Finite-State Non-Concatenative Morphotactics

Kenneth R. Beesley and Lauri Karttunen
Xerox Research Centre Europe
Grenoble Laboratory
6, chemin de Maupertuis
38240 MEYLAN France

beesley@xrce.xerox.com, karttunen@xrce.xerox.com

Abstract

We describe a new technique for con-
structing finite-state transducers that in-
volves reapplying the regular-expression
compiler to its own output. Imple-
mented in an algorithm called compile-
replace, this technique has proved useful
for handling non-concatenative phenom-
ena; and we demonstrate it on Malay
full-stem reduplication and Arabic stem
interdigitation.

1 Introduction

Most natural languages construct words by con-
catenating morphemes together in strict orders.
Such concatenative morphotactics can be impres-
sively productive, especially in agglutinative lan-
guages like Aymara or Turkish, and in aggluti-
native/polysynthetic languages like Inuktitut. In
such languages a single word may contain as
many morphemes as an average-length English
sentence.’

Finite-state morphology in the tradition of
the Two-Level (Koskenniemi, 1983) and Xerox
implementations (Beesley and Karttunen, 2000)
has been very successful in implementing large-
scale, robust and efficient morphological analyzer-
generators for concatenative languages, including
the commercially important European languages
and non-Indo-European examples like Finnish,
Turkish and Hungarian. However, Koskenniemi
himself understood that his initial implementa-
tion had significant limitations in handling non-
concatenative morphotactic processes:

“Only restricted infixation and redupli-
cation can be handled adequately with
the present system. Some extensions or

! Aymara utamankapzarakiwa = “also they are in
your house;” Inuktitut: Parimunngaujumaniralaugsi-
manngittunga = “I never said I wanted to go to Paris.”

revisions will be necessary for an ade-
quate description of languages possess-
ing extensive infixation or reduplication”

(Koskenniemi, 1983, 27).

This limitation has of course not escaped the no-
tice of various reviewers, e.g. Sproat(1992). We
shall argue that the morphotactic limitations of
the traditional implementations are the direct re-
sult of relying solely on the concatenation opera-
tion in morphotactic description.

We describe a technique, within the Xerox im-
plementation of finite-state morphology, that cor-
rects the limitations at the source, going beyond
concatenation to allow the full range of finite-state
operations to be used in morphotactic description.
Regular-expression descriptions are compiled into
finite-state automata or transducers (collectively
called networks) as usual, and then the compiler
is re-applied to its own output, producing a modi-
fied but still finite-state network. This technique,
implemented in an algorithm called cOMPILE-
REPLACE, has already proved useful for handling
Malay full-stem reduplication and Arabic stem in-
terdigitation, which will be described below. Be-
fore illustrating these applications, we will first
outline our general approach to finite-state mor-
phology.

2 Finite-State Morphology

2.1 Analysis and Generation

In the most theory- and implementation-neutral
form, morphological analysis/generation of writ-
ten words can be modeled as a relation between
the words themselves and analyses of those words.
The basic claim or hope of the finite-state ap-
proach to natural-language morphology is that the
mapping from words to their analyses (and vice
versa) constitutes a regular relation, i.e. a relation
that can be represented by a finite-state trans-
ducer. The language to be analyzed consists of
strings (= words = sequences of symbols) writ-

Analysis Strings

f

Compiler
Regular ANALY SIS
—————————-
Expression GENERATION
Word Strings

Figure 1: Compilation of a Regular Expression into an FST that Maps between Two Regular Languages

ten according to some defined orthography. In
a commercial application for a given natural lan-
guage, the language to be analyzed is usually a
given, e.g. the set of valid French words as written
according to standard French orthography. The
analysis language again consists of strings, but
strings designed according to the needs and taste
of the linguist, representing analyses of the or-
thographical words. It is sometimes convenient
to design these analysis strings to show all the
constituent morphemes in their morphophonemic
form, separated and identified. In other appli-
cations, it may be useful to design the analysis
strings to contain the traditional dictionary ci-
tation form, together with linguist-selected “tag”
symbols like +Noun, +Verb, +SG, +PL, that con-
vey category, person, number, tense, mood, case,
etc. Thus the analysis string representing the
first-person singular, present indicative form of
the French verb payer (“to pay”) might be spelled
payer+IndP+SG+P1+Verb.

