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Abstract

Spokendialogue managershave benefited
from using stochastic planners such as
Markov DecisionProcesses(MDPs). How-
ever, sofar, MDPsdo not handlewell noisy
andambiguousspeechutterances.We usea
Partially ObservableMarkov DecisionPro-
cess(POMDP)-styleapproachto generate
dialoguestrategiesby invertingthenotionof
dialoguestate;thestaterepresentstheuser’s
intentions,ratherthanthe systemstate. We
demonstratethat underthe samenoisy con-
ditions,a POMDPdialoguemanagermakes
fewer mistakesthananMDP dialogueman-
ager. Furthermore,as the quality of speech
recognitiondegrades,the POMDPdialogue
managerautomaticallyadjuststhepolicy.

1 Intr oduction

Thedevelopmentof automaticspeechrecognition
hasmadepossiblemorenaturalhuman-computer
interaction. Speechrecognitionand speechun-
derstanding,however, are not yet at the point
where a computercan reliably extract the in-
tended meaning from every human utterance.
Humanspeechcan be both noisy and ambigu-
ous,and many real-worldsystemsmustalsobe
speaker-independent.Regardlessof thesediffi-
culties,any systemthatmanageshuman-machine
dialoguesmustbe ableto performreliably even
with noisyandstochasticspeechinput.

Recentresearchin dialoguemanagementhas
shown that Markov DecisionProcesses(MDPs)
can be useful for generatingeffective dialogue
strategies(Young,1990;Levin et al., 1998); the
systemis modelledasasetof statesthatrepresent

thedialogueasawhole,andasetof actionscorre-
spondingto speechproductionsfrom thesystem.
The goal is to maximisetherewardobtainedfor
fulfilling a user’s request. However, the correct
way to representthe stateof the dialogueis still
anopenproblem(Singhetal., 1999).A common
solutionis to restrictthesystemto a singlegoal.
For example,in bookinga flight in anautomated
travel agentsystem,thesystemstateis described
in termsof how closetheagentis to beingableto
booktheflight.

Such systemssuffer from a principal prob-
lem. A conventionalMDP-baseddialogueman-
agermustknow thecurrentstateof thesystemat
all times,andthereforethestatehasto bewholly
containedin the systemrepresentation. These
systemsperform well undercertainconditions,
but not all. For example,MDPs have beenused
successfullyfor suchtasksasretrieving e-mailor
makingtravel arrangements(Walkeret al., 1998;
Levin et al., 1998)over thephone,taskdomains
thataregenerallylow in bothnoiseandambigu-
ity. However, theissueof reliability in thefaceof
noiseis a majorconcernfor our application.Our
dialoguemanagerwas developedfor a mobile
robot applicationthat hasknowledgefrom sev-
eral domains,andmust interactwith many peo-
ple over time. For speaker-independentsystems
andsystemsthatmustactin anoisyenvironment,
theuser’sactionandintentionscannotalwaysbe
usedto infer the dialoguestate; it may be not
bepossibleto reliably andcompletelydetermine
thestateof thedialoguefollowingeachutterance.
Thepoor reliability of theaudiosignalon a mo-
bile robot, coupledwith the expectationsof nat-
ural interactionthat peoplehave with more an-
thropomorphicinterfaces,increasesthedemands
placedonthedialoguemanager.



Most existing dialoguesystemsdo not model
confidenceson recognitionaccuracy of the hu-
manutterances,andthereforedo not accountfor
thereliability of speechrecognitionwhenapply-
ing a dialoguestrategy. Somesystemsdousethe
log-likelihood valuesfor speechutterances,how-
ever thesevaluesareonly thresholdedto indicate
whethertheutteranceneedsto beconfirmed(Ni-
imi andKobayashi,1996;Singhetal., 1999).An
importantconceptlying at theheartof this issue
is that of observability – the ultimate goal of a
dialoguesystemis to satisfya userrequest;how-
ever, whattheuserreallywantsis atbestpartially
observable.

