frequency ratios

However, simply looking for close relative fre-
quencies between an inflection and its candidate
root is inappropriate, given that some inflections
are relatively rare and ezpected to occur much less
frequently than the root form.

Thus in order to be able to rank the sang/sing
and singed/sing candidates effectively, it is nec-
essary to be able to quantify how well each fits
(or deviates from) expected frequency distribu-
tions. To do so, we use simple non-parametric
statistics to calculate the probability of a particu-
lar VVBBD ratio by examining how frequently other
such ratios in a similar range have been seen in
the corpus. Figure 1 illustrates such a histogram
(based on the log of the ratios to focus more at-
tention on the extrema). The histogram is then
smoothed and normalized as an approximation of
the probability density function for this estimator
(log(%E2)), which we can then use to quantify
to what extent a given candidate log(VVLBD), such
as log(sang/sing)=.17, fits our empirically moti-
vated expectations. The relative position of the
candidate pairings on the graph suggests that this
estimator is indeed informative given the task of
ranking potential root-inflection pairings.

However, estimating these distributions
presents a problem given that the true alignments
(and hence frequency ratios) between inflections
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Figure 1: Using the log(~75~) estimator to rank

potential VBD-VB pairs in English

are not assumed to be known in advance. Thus
to approximate this distribution automatically,
we make the simplifying assumption that the
frequency ratios between inflections and roots
(largely an issue of tense and usage) is not sig-
nificantly different between regular and irregular
morphological processes.

Table 4 and Figure 2 illustrate that this sim-
plifying assumption is supported empirically. De-
spite large lemma frequency differences between
regular and irregular English verbs, their relative
tense ratios for both Y22 and VBG are quite sim-

VB
ilar in terms of their means and den51ty functions.

VerbType || ¥EE | ¥BY [ Avg. Lemma Freq®
Regular 847 | 746 861
Irregular 842 | 761 17406

Table 4: Similar regular-irregular frequency ratios
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Figure 2: Distributional similarity between regu-

lar and irregular forms for VBD/VB

Thus we initially approximate the VBD/VB ra-
tios from an automatically extracted (and noisy)
set of verb pairs exhibiting simple and uncon-
tested suffixation with the canonical +ed suffix.
This distribution is re-estimated as alignments im-
prove, but a single function continues to predict
frequency ratios of unaligned (largely irregular)
word pairs from the observed frequency of previ-
ously aligned (and largely regular) ones.

Furthermore, we are not just limited to using
the ratio POS;/V B to predict the expected fre-
quency of POS; in the corpus. The expected fre-
quency of a viable past-tense candidate for sing
should also be estimable from the frequency of
any of the other inflectional variants.

Assuming that earlier iterations of the algo-
rithm had filled the SING lemma slots for VBG and
VvBZ in Table 5 with regular inflections, Kgé’ and
VBD ¢ould also be used as estimators. Figure 3

VZ
shows the histogram for the estimator log($22).3

| [TCemma] VB |VBD| VBG |VBZ|VBN|

Word || SING | sing ? | singing | sings | 7
Freq ? 1204 ? 1381 344 ?

Table 5: Example lemma, frequency profile for sing
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Figure 3: Using the log(%) estimator to rank

potential VBD-VBG matches in English

We are also not limited to using only a single
estimator. In fact, there are considerable robust-
ness advantages to be gained by taking the average
of estimators, especially for highly inflected lan-
guages where the observed frequency counts may
be relatively small. To accomplish this in a general
framework, we first estimate the hidden variable
of total lemma frequency (LF) via a confidence-
weighted average of the 0bse/1_ryed POS; frequency

and a globally estimated % model. Then all
subsequent POS; frequency estimations can be
P OSi, or a somewhat advanta-

made relative to ==
), with this distribu-

POS
ZPos;
tion illustrated in Flgure 4. Another advantage
of this consensus approach is that it only requires
T rather than T? estimators, which is especially
important as the inflectional tagset T grows quite
large in some languages.

