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Abstract

Spokendialogue managershave benefited
from using stochastic planners such as
Markov DecisionProcesseéMDPSs). How-
ever, sofar, MDPs do not handlewell noisy
andambiguousspeechutterancesWe usea
Partially Obsenable Markov DecisionPro-
cess(POMDP)-styleapproachto generate
dialoguestratgiesby invertingthe notion of
dialoguestatethe staterepresentsheusers
intentions,ratherthanthe systemstate. We
demonstratehat underthe samenoisy con-
ditions,a POMDPdialoguemanagemakes
fewer mistakeghanan MDP dialogueman-
ager Furthermoreasthe quality of speech
recognitiondegradesthe POMDP dialogue
manageautomaticallyadjustghe policy.

1 Intr oduction

Thedevelopmenbf automaticspeechiecognition
hasmadepossiblemorenaturalhnuman-computer
interaction. Speechrecognitionand speechun-
derstanding,however, are not yet at the point
where a computercan reliably extract the in-
tended meaning from every human utterance.
Human speechcan be both noisy and ambigu-
ous, and mary real-world systemsmustalso be
speaketindependent. Regardlessof thesediffi-
culties,ary systemthatmanagefiuman-machine
dialoguesmustbe ableto performreliably even
with noisyandstochastispeechnput.
Recentresearchin dialoguemanagemenhas
shawvn that Markov DecisionProcesse$MDPS)
can be useful for generatingeffective dialogue
stratgies(Young,1990; Levin et al., 1998);the
systems modelledasasetof stateghatrepresent

thedialogueasawhole,andasetof actionscorre-
spondingto speechproductiondrom the system.
The goalis to maximisethe reward obtainedfor
fulfilling a users request. However, the correct
way to representhe stateof the dialogueis still
anopenproblem(Singhetal.,1999).A common
solutionis to restrictthe systemto a singlegoal.
For example,in bookinga flight in anautomated
travel agentsystemthe systemstateis described
in termsof how closetheagents to beingableto
booktheflight.

Such systemssuffer from a principal prob-
lem. A cornventionalMDP-basedlialogueman-
agermustknow the currentstateof the systemat
all times,andthereforethe statehasto be wholly
containedin the systemrepresentation. These
systemsperform well under certain conditions,
but not all. For example,MDPs have beenused
successfullfor suchtasksasretrieving e-mailor
makingtravel arrangement8Nalkeretal., 1998;
Levin et al., 1998)over the phone,taskdomains
thataregenerallylow in both noiseandambigu-
ity. However, theissueof reliability in thefaceof
noiseis a major concernfor our application.Our
dialogue managerwas developedfor a maobile
robot applicationthat has knowledgefrom sev-
eral domains,and mustinteractwith mary peo-
ple over time. For speakeindependensystems
andsystemghatmustactin anoisyervironment,
the users actionandintentionscannotalwaysbe
usedto infer the dialoguestate;it may be not
be possibleto reliably andcompletelydetermine
thestateof the dialoguefollowing eachutterance.
The poorreliability of the audiosignalon a mo-
bile robot, coupledwith the expectationsof nat-
ural interactionthat peoplehave with more an-
thropomorphidnterfacesjncreaseshe demands
placedonthe dialoguemanager



Most existing dialoguesystemsdo not model
confidenceson recognitionaccurag of the hu-
manutterancesandthereforedo not accountfor
thereliability of speechrecognitionwhenapply-
ing adialoguestratgy. Somesystemslo usethe
log-likelihood valuesfor speechutteranceshow-
everthesevaluesareonly thresholdedo indicate
whetherthe utteranceneedso be confirmed(Ni-
imi andKobayashi;1996;Singhetal.,1999).An
importantconceptlying at the heartof this issue
is that of obsenability — the ultimate goal of a
dialoguesystemis to satisfya userrequesthow-
ever, whattheuserreally wantsis at bestpartially
obsenable.