We handlethe problemof partial observabil-
ity by inverting the conventionalnotion of state
in a dialogue. The world is viewed aspartially
unobservable– the underlyingstateis the inten-
tion of theuserwith respectto thedialoguetask.
The only observationsaboutthe user’s stateare
thespeechutterancesgivenby thespeechrecog-
nition system,from whichsomeknowledgeabout
the currentstatecan be inferred. By accepting
the partial observability of the world, the dia-
logueproblembecomesonethat is addressedby
Partially ObservableMarkov DecisionProcesses
(POMDPs)(Sondik,1971). Finding an optimal
policy for a givenPOMDPmodelcorrespondsto
defininganoptimaldialoguestrategy. Optimality
is attainedwithin the context of a setof rewards
thatdefinetherelativevalueof takingvariousac-
tions.

Wewill show thatconventionalMDP solutions
are insufficient, andthat a morerobust method-
ology is required. Note that in the limit of per-
fect sensing,the POMDPpolicy will be equiva-
lent to anMDP policy. WhatthePOMDPpolicy
offers is an ability to compensateappropriately
for betteror worsesensing.As thespeechrecog-
nition degrades,the POMDPpolicy acquiresre-
wardmoreslowly, but makesfewer mistakesand
blind guessescomparedto a conventionalMDP
policy.

There are several POMDP algorithms that
may be the natural choice for policy genera-
tion (Sondik, 1971; Monahan,1982; Parr and
Russell,1995;Cassandraet al., 1997;Kaelbling
et al., 1998;Thrun,1999).However, solvingreal
world dialoguescenariosis computationallyin-

tractablefor full-blown POMDP solvers,as the
complexity is doubly exponentialin the number
of states.We thereforewill useanalgorithmfor
finding approximatesolutionsto POMDP-style
problemsandapply it to dialoguemanagement.
Thisalgorithm,theAugmentedMDP, wasdevel-
opedfor mobilerobotnavigation(RoyandThrun,
1999),andoperatesby augmentingthe statede-
scriptionwith a compressionof thecurrentbelief
state. By representingthe belief statesuccinctly
with its entropy, belief-spaceplanningcanbeap-
proximatedwithout theexpectedcomplexity.

In thefirst sectionof thispaper, wedevelopthe
modelof dialogueinteraction.Thismodelallows
for a morenaturaldescriptionof dialogueprob-
lems, and in particularallows for intuitive han-
dling of noisy and ambiguousdialogues. Few
existing dialoguescan handleambiguousinput,
typically relying on naturallanguageprocessing
to resolve semanticambiguities(Aust and Ney,
1998). Secondly, we presenta descriptionof an
exampleproblemdomain,andfinally we present
experimentalresultscomparingthe performance
of thePOMDP(approximatedby theAugmented
MDP) to conventionalMDP dialoguestrategies.

2 DialogueSystemsand POMDPs

A Partially ObservableMarkov DecisionProcess
(POMDP)is anaturalwayof modellingdialogue
processes,especiallywhen the stateof the sys-
tem is viewed asthe stateof the user. The par-
tial observability capabilitiesof a POMDP pol-
icy allows the dialogueplannerto recover from
noisy or ambiguousutterancesin a naturaland
autonomousway. At no time doesthe machine
interpreterhave any directknowledgeof thestate
of theuser, i.e,whattheuserwants.Themachine
interpretercanonly infer thisstatefrom theuser’s
noisy input. The POMDPframework providesa
principledmechanismfor modellinguncertainty
aboutwhattheuseris trying to accomplish.

The POMDPconsistsof anunderlying,unob-
servableMarkov DecisionProcess.TheMDP is
specifiedby:8 asetof states9;:=<�>@?�A.>(B�A(C�C�C D�E8 asetof actionsF2:=<*G�?�A=G�B(A�C(C�C�A.G�HIE8 a set of transitionprobabilities J2KL>'MNA.G�A.>(OQPR KL> M�S >�A.G�O



8 a setof rewardsTVU*9XWYF[Z\^]8 aninitial state>�_
The actionsrepresentthesetof responsesthat

the systemcan carry out. The transitionprob-
abilities form a structureover the set of states,
connectingthe statesin a directedgraph with
arcsbetweenstateswith non-zerotransitionprob-
abilities. The rewardsdefine the relative value
of accomplishingcertainactionswhenin certain
states.