If the relation 1s finite-state, then it can be de-
fined using the metalanguage of regular expres-
sions; and, with a suitable compiler, the regular-
expression source code can be compiled into a
finite-state transducer (FsT), as shown in Fig-
ure 1, that implements the relation computation-
ally. Following convention, we will often refer to
the upper projection of the FST, representing anal-
yses, as the LEXICAL language, a set of lexical
strings; and we will refer to the lower projection
as the SURFACE language, consisting of surface
strings. There are compelling advantages to com-
puting with such finite-state machines, including
mathematical elegance, flexibility, and for most
natural-language applications, high efficiency and
data-compaction.

One computes with FsTs by applying them, in
either direction, to an input string. When one
such FsT that was written for French is applied in
an upward direction to the surface word maisons
(“houses”), it returns the related lexical string

maison+Fem+PL+Noun, consisting of the citation
form and tag symbols chosen by a linguist to con-
vey that the surface word is a feminine noun in the
plural form. A single surface string can be related
to multiple lexical strings, e.g. applying this FST in
an upward direction to the surface string suis pro-
duces the four related lexical strings shown in Fig-
ure 2. Such ambiguity of surface strings is very
common.
étre+IndP+SG+P1+Verb
suivre+IndP+SG+P2+Verb
suivre+IndP+SG+P1+Verb
suivre+Imp+SG+P2+Verb

Figure 2: Multiple Analyses for suis

Conversely, the very same FST can be applied
in a downward direction to a lexical string like
&tre+IndP+SG+P1+Verb to return the related sur-
face string suzs; such transducers are inherently
bidirectional. Ambiguity in the downward direc-
tion is also possible, as in the relation of the lex-
ical string payer+IndP+SG+P1+Verb (“I pay”) to
the surface strings paie and paye, which are in
fact valid alternate spellings in standard French
orthography.

2.2 Morphotactics and Alternations

There are two challenges in modeling natural lan-
guage morphology:

e Morphotactics

e Phonological /Orthographical Alternations
Finite-state morphology models both using regu-
lar expressions. The source descriptions may also
be written in higher-level notations (Beesley and
Karttunen, 2000) that are simply helpful short-
hands for regular expressions and that compile,
using their dedicated compilers, into finite-state
networks. In practice, the most commonly sepa-
rated modules are a lexicon FST, containing lexical
strings, and a separately written set of rule FSTs
that map from the strings in the lexicon to prop-
erly spelled surface strings. The lexicon descrip-
tion defines the morphotactics of the language,

Lexicon

Regular Expression

N

Lexicon FST

Compiler
|

Lexical Transducer
(asingle FST)

—9' .

Rule

Rule FST

Regular Expression

Figure 3: Creation of a Lexical Transducer

and the rules define the alternations. The sep-
arately compiled lexicon and rule FsTs can sub-
sequently be composed together as in Figure 3 to
form a single LEXICAL TRANSDUCER (Karttunen
et al., 1992) that could have been defined equiv-
alently, but perhaps less perspicuously and less
efficiently, with a single regular expression.

For example, the information that the compar-
ative of the adjective big is bigger might be rep-
resented in the English lexical transducer by the
path (= sequence of states and arcs) in Figure 4,
where the zeros represent epsilon symbols.? The

Lexical side:

b i g 0 +Adj 0 _+Conp
b i g g 0 e r

Surface side:

Figure 4: A Path in a Transducer for English

gemination of g and the epenthetical e in the sur-
face form bigger result from the composition of
the original lexicon FST with the rule FST repre-
senting the regular morphological alternations in
English.

For the sake of clarity, Figure 4 represents the
upper (= lexical) and the lower (= surface) side
of the arc label separately on the opposite sides of
the arc. In the remaining diagrams, we use a more
compact notation: the upper and the lower sym-
bol are combined into a single label of the form
upper : lower if the symbols are distinct. A single
symbol is used for an identity pair. In the stan-
dard notation, the path in Figure 4 is labeled as

bigO:g +Adj:0 0:e +Comp:r.
Lexical transducers are more efficient for analy-
sis and generation than the classical two-level sys-
tems (Koskenniemi, 1983) because the morpho-
tactics and the morphological alternations have
been precompiled and need not be consulted at
runtime.