We handlethe problemof partial obserabil-
ity by inverting the corventionalnotion of state
in a dialogue. The world is viewed as partially
unobserable— the underlyingstateis the inten-
tion of the userwith respecto the dialoguetask.
The only obsenationsaboutthe users stateare
the speectutterancegivenby the speectrecog-
nition systemfrom whichsomeknowledgeabout
the currentstatecan be inferred. By accepting
the partial obserability of the world, the dia-
logueproblembecome®nethatis addressety
Partially Obsenable Markov DecisionProcesses
(POMDPs)(Sondik,1971). Finding an optimal
policy for agivenPOMDPmodelcorrespondso
defininganoptimaldialoguestratey. Optimality
is attainedwithin the context of a setof rewards
thatdefinetherelative valueof takingvariousac-
tions.

Wewill shav thatcorventionalMDP solutions
areinsufficient, and that a more robust method-
ology is required. Note thatin the limit of per
fect sensingthe POMDP policy will be equiva-
lentto anMDP policy. Whatthe POMDP policy
offers is an ability to compensat@appropriately
for betteror worsesensing As the speeclrecog-
nition degradesthe POMDP policy acquiresre-
wardmoreslowly, but makesfewer mistakesand
blind guessesomparedo a corventionalMDP
policy.

There are several POMDP algorithms that
may be the natural choice for policy genera-
tion (Sondik, 1971; Monahan,1982; Parr and
Russell,1995; Cassandrat al., 1997; Kaelbling
etal.,1998;Thrun,1999). However, solvingreal
world dialoguescenariods computationallyin-

tractablefor full-blown POMDP solvers, as the
compleity is doubly exponentialin the number
of states.We thereforewill usean algorithmfor
finding approximatesolutionsto POMDP-style
problemsandapply it to dialoguemanagement.
This algorithm,the AugmentedViDP, wasdevel-
opedfor mobilerobotnavigation(RoyandThrun,
1999),and operatedy augmentinghe statede-
scriptionwith acompressiomf the currentbelief
state. By representinghe belief statesuccinctly
with its entropy belief-spaceglanningcanbe ap-
proximatedwithoutthe expectedcompleity.

In thefirst sectionof this paperwe developthe
modelof dialogueinteraction.This modelallows
for a more naturaldescriptionof dialogueprob-
lems, andin particularallows for intuitive han-
dling of noisy and ambiguousdialogues. Fen
existing dialoguescan handleambiguousinput,
typically relying on naturallanguageprocessing
to resohe semanticambiguities(Aust and Ney,
1998). Secondlywe presenta descriptionof an
exampleproblemdomain,andfinally we present
experimentalresultscomparingthe performance
of the POMDP (approximatedy the Augmented
MDP) to corventionalMDP dialoguestrateies.

2 Dialogue Systemsand POMDPs

A Partially ObsenableMarkov DecisionProcess
(POMDP)is a naturalway of modellingdialogue
processesespeciallywhenthe stateof the sys-
temis viewed asthe stateof the user The par
tial obsenability capabilitiesof a POMDP pol-
icy allows the dialogueplannerto recover from
noisy or ambiguousutterancesn a naturaland
autonomousvay. At no time doesthe machine
interpretehave ary directknowledgeof the state
of theuser i.e, whattheuserwants.Themachine
interpreteicanonly infer this statefrom theusers
noisyinput. The POMDPframavork providesa
principledmechanisnfor modelling uncertainty
aboutwhatthe useris trying to accomplish.

The POMDP consistof anunderlying,unob-
senableMarkov DecisionProcess.The MDP is
specifiedby:

e asetof statesSe{sy, s9, ...}

e asetof actionsAe{ay, as,...,a,}

e a setof transitionprobabilities7'(s',a,s) =
P(s]s, a)



e asetofrewardsR : S x A — R
e aninitial states,

The actionsrepresenthe setof responseghat
the systemcan carry out. The transitionprob-
abilities form a structureover the set of states,
connectingthe statesin a directed graph with
arcsbetweerstatesvith non-zerdransitionprob-
abilities. The rewardsdefinethe relative value
of accomplishingcertainactionswhenin certain
states.