ThePOMDPadds:8 a setof observations `a:=<*b�?�A=b*B�A(C�C�C�A.b*cdE8 a setof observationprobabilitiesefKLb�A.>�A=G�OgPR KLb S >�A=G�O
andreplaces8 the initial state>(_ with an initial belief,

R Kh>�_�U>(_i:j9;O8 thesetof rewardswith rewardsconditionedon
observationsaswell: TVU*9XWYFkWl`VZ\^]
The observationsconsistof a setof keywords

which areextractedfrom the speechutterances.
The POMDP plans in belief space;eachbelief
consistsof a probabilitydistribution over the set
of states,representingthe respective probability
that the useris in eachof thesestates.The ini-
tial belief specifiedin themodelis updatedevery
time thesystemreceivesa new observationfrom
theuser.

The POMDP model, as definedabove, first
goesthrougha planningphase,during which it
finds an optimal strategy, or policy, which de-
scribesan optimal mappingof action G to be-
lief

R KL>5Um>�_ :�9;O , for all possiblebeliefs. The
dialoguemanagerusesthis policy to direct its
behaviour during conversationswith users. The
optimal strategy for a POMDP is one that pre-
scribesaction selectionthat maximisesthe ex-
pectedreward. Unfortunately, finding an opti-
mal policy exactly for all but the most trivial
POMDPproblemsis computationallyintractable.
A near-optimal policy can be computedsignifi-
cantly fasterthananexactone,at theexpenseof
a slight reductionin performance.This is often
doneby imposingrestrictionson thepoliciesthat
canbeselected,or by simplifying thebelief state

andsolvingfor asimplifieduncertaintyrepresen-
tation.

In theAugmentedMDP approach,thePOMDP
problemis simplified by noticing that the belief
stateof the systemtendsto have a certainstruc-
ture. The uncertaintythat the systemhasis usu-
ally domain-specificandlocalised.For example,
it maybelikely thatahouseholdrobotsystemcan
confuseTV channels(‘ABC’ for ‘NBC’), but it is
unlikely that thesystemwill confusea TV chan-
nel requestfor a requestto getcoffee.By making
thelocalisedassumptionabouttheuncertainty, it
becomespossibleto summariseany givenbelief
vectorbyapairconsistingof themostlikely state,
andtheentropyof thebelief state.

n KLo�OqpP rts�u�v�wts@xy n KLo�O'z.{|K n KLo(O�O�} (1)

{|K n KLo(O+O~P �
�� �
� ? n KLo(O���� v B n KLo(O (2)

Theentropyof thebeliefstateapproximatesasuf-
ficient statisticfor theentirebelief state1. Given
this assumption,we canplan a policy for every
possiblesuch < state,entropyE pair, that approx-
imatesthe POMDPpolicy for thecorresponding
belief n KLo(O .

Figure1: FlorenceNightingale, theprototypenursinghome
robotusedin theseexperiments.

3 The ExampleDomain

The systemthat was usedthroughouttheseex-
perimentsis basedon a mobile robot, Florence

1Although sufficient statisticsare usually momentsof
continuousdistributions,our experiencehasshown thatthe
entropyservesequallywell.



Nightingale(Flo), developedasa prototypenurs-
ing homeassistant.Flo usestheSphinxII speech
recognitionsystem(Ravishankar, 1996),andthe
Festival speechsynthesissystem(Black et al.,
1999).Figure1 showsa pictureof therobot.

Sincetherobotis a nursinghomeassistant,we
usetaskdomainsthatarerelevantto assistedliv-
ing in ahomeenvironment.Table1 showsalist of
the taskdomainsthe usercaninquireabout(the
time, the patient’s medicationschedule,what is
on differentTV stations),in additionto a list of
robotmotioncommands.Theseabilitieshave all
beenimplementedonFlo. Themedicationsched-
ule is pre-programmed,theinformationaboutthe
TV schedulesis downloadedon requestfrom the
web, and the motion commandscorrespondto
pre-selectedrobotnavigationsequences.

Time
Medication(Medication1, Medication2, ...,Medicationn)
TV Schedulesfor differentchannels(ABC, NBC, CBS)
RobotMotion Commands(To thekitchen,To theBedroom)

Table1: Thetaskdomainsfor Flo.