geous variant, log(

3Using this estimate, we predict a frequency
E(VBD)=1567, which is an overestimate relative to
the true 1427. In contrast, the distribution for $22
is considerably more noisy, given the problems with
VBZ forms being confused with plural nouns. This

latter measure yields a underestimate of 1184.
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Figure 4: Using the log( ) estimator to rank

Also, one can alternately conduct the same
frequency-distribution-based ranking experiments
over suffixes rather than tags. For example,
log(H5%%) yields a similar estimator to log({5g ),

but with somewhat higher variance.*

Finally, these frequency-based alignment mod-
els can be informative even for more highly in-
flected languages. Figure 5 illustrates an estimate
of the empirical distribution of the “,/ g II]%,]; part-
of-speech frequency ratios in Spanish, with this
estimator strongly favoring the correct but irreg-
ular juegan/jugar alignment rather than its ortho-
graphically similar competitors.

03
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0.05 - juegan/juntar (3.9) |
’ juegan/jogar(4.8
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Figure 5: Using the log( ‘{,}H\?ﬁ ) estimator to rank

potential VBPI3P-VINF pairs in Spanish

“This measure also frees one from any need to
do part-of-speech distribution estimation. However,
when optional variant suffixes (such as +ed and +en)
exist in the canonical suffix set, performance can
be improved by modeling this distribution separately
for verbs with and without observed distinct +EN

forms, as the relative distribution of log(#3%) and
+ED

log(#557) change somewhat substantially in these
cases. Omne does not know in advance, however,
whether a given test verb belongs to either set. Thus
the initial frequency similarity score should be based
on the average of both estimators until the presence
or absence of the distinct variant form in the lemma
can be ascertained on subsequent iterations.

4 Lemma Alignment by Context
Similarity

A second powerful measure for ranking the poten-
tial alignments between morphologically related
forms is based on the contextual similarity of the
candidate forms. For this measure, we computed
traditional cosine similarity between vectors of
weighted and filtered context features. While this
measure also gives relatively high similarity to se-
mantically similar words such as sip and drink, it
is rare even for synonyms to exhibit more simi-
lar and idiosyncratic argument distributions and
selectional preferences than inflectional variants
of the same word (e.g. sipped, sipping and sip).
A primary goal in clustering inflectional variants
of verbs is to give predominant vector weight to
the head-noun objects and subjects of these verbs.
However, to minimize needed training resources,
we very roughly identified these positions by a set
of simple regular expressions over small closed-
class parts of speech, with remaining (open-class)
content words labeled collectively as cw, e.g.:
CWupj (AUX|INEG)* Vieywora DET? CW* CWop;.

Such expressions will clearly both extract sig-
nificant noise and fail to match many legiti-
mate contexts, but because they are applied to
a large monolingual corpus, the partial coverage
and signal-to-noise ratio are tolerable. Ideally, one
would also automatically identify which set of pat-
terns are appropriate for a given language, but
this can be accomplished in subsequent iterations
of the algorithm by taking previously extracted
<inflection,root> pairs and testing which subset
of predefined regular expressions is most effective
in maximizing the mean context-similarity of the
<inflection,root> relative to non-pairs. Similar
techniques can be used to weight the relative im-
portance of contextual positions.®

For similar reasons, it is useful in subsequent
iterations of the algorithm to apply the current
analysis modules towards lemmatizing the contex-
tual feature sets. This has the effect of both con-
densing the contextual signal, and removing po-
tentially distracting correlations with inflectional
forms in context.

5 Another important concept in context similarity
measures for morphology that differs from other word
clustering measures is the need to downweight or elim-
inate context words such as subject pronouns that
strongly correlate with only one or a few inflectional
forms. Giving such words too much weight can cause
different verbs of the same person/number to appear
more similar to each other than do the different inflec-
tions of the same verb. Filtering based on high cross-
lemma distributional entropy for a given context word
can help eliminate these counter-productive features.