ThePOMDPadds:

e asetof obsenationsOe{oy, 09,...,0;}

e a setof obsenation probabilitiesO (o, s, a) =
P(o|s,a)

andreplaces

e theinitial states, with aninitial belief, P(s, :
S, €S)

e the setof rewardswith rewardsconditionedon
obsenationsaswell: R : S x Ax O — R

The obsenationsconsistof a setof keywords

which are extractedfrom the speechutterances.

The POMDP plansin belief space;eachbelief
consistsof a probability distribution over the set
of statesrepresentinghe respectie probability
that the useris in eachof thesestates. The ini-
tial belief specifiedn themodelis updatedevery
time the systemrecevesa newv obsenrationfrom
theuser

The POMDP model, as defined above, first
goesthrougha planning phase,during which it
finds an optimal strategy, or policy, which de-
scribesan optimal mappingof action a to be-
lief P(s : s,¢S), for all possiblebeliefs. The
dialogue managerusesthis policy to direct its
behaiour during corversationswith users. The
optimal stratgy for a POMDP is one that pre-
scribesaction selectionthat maximisesthe ex-
pectedreward. Unfortunately finding an opti-
mal policy exactly for all but the most trivial
POMDPproblemds computationallyntractable.
A nearoptimal policy can be computedsignifi-
cantlyfasterthananexact one,at the expenseof
a slight reductionin performance.This is often
doneby imposingrestrictionson the policiesthat
canbe selectedor by simplifying the belief state

andsolvingfor asimplifieduncertaintyrepresen-
tation.

In the AugmentedMDP approachthe POMDP
problemis simplified by noticing that the belief
stateof the systemtendsto have a certainstruc-
ture. The uncertaintythatthe systemhasis usu-
ally domain-specifi@ndlocalised.For example,
it maybelikely thatahouseholdobotsystentcan
confuserV channelg'ABC’ for ‘NBC"), butit is
unlikely thatthe systemwill confusea TV chan-
nelrequestor arequesto getcoffee. By making
thelocalisedassumptioraboutthe uncertaintyit
becomegossibleto summariseary given belief
vectorby a pairconsistingof themostlikely state,
andtheentropyof thebelief state.

p(s) = <argmaxp(s); H(p(s))> (1)

N
- Zp(s) log, p(s) (2)

Theentropyof thebeliefstateapproximateasuf-
ficient statisticfor the entirebelief state. Given
this assumptionwe canplan a policy for every
possiblesuch{state,entropy} pair, thatapprox-
imatesthe POMDP policy for the corresponding
beliefp(s).

Figure1: FlorenceNightingale theprototypenursinghome
robotusedin theseexperiments.

3 The Example Domain

The systemthat was usedthroughouttheseex-
perimentsis basedon a mobile robot, Florence

LAlthough sufiicient statisticsare usually momentsof

continuoudistributions, our experiencehasshown thatthe
entropysenesequallywell.



Nightingale(Flo), developedasa prototypenurs-
ing homeassistantFlo usesthe SphinxIl speech
recognitionsystem(Ravishankay 1996),andthe
Festival speechsynthesissystem(Black et al.,
1999).Figurel shavsa pictureof therobot.
Sincetherobotis a nursinghomeassistantywe
usetaskdomainsthatarerelevantto assistediv-
ingin ahomeernvironment.Tablel shavsalist of
the taskdomainsthe usercaninquire about(the
time, the patients medicationschedule what is
on different TV stations),in additionto a list of
robotmotion commandsTheseabilities have all
beenimplementeadn Flo. Themedicatiorsched
uleis pre-programmedheinformationaboutthe
TV scheduless downloadedon requesfrom the
web, and the motion commandscorrespondo
pre-selectedobotnavigationsequences.

Time

Medication(Medicationl, Medication2, ..., Medicationn)
TV Schedulesor differentchannelfABC, NBC, CBS)
RobotMotion CommandgTo thekitchen,To the Bedroom)

Table 1: Thetaskdomainsfor Flo.