2The epsilon symbols and their placement in the
string are not significant. We will ignore them when-
ever it is convenient.

Most languages build words by simply string-
ing morphemes (prefixes, roots and suffixes) to-
gether in strict orders. The morphotactic (word-
building) processes of prefixation and suffixation
can be straightforwardly modeled in finite state
terms as concatenation. But some natural lan-
guages also exhibit non-concatenative morphotac-
tics. Sometimes the languages themselves are
called “non-concatenative languages”, but most
employ significant concatenation as well, so the
term “not completely concatenative” is usually
more appropriate.

In Arabic, for example, prefixes and suffixes at-
tach to stems in the usual concatenative way, but
stems themselves are formed by a process known
informally as interdigitation; while in Malay, noun
plurals are formed by a process known as full-stem
reduplication. Although Arabic and Malay also
include prefixation and suffixation that are mod-
eled straightforwardly by concatenation, a com-
plete lexicon cannot be obtained without non-
concatenative processes.

We will proceed with descriptions of how Malay
reduplication and Semitic stem interdigitation are
handled in finite-state morphology using the new
compile-replace algorithm.

3 Compile-Replace

The central idea in our approach to the mod-
eling of non-concatenative processes is to define
networks using regular expressions, as before; but
we now define the strings of an intermediate net-
work so that they contain appropriate substrings
that are themselves in the format of regular ex-
pressions. The compile-replace algorithm then
reapplies the regular-expression compiler to its
own output, compiling the regular-expression sub-
strings in the intermediate network and replacing
them with the result of the compilation.

To take a simple non-linguistic example, Fig-
ure 5 represents a network that maps the regular
expression a* into ~[a*~]; that is, the same ex-
pression enclosed between two special delimiters,

“[and ~], that mark it as a regular-expression
substring.

0: [a * 0: 7]
Figure 5: A Network with a Regular-Expression
Substring

The application of the compile-replace algo-
rithm on the lower side of the network eliminates
the markers, compiles the regular expression, and
maps the upper side of the path to the language
resulting from the compilation. The network cre-
ated by the operation is shown in Figure 6.

O--0f)

*: 0

Figure 6:
Replace

After the Application of Compile-

When applied in the “upward” direction, the
transducer in Figure 6 maps any string of the infi-
nite a* language into the regular expression from
which the language was compiled.

The compile-replace algorithm is essentially a
variant of a simple recursive-descent copying rou-
tine. It expects to find marked regular-expression
substrings on the designated side (upper or lower)
of the network. Until an opening limiter ~[is en-
countered, the algorithm constructs a copy of the
path it 1s following. If the network contains no
regular-expression substrings, the result will be a
copy of the original network. When a ~[is en-
countered, the algorithm looks for a closing ~]
and extracts the path between the markers to be
handled in a special way:

1. The symbols along the indicated side of the
path are concatenated into a string and elim-
inated from the path leaving just the symbols
on the opposite side.

2. A separate network is created that contains
the modified path.

3. The extracted string is compiled into a second
network with the standard regular-expression
compiler.

4. The two networks are combined into a single
one using the crossproduct operation.

5. The result is spliced between the states repre-
senting the origin and the destination of the
regular-expression path.

After the special treatment of the regular-
expression path is finished, normal processing is
resumed 1n the destination state of the closing]
arc.

For example, the result shown in Figure 6 repre-
sents the crossproduct of the two networks shown
in Figure 7.

Figure 7: Networks Illustrating Steps 2 and 3 of
the Compile-Replace Algorithm

In this simple example, the upper language of the
original network in Figure 5 is identical to the reg-
ular expression that is compiled and replaced. In
the linguistic applications presented in the next
sections, the two sides of a regular-expression path
contain different strings. The upper side contains
morphological information; the regular-expression
operators appear only on the lower side and are
not present in the final result.