5 Lemma Alignment by Weighted
Levenshtein Distance

The third alignment similarity function considers
overall stem edit distance using a weighted Leven-
shtein measure. In morphological systems world-
wide, vowels and vowel clusters are relatively mu-
table through morphological processes, while con-
sonants generally tend to have a lower probability
of change during inflection. Rather than treating
all string edits as equal, a cost matrix of the form
shown in Table 6 is utilized, with initial distance
costs 6;=V-V, da=vt-vt, d3=c-C and ,=C-vT,
initially set to (0.5, 0.6, 1.0, 0.98), a relatively ar-
bitrary assignment reflecting this tendency. How-
ever, as subsequent algorithm iterations proceed,
this matrix is re-estimated with empirically ob-
served character-to-character stem-change proba-
bilities from the algorithm’s current best weighted
alignments.

| a|o]ue|m]|n]|..

Table 6: Initial Levenshtein cost matrix

More optimally, the initial state of this ma-
trix could be seeded with values partially bor-
rowed from previously trained matrices from other
related languages. Alternately, the initial dis-
tances could be set partially sensitive to phonolog-
ical similarities, with dist(/d/,/t/) < dist(/d/,/f/)
for example, although this particular distinction
emerges readily via iterative re-estimation from
the baseline model.

6 Lemma Alignment by
Morphological Transformation
Probabilities

The goal of this research is not only to extract an
accurate table of inflection-root alignments, but
also to generalize this mapping function via a gen-
erative probabilistic model. The following section
describes the creation of this model, as well as how
the context-sensitive probability of each morpho-
logical transformation can be used as the fourth
alignment similarity measure.

At each iteration of the algorithm, this prob-
abilistic mapping function is trained on the ta-
ble output of the previous iteration, equivalent to
the information in Table 1 (e.g. <root,inflection>
pairs with optional part-of-speech tags, confidence

scores and stemchange+suffix analysis).5 From

this output, we cluster the observed stem changes
by the variable-length root context in which they
were applied, as illustrated in Table 7.

Root Stem Matching
Context | Change |Suffix|Count | Examples
.ray| e€—e |[+ed 5 spray, stray,...
Lay| € —e +ed 13 | play, spray,...
..oy € —e€ +ed 3 annoy, enjoy,...
..ey| e—e€ +ed 5 obey, key,...
LAyl o y—oi | +ed 21 |beautify,...
LIyl y— i |+ed 7 | carry,...
Ldy| y—i |4ed 4 |bloody,...
Ly y—1i +ed 43 |carry,...
Lyl e—> e |+ed 21 |spray,...
.y| €—e€ |+ing 83 |carry, spray,...
...e e e +ed 728 |dance,...
...e e e +ing | 783 |dance, take,...
...e €€ +ing 1 singe
...ke | ake — ook | +e€ 3 take, shake,...
...ke | ake — oke | +¢€ 1 wake
.ke| ke —» de |+e 1 make
Lay| y—id | +e 2 |lay, pay
Lyl o y—id | +e 2 lay, pay

Table 7: Stem change data given root context

First note that because the triple of <root>
+ <stemchange> + <suffix> uniquely deter-
mines a resulting inflection, one can effectively
compute P(inflection | root, suffix, POS) by
P(stemchange | root, suffix, POS), ie. for
any root=+vya, suffix=40¢ and inflection=700,
P(yBo|ya,+0,POS) = P(a — B|ya, +0,POS).

Using statistics such as shown in Table 7, it is
thus possible to compute the generation (or align-
ment) probability for an inflection given root and
suffix using the simple interpolated backoff model
in (1) where ); is a function of the relative sam-
ple size of the conditioning event, and lasty(root)
indicates the final k£ characters of the root.

P( inflection | root, suffix, POS)
= P( a — | root, suffix, POS)
= MP(a— 8] lasts(root), suffix, POS)
+ (1 —A)(A2P( a — B | lasta(root), suffix, POS)
+ (1 = A2)(AsP( a — B | lasti(root), suffix, POS)
+ (1= A3)(MaP( a — B | suffix, POS)
+(1-A)P(a—=p)
(1)
We only backoff to the extent necessary. Fur-
thermore, note that for English (and most inflec-
tions in Spanish), the stem changes observed when
adding suffixes are independent of part of speech

5If only the pairs are given, with no stem-
change+suffix analysis, this analysis can be generated
deterministically by removing the longest matching
canonical suffix from the inflection and generating the
minimal @ — 8 + o transformation capturing the re-
maining stem difference.