If we translatethesetasksinto the frameawvork
thatwe have describedthe decisionproblemhas
13 states,andthe statetransitiongraphis given
in Figure2. Thedifferenttaskshave varyinglev-
elsof complity, from simply sayingthetime, to
goingthroughalist of medications For simplic-
ity, only the maximume-likelihoodtransitionsare
shavnin Figure2. Notethatthis modelis hand-
crafted. Thereis ongoingresearctinto learning
policiesautomaticallyusingreinforcementearn-
ing (Singhetal., 1999);dialoguemodelscouldbe
learnedin a similar manner This examplemodel
is simply to illustrate the utility of the POMDP
approach.

Thereare20differentactions;10actionscorre-
spondo differentabilitiesof therobotsuchasgo-
ing to thekitchen,or giving thetime. Theremain-
ing 10actionsareclarificationor confirmationac-
tions,suchasre-confirmingthedesiredTV chan-
nel. Thereare16 obsenationsthatcorrespondo
relevantkeywordsaswell asa nonsensebsenra-
tion. The rewardstructuregivesthe mostreward
for choosingactionsthat satisfythe userrequest.
Theseactionsthen lead back to the beginning
state. Most other actionsare penalisedwith an
eguialentnegative amount.However, the confir-

mation/clarificationactionsare penalisedightly
(valuescloseto 0), andthemotioncommandsire
penalisecheaily if takenfrom the wrong state,
toillustratethedifferencebetweeranundesirable
actionthatis merelyirritating (i.e., giving anin-
appropriateresponsepnd an action that can be
much more costly (e.g., having the robot leave
theroomatthewrongtime,or travel to thewrong
destination).

3.1 An Example Dialogue

Table 2 shavs an exampledialogueobtainedby
having anactualuserinteractwith the systemon
the robot. The left-mostcolumnis the emitted
obsenationfrom the speechrecognitionsystem.
The operatingconditionsof the systemarefairly
poor, sincethe microphones on-boardthe robot
andsubjectto backgrounchoiseaswell asbeing
locatedsomedistancefrom the user In the fi-
nal two lines of the script, the robot choosedhe
correctactionafter someconfirmationquestions,
despitethe fact that the signal from the speech
recogniseris bothverynoisyandalsoambiguous,
containingcueshothfor the“say_hello” response
andfor robotmotionto thekitchen.

4 Experimental Results

We comparedthe performanceof the three al-
gorithms (conventional MDP, POMDP approx-
imated by the Augmented MDP, and exact
POMDP) over the exampledomain. The met-
ric usedwasto look at the total reward accumu-
lated over the courseof an extendedtest. In or-
derto performthis full test,the obsenationsand
statesfrom the underlyingMDP were generated
stochasticallyfrom the modelandthen givento
thepolicy. Theactiontakenby the policy wasre-
turnedto themodel,andthe policy wasrewarded
basedn the state-action-obseationtriplet. The
experimentavererunfor atotal of 100dialogues,
whereeachdialogueis consideredo beacycle of
obsenation-actionutterance$rom the startstate
request _begun througha sequencef states
and back to the start state. The time was nor-
malisedby thelengthof eachdialoguecycle.

4.1 The Restricted State SpaceProblem

The exact POMDP policy was generatedising
thelncrementalmprovementalgorithm(Cassan-



Start Meds Schedule

ant ABC Info
< Want CBS Info>

Send Robot to Kitchen
Send Robot to Bedroom

Continue Meds

Figure 2: A simplifiedgraphof the basicMarkov DecisionProcessainderlyingthe dialoguemanager Only the maximum-

likelihoodtransitionsareshawvn.