3.1 Reduplication

Traditional Two-Level implementations are al-
ready capable of describing some limited redu-
plication and infixation as in Tagalog (Antworth,
1990, 156-162). The more challenging phe-
nomenon is variable-length reduplication, as
found in Malay and the closely related Indonesian
language.

An example of variable-length full-stem redu-
plication occurs with the Malay stem bag:, which
means “bag” or “suitcase”; this form is in fact
number-neutral and can translate as the plural.
Its overt plural is phonologically bagibag:, formed
by repeating the stem twice in a row. Although
this pluralization process may appear concate-
native, it does not involve concatenating a pre-
dictable pluralizing morpheme, but rather copy-
ing the preceding stem, whatever it may be and
however long it may be. Thus the overt plural
of pelabuhan (“port”), itself a derived form, is
phonologically pelabuhanpelabuhan.

Productive reduplication cannot be described
by finite-state or even context-free formalisms. It
is well known that the copy language, {ww | w
¢ L}, where each word contains two copies of the
same string, is a context-sensitive language. How-
ever, if the “base” language L is finite, we can of
course construct a finite-state network that en-
codes L. and the reduplications of all the strings

Lexical: bagi +Noun +Plural

Surface: "[{bagi?l 2 7]

Lexical: pelabuhan +Noun +Plural
Surface: "[{pelabuhan} ~2 7]

Figure 8: Two Paths in the Initial Malay Transducer Defined via Concatenation

Lexical: bagi +Noun +Plural
Surface: bagibagi
Lexical: pelabuhan +Noun +Plural

Surface:

pelabuhanpelabuhan

Figure 9: The Malay FsT After the Application of Compile-Replace to the Lower-Side Language

in L. We will show a simple and elegant way to do
this using strictly finite-state operations.

To understand the solution to full-stem redu-
plication using the compile-replace algorithm re-
quires a bit of background. In the Xerox regular-
expression calculus there are several operators
that involve concatenation. For example, if & 1s a
regular expression denoting a language or a rela-
tion, A* denotes zero or more and A+ denotes one
or more concatenations of A with itself. There are
also operators that express a fixed number of con-
catenations. Expressions of the form A”n, where n
is an integer, denote n concatenations of A. {abc}
denotes the concatenation of symbols a, b, and c.
We employ ~[and ~] as delimiter symbols around
regular-expression substrings.

The reduplication of any string w can then be
notated as {w}~2, and we start by defining a net-
work where the lower-side strings are built by sim-
ple concatenation of a prefix ~ [, a root enclosed in
braces, and an overt-plural suffix ~2 followed by
the closing ~]. Figure 8 shows the paths for two
Malay plurals in the initial network.

The compile-replace algorithm, applied to the
lower side of this network, recognizes each indi-
vidual delimited regular-expression substring like
“[{bagi}~2"], compiles it, and replaces it with
the result of the compilation, here bagibagi. The
same process applies to the entire lower-side lan-
guage, resulting in a network that relates pairs of
strings such as the ones in Figure 9. This provides
the desired solution, still finite-state, for analyzing
and generating full-stem reduplication in Malay.?

°It is well-known (McCarthy and Prince, 1995)
that reduplication can be a more complex phe-
nomenon than it is in Malay. In some languages only
a part of the stem is reduplicated, and there may be
systematic differences between the reduplicate and the
base form. We believe that our approach to redupli-
cation can account for these complex phenomena as
well, but we cannot discuss the issue here due to lack
of space.

The special delimiters *[and] can be used to
surround any appropriate regular-expression sub-
string, using any necessary regular-expression op-
erators, and compile-replace may be applied to
the lower-side and/or upper-side of the network
as desired. There is nothing to stop the lin-
guist from inserting delimiters multiple times, in-
cluding via composition, and reapplying compile-
replace multiple times. The technique imple-
mented in compile-replace is a general way of al-
lowing the regular-expression compiler to reapply
to and modify its own output.