(i.e. +s behaves the same on suffixation for both
nouns and verbs), so these probabilities can often
be further simplified by deleting the conditioning
variable POS, as illustrated in (2).
P( solidified | solidify, +ed, VBD)
= P( y—i | solidify, +ed, VBD)
= P( y—i | solidify, +ed)
~ M P(y—i| ify, +ed). @)
+ (1= A1)(A2P(y—i| fy, +ed)
+ (1= X)AsP( y—i | 3, +ed)
+ (1= A3)(AaP(y—i| +ed)
+ (1—-X)P(y—i)

We have further generalized these variable-
length context models via a full hierarchically-
smoothed trie architecture, allowing robust spe-
cialization to very long root contexts if sample
sizes are sufficient.

~—

6.1 Baseline Model for Morphological
Transformation Probabilities

On the first iteration, no inflection/root pairs are
available for estimating the above models. As
prior knowledge is not available regarding a —
stem-change probabilities, an assumption is made
that the cost of each is proportional to the pre-
viously described Levenshtein distance between a
and S, with the cost of a change increasing geo-
metrically as the distance from the end of the root
increases. The rate of this cost increase ultimately
depends on the tendency of the language to allow
word-internal spelling changes (as in Spanish or
Arabic), or strongly favor changes at the point of
affixation (as in English).

6.2 Model Improvement by Iterative
Re-estimation

The primary goal of iterative retraining is to re-
fine the core morphological transformation model,
which not only serves as one of the four similarity
models, but is also a primary deliverable of the
learning process.

As subsequent iterations proceed, the stem-
change probability models are retrained on the
output of the prior iteration, weighting each train-
ing example with its alignment confidence, and
filtering out a — (@ changes without a minimum
level of support to help reduce noise. The final
stem-change probabilities then are an interpola-
tion with the trained model P; and the initial
baseline (Py) model described in Section 6.1:

P( a— | root, suffix, POS)

= \j Po( o = | suffix)
+ (1 =X\;) Pj( o — 3| root, suffix, POS)

The Levenshtein distance models are re-
estimated as observed in Section 5, while the con-
text similarity model can be improved through

better self-learned lemmatization of the modelled
context words.

7 Lemma Alignment by Model
Combination and the Pigeonhole
Principle

As shown empirically below, no single model is
sufficiently effective on its own. We applied tradi-
tional classifier combination techniques to merge
the four models’ scores, scaling each to achieve
compatible dynamic range. The Frequency, Lev-
enshtein and Context similarity models retain
equal relative weight as training proceeds, while
the Morphological Transformation (MorphTrans)
similarity model increases in relative weight as it
becomes better trained.

Table 8 demonstrates the combined measures in
action, showing the relative rankings of candidate
roots for the inflections took, shook and juegan by
the four similarity models after the first iteration
(in Columns 2-4). The overall consensus similar-
ity measure at the end of Iteration 1 is shown in
Column 1.7

Note that even though only one of the four esti-
mators independently ranked shake as the most
likely root of shook, after only the first itera-
tion the consensus choice is correct. The fi-
nal column of Table 8 shows the retrained Mor-
phTrans similarity measure after convergence.
Based on training evidence from the confidently
aligned pairs took/take, shook/shake and under-
took/undertake from previous iterations, the prob-
ability of ake— ook has increased significantly, fur-
ther increasing the confidence in the overall align-
ments at convergence (not shown), but not chang-
ing the previously correct ranking in these cases.

The final alignment constraint that we pursued
was based on the pigeonhole principle. This prin-
ciple suggests that for a given part of speech, a
root should not have more than one inflection
nor should multiple inflections in the same part
of speech share the same root. There are, of
course, exceptions to this tendency, such as trav-
elled/traveled and dreamed/dreamt, which are ob-
served as variant forms of their respected roots.