Obsenation True State Belief Entropy Action Reward
flo hello requestbegun 0.406 sayhello 100
flo whatis like startmeds 2.735 askrepeat -100
flo whattimeis it for will the wanttime 0.490 say.time 100
flo wasonabc wanttv 1.176 askwhich_station -1
flo wasonabc wantabc 0.886 sayabc 100
flo whatis onnbc wantnbc 1.375 confirmchannelnbc -1
flo yes wantnbc 0.062 saynbc 100
flo goto thethatprettygoodwhat sendrobot 0.864 askrobotwhere -1
flo thatthathello be sendrobotbedroom 1.839 confirmrobotplace -1
flo thebedroomary i sendrobotbedroom 0.194 go_to_bedroom 100
flo goit eightahello sendrobot 1.110 askrobotwhere -1
flo thekitchenhello sendrobotkitchen  1.184 go_to_kitchen 100

Table 2. An exampledialogue. Note thatthe robotchooseghe correctactionin the final two exchangeseventhoughthe

utterances bothnoisy andambiguous.

draetal., 1997). The solver wasunableto com-
pletea solutionfor thefull statespacesowe cre-
ateda muchsmallerdialoguemodel,with only 7
statesand 2 taskdomains:time andweatherin-
formation.

Figure 3 shaws the performanceof the three

algorithms, over the courseof 100 dialogues.

Notice that the exact POMDP stratgy outper
formedboth the corventionalMDP andapprox-
imate POMDP;it accumulatedhe mostreward,

anddid sowith the fastestrate of accumulation.

The good performanceof the exact POMDP is
notsurprisingbecausd is anoptimalsolutionfor
this problem,but time to computethis stratgy is
high: 729 secs,comparedwith 1.6 msecfor the
MDP and719msecfor the AugmentedvIDP.

4.2 The Full State SpaceProblem

Figure4 demonstratethe algorithmson the full

dialoguemodelasgivenin Figure2. Becauseof
the numberof statesno exact POMDP solution
couldbecomputedor this problem;the POMDP
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Figure 3: A comparisonof the reward gainedover time
for the exact POMDRE POMDP approximatedy the Aug-
mentedMDP, and the corventional MDP for the 7 state
problem. In this case,the time is measuredn dialogues,
or iterationsof satisfyinguserrequests.

policy is restrictedto the approximatesolution.
The POMDP solutionclearly outperformsthe
cornventionalMDP strategyy, asit morethantriples
the total accumulatedeward over the lifetime
of the stratgies, althoughat the cost of taking
longerto reachthe goal statein eachdialogue.
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Figure 4: A comparisorof the reward gainedover time for
the approximatePOMDPVvs. the corventionalMDP for the
13 stateproblem.Again, thetime is measuredn numberof
actions.

Table 3 breaksdown the numbersin more de-
tail. The averagerewardfor the POMDPis 18.6
per action, which is the maximum reward for
mostactions,suggestinghatthe POMDPIs tak-
ing the right actionabout95% of the time. Fur-
thermoretheaveragerewardperdialoguefor the
POMDPis 230comparedo 49.7for the corven-
tional MDP, which suggestshatthe corventional
MDP is making a large numberof mistakesin
eachdialogue.

Finally, the standardieviation for the POMDP
is muchnarraver, suggestinghat this algorithm
is gettingits revardsmuchmoreconsistentijthan
the conventionalMDP.

4.3 Verification of Models on Users

We verified the utility of the POMDP approach
by testing the approximatingmodel on human
users. The usertestingof the robotis still pre-
liminary, andthereforethe experimentpresented
herecannotbe considered rigorousdemonstra-
tion. However, Table 4 shavs somepromising
results.Again,the POMDPpolicy is theonepro-
videdby theapproximatingAugmentedviDP.
Theexperimentconsistef having userdnter-
actwith the mobile robotundera variety of con-
ditions. TheusergestedoththePOMDPandan
implementatiorof a corventionalMDP dialogue
manager Both plannersusedexactly the same
model. The userswere presentedirst with one
managerandthenthe other althoughthey were
not told which managemwasfirst and the order
variedfrom userto userrandomly The userla-
belled eachactionfrom the systemas“Correct”

(+100reward),“OK” (-1 reward) or “Wrong” (-

100 reward). The “OK” label was usedfor re-
sponsedy therobotthatwerequestiongi.e.,did

not satisfythe userrequestout wererelevantto

the request,e.g., a confirmationof TV channel
whena TV channelwasrequested.