If we translatethesetasksinto the framework
thatwe have described,thedecisionproblemhas
13 states,andthe statetransitiongraphis given
in Figure2. Thedifferenttaskshave varyinglev-
elsof complexity, from simplysayingthetime,to
goingthrougha list of medications.For simplic-
ity, only the maximum-likelihoodtransitionsare
shown in Figure2. Notethat this modelis hand-
crafted. Thereis ongoingresearchinto learning
policiesautomaticallyusingreinforcementlearn-
ing (Singhetal.,1999);dialoguemodelscouldbe
learnedin a similarmanner. This examplemodel
is simply to illustrate the utility of the POMDP
approach.

Thereare20differentactions;10actionscorre-
spondtodifferentabilitiesof therobotsuchasgo-
ing to thekitchen,or giving thetime.Theremain-
ing10actionsareclarificationor confirmationac-
tions,suchasre-confirmingthedesiredTV chan-
nel. Thereare16 observationsthatcorrespondto
relevantkeywordsaswell asa nonsenseobserva-
tion. Therewardstructuregivesthemostreward
for choosingactionsthatsatisfytheuserrequest.
Theseactions then lead back to the beginning
state. Most otheractionsare penalisedwith an
equivalentnegativeamount.However, theconfir-

mation/clarificationactionsarepenalisedlightly
(valuescloseto 0), andthemotioncommandsare
penalisedheavily if takenfrom the wrong state,
to illustratethedifferencebetweenanundesirable
actionthat is merelyirritating (i.e., giving an in-
appropriateresponse)and an action that can be
much more costly (e.g., having the robot leave
theroomatthewrongtime,or travel to thewrong
destination).

3.1 An ExampleDialogue

Table2 shows an exampledialogueobtainedby
having anactualuserinteractwith thesystemon
the robot. The left-mostcolumn is the emitted
observationfrom the speechrecognitionsystem.
Theoperatingconditionsof thesystemarefairly
poor, sincethemicrophoneis on-boardtherobot
andsubjectto backgroundnoiseaswell asbeing
locatedsomedistancefrom the user. In the fi-
nal two linesof the script, the robotchoosesthe
correctactionaftersomeconfirmationquestions,
despitethe fact that the signal from the speech
recogniseris bothverynoisyandalsoambiguous,
containingcuesbothfor the“say hello” response
andfor robotmotionto thekitchen.

4 Experimental Results

We comparedthe performanceof the three al-
gorithms (conventional MDP, POMDP approx-
imated by the Augmented MDP, and exact
POMDP) over the exampledomain. The met-
ric usedwasto look at the total rewardaccumu-
latedover the courseof an extendedtest. In or-
derto performthis full test,theobservationsand
statesfrom the underlyingMDP weregenerated
stochasticallyfrom the modelandthengiven to
thepolicy. Theactiontakenby thepolicy wasre-
turnedto themodel,andthepolicy wasrewarded
basedon thestate-action-observationtriplet. The
experimentswererunfor atotalof 100dialogues,
whereeachdialogueis consideredto beacycleof
observation-actionutterancesfrom thestartstate
request_begun througha sequenceof states
and back to the start state. The time was nor-
malisedby thelengthof eachdialoguecycle.

4.1 The RestrictedStateSpaceProblem

The exact POMDP policy was generatedusing
theIncrementalImprovementalgorithm(Cassan-



Want Time

Want  TV Info

Want CBS Info

Want ABC Info

Want NBC Info

Start Meds Schedule

Send Robot Send Robot to Kitchen

Send Robot to Bedroom

Continue Meds Done Meds

No Request Request begun

Figure 2: A simplifiedgraphof thebasicMarkov DecisionProcessunderlyingthedialoguemanager. Only themaximum-
likelihoodtransitionsareshown.

Observation TrueState Belief Entropy Action Reward
flo hello requestbegun 0.406 sayhello 100
flo whatis like startmeds 2.735 askrepeat -100
flo whattimeis it for will the want time 0.490 say time 100
flo wasonabc want tv 1.176 ask which station -1
flo wasonabc want abc 0.886 sayabc 100
flo whatis on nbc want nbc 1.375 confirm channelnbc -1
flo yes want nbc 0.062 saynbc 100
flo goto thethatprettygoodwhat sendrobot 0.864 askrobot where -1
flo thatthathello be sendrobot bedroom 1.839 confirm robot place -1
flo thebedroomany i sendrobot bedroom 0.194 go to bedroom 100
flo goit eightahello sendrobot 1.110 askrobot where -1
flo thekitchenhello sendrobot kitchen 1.184 go to kitchen 100

Table 2: An exampledialogue.Note that the robotchoosesthecorrectactionin the final two exchanges,even thoughthe
utteranceis bothnoisyandambiguous.

draet al., 1997). Thesolver wasunableto com-
pleteasolutionfor thefull statespace,sowecre-
ateda muchsmallerdialoguemodel,with only 7
statesand2 taskdomains:time andweatherin-
formation.