“In addition to the consensus similarity score in
subcolumn 2, subcolumn 3 shows the average of the
ranks of the candidate root given the inflection and the
ranks of the candidate inflection given the root. This
bidirectional average ranking score favors cases where
attraction between root and inflection is mutual, and
disfavors cases where higher ranked competition exists
for a root’s attentions, effectively capturing a weak
form of the pigeonhole principle. Thus it was used
as the primary ranking criteria (over raw similarity
score).



Candidate Roots for the English inflection TOOK (1st iteration):

Overall Similarity Context Frequency | Levenshtein MorphTrans MorphTrans
(Iteration 1) Similarity Similarity Similarity Similarity (1) || Similarity (C)
take .00162 3.8 1 | take .849 | take .072 | toot .333 toot .002593 || take .465578
turn .00081 87 2 || turn  .546 | tell .028 | tool  .333 tool  .002593 || toot .001296
tell .00063 15.9 3 || tower .332 | turn .016 | toe 310 tong .000096 || tool .001296
test  .00041 19.6 4 || touch .324 | talk .014 | take .290 tone .000096 || tong .000048
talk  .00051 21.0 5 || tip 261 | test  .001 | top  .236 tone .000048
tie .00044 26.7 6 || tie .260 | teach .001 | toil .236 take .000006 || tout .000048
Candidate Roots for the English inflection SHOOK (1st iteration):
Overall Similarity Context Frequency | Levenshtein | MorphTrans MorphTrans
(Iteration 1) Similarity Similarity Similarity Similarity (1) Similarity (C)
shake .00149 5.5 1 | shake .854 |share .073 |shoo  .500 | shoot .002593 || shake .465578
shoot  .00126 9.3 2|/ shave .323 | ship .068 | shoot .333 | shoo .002593 || shoot .001296
ship .00104 16.3 3 | shape .210 | shift .062 | shoe .310 | shock .000096 || shoo  .001296
shatter .00061 18.9 4 || shore .194 |shop .060 | shake .290 | short .000096 || shock .000048
shop .00094 19.8 5 || shower .184 | shake .058 |shop .236 | shout .000095 || short .000048
shut .00081 20.6 6 || shoot .162 |shut .052 | shout .236 | ... shove .000048
shun .00039 20.7 7| shock .154 |shoot .051 |show .236 | shake .000003 || shore .000048
Candidate Roots for the Spanish inflection JUEGAN (1st iteration):
Overall Similarity Context Frequency Levenshtein MorphTrans
(Iteration 1) Similarity Similarity Similarity Similarity (1)
jugar .0024 1 || jugar .88 | jugar .063 | jugar .50 | jugar .00129
juzgar .0006 2 || juntar .38 | juzgar .015 | juzgar .29 | jogar .00129
jurar .0002 4 || jurar .26 | jogar .009 | juntar .25 | juntar .00004
jogar .0000 5 || justificar .22 | juntar .004 | jurar .18 | juzgar .00004

Table 8: Example performance of independent and combined similarity measures

The extent to which such overlaps should be pe-
nalized depends on the probability of seeing vari-
ant inflections in the morphology, but for Spanish
and English this is relatively low.

We exploited the pigeonhole principle in two
ways simultaneously. The first is a greedy algo-
rithm, in which candidates are aligned in order
of decreasing score, and when the the first-choice
root for a given inflection has already been taken
by another inflection of the same part of speech,
the algorithm continues until a free slot is found.
The exception is when the highest ranking free
form is several orders of magnitude lower than the
first choice; here the first-choice alignment is as-
sumed to be correct, but a variant form.

8 Empirical Evaluation

Current empirical evaluation of this work focuses
on its accuracy in analyzing the often highly ir-
regular past tense of English verbs. Consistent
with prior empirical studies in this field, evalua-
tion was performed on a test set of 3888 inflected
words, including 128 highly irregular inflections,
1877 cases where the past tense was formed by
simple concatenative suffixation, and 1883 inflec-
tions exhibiting a non-concatenative stem change
such as gemination or elision.