The systemperformeddifferentlyfor thethree
testsubjectscompensatindor the speectrecog-
nition accurag which varied significantly be-
tweenthem.In user#2’s casethe POMDPman-
agertook longerto satisfy the requestsbut in
generalgainedmore reward per action. This is
becauséehe speeclrecognitionsystemgenerally
hadlower word-accurag for this user eitherbe-
causdaheuserhadunusuakpeectpatternspr be-
causethe acousticsignalwascorruptedby back-
groundnoise.

By comparisonuser#3’s resultsshav thatin
thelimit of goodsensingthe POMDPpolicy ap-
proacheghe MDP policy. This userhada much
higher recognitionrate from the speechrecog-
niset and consequentlyboth the POMDP and
cornventionalMDP acquirerewardsat equivalent
rates andsatisfiedrequestat similar rates.

5 Conclusion

This paperdiscussesa hovel way to view the

dialoguemanagemenproblem. The domainis

representeds the partially obsenable state of

the user wherethe obsenationsare speechut-

terancedrom the user The POMDP represen-
tationinvertsthetraditionalnotionof statein dia-

loguemanagementreatingthestateasunknown,

butinferrablefrom the sequencesf obsenations
from the user Our approachallows usto model

obsenationsfrom the userprobabilistically and

in particularwe cancompensatappropriatelyor

moreor lessreliableobsenationsfrom thespeech
recognitionsystem.In thelimit of perfectrecog-
nition, we achieze the sameperformanceas a

corventionalMDP dialoguepolicy. However, as
recognitiondegrades,we can model the effects
of actively gatheringinformation from the user
to offset the loss of informationin the utterance
stream.

In thepast,POMDPshave notbeenusedor di-
aloguemanagemeriiecausef thecomputational
compleity involvedin solvingarything but triv-
ial problems.We avoid this problemby usingan



POMDP

CorventionalMDP

AverageRevardPerAction 18.6+/-57.1
AverageDialogueRevard  230.7+/-77.4

AverageRevardPerAction 3.8+/-67.2
AverageDialogueRewvard  49.7+/- 193.7

Table 3: A comparisorof the revardsaccumulatedor the two algorithms(approximatdPOMDP and conventionalMDP)

usingthefull model.

POMDP CorventionalMDP
Userl RewardPerAction 52.2 24.8
Errorsperrequest 0.1+/-0.09 0.55+/-0.44
Timetofill request 1.9+/-0.47 2.0+/-1.51
User2 RewardPerAction 36.95 6.19
Errorsperrequest 0.1+/-0.09 0.825+/- 1.56
Timetofill request 2.5+/-1.22 1.86+/- 1.47
User3 RewardPerAction 49.72 44.95
Errorsperrequest 0.18+/-0.15 0.36+/- 0.37
Timetofill request 1.63+/-1.15 1.42+/- 0.63

Table 4: A comparisorof the rewardsaccumulatedor the two algorithmsusingthe full modelon real users,with results

givenasmean+/- std. dev.

augmented/DP staterepresentatiofor approxi-
matingtheoptimalpolicy, whichallows usto find
asolutionthatquantitatvely outperformghecon-
ventionalMDP, while dramaticallyreducingthe
time to solution comparedto an exact POMDP
algorithm (linearvs. exponentialin the number
of states).

We have shavn experimentallyboth in sim-
ulation and in preliminary usertestingthat the
POMDP solution consistentlyoutperformsthe
cornventionalMDP dialoguemanagerasa func-
tion of erroneousctionsduringthedialogue We
are able to shav with actual usersthat as the
speechrecognitionperformancevaries, the dia-
logue manageris able to compensateppropri-
ately

While the resultsof the POMDP approachto
the dialoguesystemare promising,a humberof
improvementsareneededThe POMDPIs overly
cautiousrefusingto committo aparticularcourse
of actionuntil it is completelycertainthatit is ap-
propriate.Thisis reflectedn itsliberaluseof ver-
ification questionsThis couldbeavoidedby hav-
ing somenon-statiadewardstructurewhereinfor-
mationgatheringbecomesncreasinglycostly as
it progresses.