Figure 3 shows the performanceof the three
algorithms, over the courseof 100 dialogues.
Notice that the exact POMDP strategy outper-
formedboth the conventionalMDP andapprox-
imatePOMDP;it accumulatedthe mostreward,
anddid so with the fastestrateof accumulation.
The good performanceof the exact POMDP is
notsurprisingbecauseit is anoptimalsolutionfor
this problem,but time to computethis strategy is
high: 729 secs,comparedwith 1.6 msecfor the
MDP and719msecfor theAugmentedMDP.

4.2 The Full StateSpaceProblem

Figure4 demonstratesthe algorithmson the full
dialoguemodelasgiven in Figure2. Becauseof
the numberof states,no exact POMDPsolution
couldbecomputedfor thisproblem;thePOMDP
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Figure 3: A comparisonof the reward gainedover time
for the exact POMDP, POMDPapproximatedby the Aug-
mentedMDP, and the conventionalMDP for the 7 state
problem. In this case,the time is measuredin dialogues,
or iterationsof satisfyinguserrequests.

policy is restrictedto theapproximatesolution.
The POMDPsolutionclearlyoutperformsthe

conventionalMDP strategy, asit morethantriples
the total accumulatedreward over the lifetime
of the strategies, althoughat the cost of taking
longer to reachthe goal statein eachdialogue.
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Figure4: A comparisonof therewardgainedover time for
theapproximatePOMDPvs. theconventionalMDP for the
13 stateproblem.Again,thetime is measuredin numberof
actions.

Table 3 breaksdown the numbersin more de-
tail. The averagerewardfor thePOMDPis 18.6
per action, which is the maximum reward for
mostactions,suggestingthat thePOMDPis tak-
ing the right actionabout95% of the time. Fur-
thermore,theaveragerewardperdialoguefor the
POMDPis 230comparedto 49.7for theconven-
tionalMDP, whichsuggeststhattheconventional
MDP is making a large numberof mistakesin
eachdialogue.

Finally, thestandarddeviation for thePOMDP
is muchnarrower, suggestingthat this algorithm
isgettingits rewardsmuchmoreconsistentlythan
theconventionalMDP.

4.3 Verification of Modelson Users

We verified the utility of the POMDPapproach
by testing the approximatingmodel on human
users. The usertestingof the robot is still pre-
liminary, andthereforethe experimentpresented
herecannotbeconsidereda rigorousdemonstra-
tion. However, Table 4 shows somepromising
results.Again,thePOMDPpolicy is theonepro-
videdby theapproximatingAugmentedMDP.

Theexperimentconsistedof havingusersinter-
actwith themobilerobotundera varietyof con-
ditions.TheuserstestedboththePOMDPandan
implementationof a conventionalMDP dialogue
manager. Both plannersusedexactly the same
model. The userswerepresentedfirst with one
manager, andthenthe other, althoughthey were
not told which managerwas first and the order
variedfrom userto userrandomly. The userla-
belledeachactionfrom the systemas“Correct”

(+100reward), “OK” (-1 reward)or “Wrong” (-
100 reward). The “OK” label was usedfor re-
sponsesby therobotthatwerequestions(i.e.,did
not satisfythe userrequest)but wererelevant to
the request,e.g., a confirmationof TV channel
whena TV channelwasrequested.

Thesystemperformeddifferentlyfor thethree
testsubjects,compensatingfor thespeechrecog-
nition accuracy which varied significantly be-
tweenthem.In user#2’scase,thePOMDPman-
ager took longer to satisfy the requests,but in
generalgainedmore reward per action. This is
becausethe speechrecognitionsystemgenerally
hadlower word-accuracy for this user, eitherbe-
causetheuserhadunusualspeechpatterns,or be-
causetheacousticsignalwascorruptedby back-
groundnoise.