3.2 Semitic Stem Interdigitation
3.2.1 Review of Earlier Work

Much of the work in non-concatenative finite-
state morphotactics has been dedicated to han-
dling Semitic stem interdigitation. An example of
interdigitation occurs with the Arabic stem katab,
which means “wrote”. According to an influ-
ential autosegmental analysis (McCarthy, 1981),
this stem consists of an all-consonant root ktb
whose general meaning has to do with writing, an
abstract consonant-vowel template CVCVC, and a
voweling or vocalization that he symbolized sim-
ply as a, signifying perfect aspect and active voice.
The root consonants are associated with the C
slots of the template and the vowel or vowels
with the V slots, producing a complete stem katab.
If the root and the vocalization are thought of
as morphemes, neither morpheme occurs contin-
uously in the stem. The same root ktb can com-
bine with the template CVCVC and a different vo-
calization ui, signifying perfect aspect and pas-
sive voice, producing the stem kutib, which means
“was written”. Similarly, the root ktb can com-
bine with template CVVCVC and ui to produce
kuutib, the root drs can combine with CVCVC and
ui to form duris, and so forth.

Kay (1987) reformalized the autosegmental
tiers of McCarthy (1981) as projections of a

multi-level transducer and wrote a small Prolog-
based prototype that handled the interdigitation
of roots, CV-templates and vocalizations into ab-
stract Arabic stems. This general approach, with
multi-tape transducers, has been explored and
extended by Kiraz in several papers, see Kiraz
(2000) for a summary and further references.

In work more directly related to the current so-
lution, it was Kataja and Koskenniemi (1988) who
first demonstrated that Semitic (Akkadian) roots
and patterns could be formalized as regular lan-
guages, and that the non-concatenative interdig-
itation of stems could be elegantly formalized as
the intersection of those regular languages.

This was the key insight: morphotactic descrip-
tion could employ various finite-state operations,
not just concatenation; and languages that re-
quired only concatenation were just special cases.
By extension, the widely noticed limitations of
early finite-state implementations in dealing with
non-concatenative morphotactics could be traced
to their dependence on the concatenation opera-
tion in morphotactic descriptions.

This insight of Kataja and Koskenniemi was ap-
plied by Beesley in a large-scale morphological
analyzer for Arabic, first using an implementa-
tion that simulated the intersection of stems in
code at runtime (Beesley, 1991), and ran rather
slowly; and later, using Xerox finite-state technol-
ogy (Beesley, 1996), a new implementation that
intersected the stems at compile time and per-
formed well at runtime. The 1996 algorithm that
intersected roots and patterns into stems, and
substituted the original roots and patterns on just
the lower side with the intersected stem, took two
hours to handle about 90,000 stems on a SUN Ul-
tra workstation. The compile-replace algorithm
is a vast improvement in both generality and effi-
ciency, producing the same result in a few minutes.

Following the lines of Kataja and Koskenniemi
(1988), we could define intermediate networks
with regular-expression substrings that indicate
the intersection of suitably encoded roots, tem-
plates, and vocalizations. However, because the
interdigitation of stems represents a special case
of intersection we compute it using a special-
ized, more efficient, finite-state algorithm called
MERGE.

3.2.2 Merge

The merge algorithm is a pattern-filling opera-
tion that combines two regular languages, a tem-
plate and a filler, into a single one. The strings
of the filler language consist of ordinary symbols
such as d, r, s, u, i. The template expressions
may contain special class symbols such as € (=

consonant) or V (= vowel) that represent a pre-
defined set of ordinary symbols. The objective
of the merge operation is to align the template
strings with the filler strings and to instantiate
the class symbols of the template as the matching
filler symbols.

Like intersection, the merge algorithm operates
by following two paths, one in the template net-
work, the other in the filler network, and i1t con-
structs the corresponding single path in the result
network. Every state in the result corresponds to
two original states, one in the template, the other
in the filler. If the original states are both final,
the resulting state is also final; otherwise it is non-
final.

The operation starts in the initial state of the
original networks. At each point, the algorithm
tries to find all the successful matches between
the template arcs and filler arcs. A match is suc-
cessful if the filler arc symbol is included in the
class designated by the template arc symbol. The
main difference between merge and classical inter-
section is in Conditions 1 and 2 below:

1. If a successful match is found, a new arc is
added to the current result state. The arc is
labeled with the filler arc symbol; its desti-
nation is the result state that corresponds to
the two original destinations.