In execution, for each test inflected form, the
analysis algorithm was free to consider alignment

to any word in the corpus which had been identi-
fied as a potential root verb by the part-of-speech
tagging process or occurrence in a dictionary-
derived rootlist, not just those roots in the test set.
It is thus a more challenging evaluation than test-
ing simple alignment accuracy between two clean
and extraneous-entry-free wordlists.

Table 9 shows the performance of several of the
investigated similarity measures. Frequency simi-
larity (FS), enhanced Levenshtein (LS), and Con-
text similarity (CS) alone achieve only 10%, 31%
and 28% overall accuracy respectively. However,
the hypothesis that these measures model inde-
pendent and complementary evidence sources is
supported by the roughly additive combined ac-
curacy of 71.6%.8

The final performance of the full converged
CS+FS+LS+MS model at 99.2% accuracy on the
full test set, and 99.7% accuracy on inflections re-
quiring analysis beyond simple concatenative suf-
fixation, is quite remarkable given that the algo-
rithm had absolutely no <inflection,root> exam-
ples as training data, and had no prior inventory
of stem changes available, with only a slight sta-
tistical bias in favor of shorter stem changes with

8In fact, in many cases the consensus ranking
choice is correct when each independent model’s first
choice is wrong, actually yielding a small synergistic
super additivity.



Combination # of All Highly | Simple Non-
of Similarity Tter- Words || Irregular | Concat. | Concat.
Models ations (3888) (128) (1877) (1883)
FS (Frequency Sim) (Tter 1) 9.8 18.6 8.8 10.1
LS (Levenshtein Sim) | (Iter 1) 31.3 19.6 20.0 344
CS (Context Sim) (Tter 1) 28.0 32.8 30.0 25.8
CS+FS (Iter 1) 32.5 64.8 32.0 30.7
CS+FS+LS (Iter 1) 71.6 76.5 71.1 71.9
CS+FS+LS+MS (Tter 1) 96.5 74.0 97.3 97.4
CS+FS+LS+MS (Convg) || 99.2 80.4 99.9 99.7

Table 9: Performance of combined alignment models on 4 classes of past-tense English verbs

smaller Levenshtein distance, and with the mini-
mal search-simplifying assumption in all the mod-
els that candidate alignments must begin with a
the same V*C* prefix.?

Given a starting point where all single charac-
ter X—Y changes at the point of suffixation are
equally likely, the processes of elison (e—€), gemi-
nation (e.g. e—d in the context of d), and y—i
shift (in the context of a preceding consonant,
not vowel) all emerge by the end of the first it-
eration with high probability in their appropriate
contexts, and low probability elsewhere.

Table 10 shows how each of the models perform
on a randomly-selected 30% of the highly irregu-
lar forms, with correctly selected roots identified
in bold. The residual errors are primarily of three
types: Two inflections, went and ate, were not
alignable with their correct roots due to differ-
ent first character. The largest class of errors are
due to the pigeonhole principle strongly disfavor-
ing two inflections from sharing the same root.'?

9To put the Table 9 results in perspective, Mooney
and Califf (1995) achieved 82.5% overall accuracy us-
ing a fully supervised decision list learner trained on
250 paired past-tense/root verb pairs (in plain text
form). Although they don’t breakdown this perfor-
mance by word type, their included FOILDL program
trained from 250 pairs and applied to our evaluation
set achieved 100% accuracy on the pairs with simple
+ed concatenation, 84% accuracy on stem changing
(non-concat) pairs and 5% accuracy on the highly ir-
regular pairs, with 89% overall accuracy. Other avail-
able supervised learning results (e.g. Ling; Rumelhart
and McClelland) are only given for phonological word
representations. While not directly comparable with
our text-based data, their performance is significantly
worse than Mooney and Califf’s FOILDL on common
phonological paired data, suggesting that FOILDL is a
generally competitive reference point for our results.