By comparison,user#3’s resultsshow that in
thelimit of goodsensing,thePOMDPpolicy ap-
proachestheMDP policy. This userhada much
higher recognitionrate from the speechrecog-
niser, and consequentlyboth the POMDP and
conventionalMDP acquirerewardsat equivalent
rates,andsatisfiedrequestsatsimilar rates.

5 Conclusion

This paperdiscussesa novel way to view the
dialoguemanagementproblem. The domain is
representedas the partially observable stateof
the user, wherethe observationsare speechut-
terancesfrom the user. The POMDP represen-
tationinvertsthetraditionalnotionof statein dia-
loguemanagement,treatingthestateasunknown,
but inferrablefrom thesequencesof observations
from the user. Our approachallows us to model
observationsfrom the userprobabilistically, and
in particularwecancompensateappropriatelyfor
moreor lessreliableobservationsfrom thespeech
recognitionsystem.In thelimit of perfectrecog-
nition, we achieve the sameperformanceas a
conventionalMDP dialoguepolicy. However, as
recognitiondegrades,we can model the effects
of actively gatheringinformation from the user
to offset the lossof informationin the utterance
stream.

In thepast,POMDPshavenotbeenusedfor di-
aloguemanagementbecauseof thecomputational
complexity involvedin solvinganythingbut triv-
ial problems.We avoid this problemby usingan



POMDP ConventionalMDP
AverageRewardPerAction 18.6+/- 57.1 AverageRewardPerAction 3.8+/- 67.2
AverageDialogueReward 230.7+/- 77.4 AverageDialogueReward 49.7+/- 193.7

Table 3: A comparisonof the rewardsaccumulatedfor the two algorithms(approximatePOMDPandconventionalMDP)
usingthefull model.

POMDP ConventionalMDP
User1 RewardPerAction 52.2 24.8

Errorsperrequest 0.1+/- 0.09 0.55+/- 0.44
Time to fill request 1.9+/- 0.47 2.0+/- 1.51

User2 RewardPerAction 36.95 6.19
Errorsperrequest 0.1+/- 0.09 0.825+/- 1.56
Time to fill request 2.5+/- 1.22 1.86+/- 1.47

User3 RewardPerAction 49.72 44.95
Errorsperrequest 0.18+/- 0.15 0.36+/- 0.37
Time to fill request 1.63+/- 1.15 1.42+/- 0.63

Table 4: A comparisonof the rewardsaccumulatedfor the two algorithmsusingthe full modelon real users,with results
givenasmean+/- std.dev.

augmentedMDP staterepresentationfor approxi-
matingtheoptimalpolicy, whichallowsusto find
asolutionthatquantitativelyoutperformsthecon-
ventionalMDP, while dramaticallyreducingthe
time to solution comparedto an exact POMDP
algorithm(linear vs. exponentialin the number
of states).

We have shown experimentallyboth in sim-
ulation and in preliminary user testing that the
POMDP solution consistentlyoutperformsthe
conventionalMDP dialoguemanager, asa func-
tion of erroneousactionsduringthedialogue.We
are able to show with actual usersthat as the
speechrecognitionperformancevaries,the dia-
logue manageris able to compensateappropri-
ately.

While the resultsof the POMDPapproachto
the dialoguesystemarepromising,a numberof
improvementsareneeded.ThePOMDPis overly
cautious,refusingtocommittoaparticularcourse
of actionuntil it is completelycertainthatit is ap-
propriate.Thisis reflectedin its liberaluseof ver-
ificationquestions.Thiscouldbeavoidedby hav-
ingsomenon-staticrewardstructure,whereinfor-
mationgatheringbecomesincreasinglycostly as
it progresses.

Thepolicy is extremelysensitiveto theparam-
etersof the model, which are currently set by

hand.While learningtheparametersfrom scratch
for a full POMDPis probablyunnecessary, auto-
matictuningof themodelparameterswoulddef-
initely addto theutility of themodel.For exam-
ple, the optimality of a policy is stronglydepen-
denton thedesignof therewardstructure.It fol-
lowsthatincorporatingalearningcomponentthat
adaptsthe reward structureto reflectactualuser
satisfactionwould likely improveperformance.
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