2. If no successful match is found for a given
template arc, the arc is copied into the cur-
rent result state. Its destination is the result
state that corresponds to the destination of
the template arc and the current filler state.

In effect, Condition 2 preserves any template arc
that does not find a match. In that case, the path
in the template network advances to a new state
while the path in the filler network stays at the
current state.

We use the networks in Figure 10 to illustrate
the effect of the merge algorithm. Figure 10 shows
a linear template network and two filler networks,
one of which 1s cyclic.

:C:V:V:C:V:C:

O d : r : s : @ i :
Figure 10: A Template Network and Two Filler
Networks

It is easy to see that the merge of the drs net-
work with the template network yields the result
shown in Figure 11. The three symbols of the filler

string are instantiated in the three consonant slots
in the CVVCVC template.

:d:v:v:r:v:s:

Figure 11: Intermediate Result.

Figure 12 presents the final result in which the
second filler network in Figure 10 is merged with
the intermediate result shown in Figure 11.

:d:u:u:r:i:s:

Figure 12: Final Result

In this case, the filler language contains an infinite
set of strings, but only one successful path can be
constructed. Because the filler string ends with a
single i, the first two V symbols can be instanti-
ated only as u. Note that ordinary symbols in the
partially filled template are treated like the class
symbols that do not find a match. That is, they
are copied into the result in their current position
without consuming a filler symbol.

To introduce the merge operation into the Xe-
rox regular-expression calculus we need to choose
an operator symbol. Because merge, like sub-
traction, is a non-commutative operation, we also
must distinguish between the template and the
filler. For convenience, we introduce two vari-
ants of the merge operator, .<m. and .m>.,
that differ only with respect to whether the tem-
plate is to the left (.<m.) or to the right (.m>.)
of the filler. The expression [A .<m. B] repre-
sents the same merge operation as [B .m>. A].
In both cases, A denotes the template, B de-
notes the filler, and the result is the same. With
these new operators, the network in Figure 12
can be compiled from an expression such as

drs m>. CVVCVC .<m. ux i

3.2.3 Merging Roots and Vocalizations
with Templates

Following the tradition, we can represent the
lexical forms of Arabic stems as consisting of three
components, a consonantal root, a CV template
and a vocalization, possibly preceded and followed
by additional affixes. In contrast to McCarthy,
Kay, and Kiraz, we combine the three components
into a single projection. In a sense, McCarthy’s
three tiers are conflated into a single one with
three distinct parts. In our opinion, there is no
substantive difference from a computational point
of view.

For example, the initial lexical representation of
the surface forms katab and duuris may be repre-

sented as a concatenation of the three components
shown in Figure 13. We use the symbols =Root,
=Template, and =Voc to designate the three com-
ponents of the lexical form. The corresponding
initial surface forms are regular-expression sub-
strings of the type we have just discussed. They
contain two merge operators that indicate that
the root consonants and the vocalism should be
merged into the template.

The application of the compile-replace opera-
tion to the initial lexicon yields a transducer that
maps the Arabic interdigitated forms directly into
their corresponding tripartite analyses and vice
versa, as illustrated in Figure 14. Alternation
rules are subsequently composed on the lower side
of the result to map the interdigitated, but still
morphophonemic, strings into real surface strings.

4 Status of the Implementations

4.1 Malay Morphological
Analyzer/Generator

Malay and Indonesian are closely-related lan-
guages characterized by rich derivation and little
or nothing that could be called inflection. The
Malay morphological analyzer prototype, written
using lexc, Replace Rules, and compile-replace,
implements approximately 50 different deriva-
tional processes, including prefixation, suffixation,
prefix-suffix pairs (circumfixation), reduplication,
some infixation, and combinations of these pro-
cesses. Each root is marked manually in the source
dictionary to indicate the idiosyncratic subset of
derivational processes that it undergoes.

The small prototype dictionary, stored in an
XML format, contains approximately 1000 roots,
with about 1500 derivational subentries (i.e. an
average of 1.5 derivational processes per root). At
compile time, the XML dictionary is parsed and
“downtranslated” into the source format required
for the lexc compiler. The XML dictionary could
be expanded by any competent Malay lexicogra-
pher.