10T his was previously noted in the case of dream <«
dreamed and dreamt, or burned <> burned and burnt,
with the higher probability analysis typically occupy-
ing the root slot and the lower probability form typi-
cally forced to seek alignment elsewhere. Indeed, the
pigeonhole principle is the most problematic of all the

The remaining errors typically are due to sparse
statistics for the lower frequency irregular forms.
Mappings such as slew<sslay are particularly dif-
ficult because, with a corpus frequency of only 4,
there is too little data to estimate a good context
profile or an effectively discriminatory frequency
profile. Enlarging the raw corpus size should im-
prove performance in both of these cases.

9 Conclusion

This paper has presented an original algorithm ca-
pable of inducing the accurate morphological anal-
ysis of even highly irregular verbs, starting with
no paired <inflection,root> examples for train-
ing and no prior seeding of legal morphological
transformations. It does so by treating morpho-
logical analysis predominantly as an alignment
task in a large corpus, performing the effective
collaboration of four original similarity measures
based on expected frequency distributions, con-
text, morphologically-weighted Levenshtein simi-
larity and an iteratively bootstrapped model of af-
fixation and stem-change probabilities. This con-
stitutes a significant achievement in that previ-
ous approaches to morphology acquisition have ei-
ther focused on unsupervised induction of quasi-
regular concatenative affixation, or handled irreg-
ular forms with fully supervised training. In con-
trast, this paper’s essentially unsupervised algo-
rithm achieves over 80% accuracy on the most
highly irregular forms, and 99.7% accuracy on
analyses requiring some stem change, outperform-
ing Mooney and Califf’s fully supervised learning
algorithm overall and on both of these measures.

alignment principles used, as it creates nearly as many
problems as it fixes. The overall performance advan-
tage is slightly in its favor (with 59 misalignments
avoided for 50 problems created), but the cost of this
approach is borne heavily by the irregular verbs, and
a probabilistic model of when variant forms should be
expected/allowed is necessary to fix these cases while
preserving the advantages of the principle in down-
weighting clashing analyses in the more regular verbs.



Test True CS+FS+LS+MS CS+FS+LS | CS+FS LS only
Word Root (Convg) | Score || (Itr 1) (Ttr 1) (Ttr 1) (Ttr 1)
got get go 1.30 || go go go gut
knew know know 1.35 || know know know know
took take take 1.50 || take take take toot
blew blow blow 1.80 || blow blow blow blow
became | become || become 2.35 || become | become become | become
made make make 2.40 || make make make mate
clung cling cling 2.55 || cling cling cling cling
drew draw draw 2.65 || draw draw draw draw
swore swear swear 2.80 swear swear swear store
wore wear wear 3.10 wear wear wear wire
came come come 3.55 come come come come
thought | think think 3.60 || think think think thump
flung fling fling 4.60 || fling fling fling fling
brought | bring bring 5.35 || bring bring bring brighten
strove strive strive 5.85 || strive strive straddle | strive
stuck stick stick 6.00 || stick stick stabilize | stock
swept sweep sweep 6.20 || sweep sweep sweep swap
shone shine shine 6.55 || shine shine shine shine
woke wake wake 6.95 || wake wake wind wake
clove cleave cleave 7.35 || cleave cleave cleave close
bore bear bear 7.75 || bear bar bear bare
meant mean mean 8.20 || mean mean manage mount
lent lend lend 9.25 || lend lend lend lend
slew slay slit 10.06 || slit slight slight slow
struck strike strike 11.60 || strike strike strike strut
bought | buy buy 12.20 || buy buy buy bound
bit bite bite 13.60 || bite bite betray bet
dove dive dive 17.25 || dive dive dash dive
burnt burn burp 17.30 || burp burp burp burn
went go want 18.29 || want want want want
caught | catch catch 18.35 || catch cut catch cough
dealt deal deal 21.45 || deal deal disagree | deal

Table 10: Performance of 4 alignment models on 32 randomly selected highly irregular English verbs
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