Thepolicy is extremelysensitve to the param-
etersof the model, which are currently set by

hand.While learningtheparameterfrom scratch
for afull POMDPIs probablyunnecessarauto-
matictuning of the modelparametersvould def-
initely addto the utility of the model. For exam-
ple, the optimality of a policy is stronglydepen-
denton the designof therewardstructure.lt fol-

lowsthatincorporatingalearningcomponenthat
adaptsthe reward structureto reflectactualuser
satisfactionvouldlikely improve performance.

6 Acknowledgements

Theauthorsvouldlike to thankTom Mitchell for
his adviceandsupportof this research.

Kevin Lenzo and Mathur Ravishankarmade
our useof Sphinxpossible answeredequestfor
informationand madebug fixeswillingly . Tony
Cassandravas extremely helpful in distributing
his POMDP codeto us,andansweringpromptly
ary questionswe had. The assistanceof the
Nursebotteamis also gratefully acknavledged,
includingthe memberdrom the Schoolof Nurs-
ing andthe Departmenbf ComputerSciencen-
telligentSystemsat the Universityof Pittskurgh.

This researchwas supportedin part by Le

Fondspourla Formationde Chercheurgtl'Aide
ala RecherchéFondsFCAR).



References

HaraldAustandHermannNey. 1998. Evaluatingdi-
alogsystemaisedin therealworld. In Proc. IEEE
ICASSRvolume?2, pagesl053-1056.

A. Black, P. Taylor, andR. Caley, 1999. TheFestival
Speeh SynthesiSysteml.4 edition.

Anthory CassandraylichaellL. Littman,andNevin L.
Zhang.1997. Incrementapruning: A simple,fast,
exactalgorithmfor partially obsernableMarkov de-
cision processesln Proc. 13th Ann.Conf on Un-
certaintyin Artificial Intelligence(UAI-97), pages
54-61,SanFranciscoCA.

Leslie Pack Kaelbling, Michael L. Littman, and An-
thory R. Cassandral998. Planningandactingin
partially obsenable stochastiddomains. Artificial
Intelligence 101:99-134.

EstherLevin, RobertoPieracciniandWielandEckert.
1998. Using Markaov decisionprocesdor learning
dialoguestratgies. In Proc. InternationalConfer
enceon Acoustics,Speeb and Signal Processing
(ICASSP)

GeogeE. Monahan.1982. A suney of partially ob-
senable Markov decisionprocessesManagement
Science28(1):1-16.

YasuhisaNiimi andYutakaKobayashi.1996. Dialog
control stratgy basedon the reliability of speech
recognition. In Proc. International Confeenceon
SpokerLanguageProcessingICSLP)

RonaldParr andStuartRussell.1995. Approximating
optimal policiesfor partially obsenable stochastic
domains. In Proceeding®f the 14th International
Joint Confeencesn Atrtificial Intelligence

M. Ravishankar 1996. Efficient Algorithms for
Speeh Recognition Ph.D.thesis,Carngjie Mel-
lon.

NicholasRoy and SebastiariThrun. 1999. Coastal
navigationwith mobilerobots.In Advances Neu-
ral ProcessingSystemsvolume12.

SatinderSingh, Michael Kearns,Diane Litman, and
Marilyn Walker. 1999. Reinforcementearningfor
spokendialogsystemslin Advancesn Neusl Pro-
cessingSystemsvolume12.

E. Sondik. 1971. The Optimal Control of Partially
ObservableMarkovDecisionProcessesPh.D.the-
sis, StanfordUniversity, Stanford,California.

SebastiaThrun. 1999. Montecarlopomdps.In S.A.
Solla, T. K. Leen,andK. R. Mller, editors, Ad-
vancesn Neurl ProcessingSystemssolumel2.

Marilyn A. Walker, JeanneC. Fromer and Shrikanth
Narayanan. 1998. Learning optimal dialogue
strat@ies: a casestudyof a spokendialogueagent
for email. In Proc. ACL/COLING'98

SherylYoung. 1990. Useof dialogue pragmaticsand
semanticdo enhancespeechrecognition. Speeh
Communication9(5-6),Dec.