4.2 Arabic Morphological
Analyzer/Generator

The current Arabic system has been described
in some detail in previous publications (Beesley,
1998) and is available for testing on the Internet.*
The modification of the system to use the compile-
replace algorithm has not changed the size or the
behavior of the system in any way, but it has re-
duced the compilation time from hours to minutes.

*http://www.xrce.xerox.com /research/mltt /arabic/

Lexical: k t b =Root C V CV C =Template a + =Voc

Surface: "[ktb .m>. CVCVC .<m. a +]

Lexical: d r s =Root CV V CV C =Template u * i =Voc

Surface: "[drs .m>. CVVCVC .<m. u* i]
Figure 13: Initial paths

Lexical: k t b =Root CV CV C =Template a + =Voc

Surface: katab

Lexical: d r s =Root CV V CV C =Template u * i =Voc

Surface: duuris

Figure 14: After Applying Compile-Replace to the Lower Side

5 Conclusion

The well-founded criticism of traditional imple-
mentations of finite-state morphology, that they
are limited to handling concatenative morpho-
tactics, 1s a direct result of their dependence on
the concatenation operation in morphotactic de-
scription. The technique described here, imple-
mented in the compile-replace algorithm, allows
the regular-expression compiler to reapply to and
modify its own output, effectively freeing mor-
photactic description to use any finite-state op-
eration. Significant experiments with Malay and
a much larger application in Arabic have shown
the value of this technique in handling two clas-
sic examples of non-concatenative morphotactics:
full-stem reduplication and Semitic stem interdig-
itation. Work remains to be done in applying
the technique to other known varieties of non-
concatenative morphotactics.

The compile-replace algorithm and the merge
operator introduced in this paper are general tech-
niques not limited to handling the specific mor-
photactic problems we have discussed. We expect
that they will have many other useful applications.

References

Evan L. Antworth. 1990. PC-KIMMO: a two-
level processor for morphological analysis. Sum-
mer Institute of Linguistics, Dallas.

Kenneth R. Beesley and Lauri Karttunen. 2000.
Finite-State Morphology: Xeroxr Tools and
Techniques. Cambridge University Press.
Forthcoming.

Kenneth R. Beesley. 1991. Computer analysis of
Arabic morphology: A two-level approach with
detours. In Perspectives on Arabic Linguistics
III: Papers from the Third Annual Symposium
on Arabic Linguistics, pages 155—-172. Amster-
dam.

Kenneth R. Beesley. 1996. Arabic finite-state
morphological analysis and generation. In

COLING’96, volume 1, pages 89-94.

Kenneth R. Beesley. 1998. Arabic morphology
using only finite-state operations. In Com-
putational Approaches to Semitic Languages:
Proceedings of the Workshop, pages 50-57,
Montréal, Québec.

Lauri Karttunen, Ronald M. Kaplan, and Annie
Zaenen. 1992. Two-level morphology with com-
position. In COLING’92, pages 141-148.

Laura Kataja and Kimmo Koskenniemi. 1988.
Finite-state description of Semitic morphology:
A case study of Ancient Akkadian. In COL-
ING’88, pages 313-315.

Martin Kay. 1987. Nonconcatenative finite-state
morphology. In EACL’87, pages 2-10.

George Anton Kiraz. 2000. Multi-tiered non-
linear morphology: A case study on Semitic.
Computational Linguistics, 26(1).

Kimmo Koskenniemi. 1983. Two-level mor-
phology: A general computational model for
word-form recognition and production. Publi-
cation 11, University of Helsinki, Department
of General Linguistics, Helsinki.

John J. McCarthy and Alan Prince. 1995. Faith-
fulness and reduplicative identity. Occasional
papers in Linguistics 18, University of Mas-

sachusetts, Amherst, MA. ROA-60.

John J. McCarthy. 1981. A prosodic theory of
nonconcatenative morphology. Linguistic In-

quiry, 12(3):373-418.

Richard Sproat. 1992. Morphology and Computa-
tion. MIT Press, Cambridge, MA.

