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Abstract (Neumann & Flickinger1999), and Montague
We present an LFG-DOP parsahich uses Grammar (Bonnema et al. 1997; Bod 1999).
fragments from LFG-annotated sentencegase Most probability models foDOP use the relative
new sentences. Experiments witte Verbmobil frequency estimator to estimatéagment
and Homecentre corpora show tiia) Viterbi n  probabilities, although Bod(2000b) trains
best search performs about 100 times fastan  fragment probabilities bg maximum likelihood
Monte Carlo search while both achiethe same reestimatiornprocedure belonging to the class of
accuracy; (2xhe DOP hypothesis which statesexpectation-maximization algorithms. TP
that parse accuracy increasdth increasing frag- model has also bedrsted as a model for human
ment size is confirmed for LFG-DOP; (BFG-  sentence processing (Bod 2000d).
DOP's relative frequency estimator performs This paper presents ongoingork on
worse than a discounted frequency estimator; an@OP models for Lexical-Functionabrammar
(4) LFG-DOP significantly outperforms Tree representations, knowas LFG-DOP (Bod &

DOP if evaluated on tree structures only. Kaplan1998). We develop a parser which uses
) fragments from LFG-annotated sentencepdrse
1 Introduction new sentences, and we derive some experimental

Data-Oriented Parsing (DOjodels learn how properties of LFG-DOP omwo LFG-annotated
to provide linguistic representatio®r an  corpora: the Verbmobiind Homecentre corpus.
unlimited set ofutterances by generalizing from aThe experiments show that tBEOP hypothesis,
given corpus ofproperly annotated exemplars. which states that there is ancrease in parse
They operate by decomposing thgven accuracy if larger fragments are taken into account
representationsito (arbitrarily large) fragments (Bod 1998), is confirmedor LFG-DOP. We
and recomposing thospieces to analyze new report on an improved search technique for
utterances. Aorobability model is used to choose estimating the most probable analysis. While a
from the collection of different fragments of Monte Carlo search converges provab|ythe
different sizesthose that make up the mostmost probable parse, a Viterbi best search
appropriate analysis of an utterance. ~ performs as well as Monte Carlahile its
DOP models have been shown to achievgygcessing time is two orders of magnitddster.

state-of-the-art parsingperformance on \ye also show that LFG-DOP outperforms TFree
benchmarks suclas the Wall Street Journal pop if evaluated on tree structures only.

corpus (see Bod 2000a). The original DOP model

in Bod (1993) was based artterance analyses 2 Summary of LFG-DOP

represented as surface treasd is equivalent to a In accordance with Bod (1998), a particular DOP
Stochastic Tree-SubstitutidBrammar. But the model is described by

model has also been applied to sevestier
grammaticalframeworks, e.g. Tree-Insertion
Grammar (Hoogweg 2000), Tree-Adjoining Utterance analyses,

Grammar (Neumann 1998), Lexical-Functional * & set olecomposition operatiorthat divide a
Grammar (Bod & Kaplari998; Cormons 1999), given utterance analysis into a sefraigments
Head-driven Phrase Structure Grammar

* a definition of a well-formedepresentation for



« a set otomposition operationby whichsuch LFG-DOP fragments, it is convenient to recall the
fragments may be recombined derive an decompositionoperations employed by the
analysis of a new utterance, and orginal DOP model which is also known as the
- a definition of grobability modethat indicates “Tree-DOP" model (Bod 1993, 1998):

how the probability of a new utterance analysis is

(1) Root the Rootoperation selects any nodé
computed.

a tree tobe the root of the new subtree and
In defining a DOP model for LFG  erases all nodes except the selected node and the

representations, Bod &aplan (1998) give the ~nodes it dominates.

following settings for DOP's four parameters. (2) Frontier: the Frontier operation then

2.1 Representations chooses a set (possibly empty) of nodethe
The representations used HFG-DOP are new subtree different from its root and erases all
directly taken from LFG: they consist @ ¢ subtrees dominated by the chosen nodes.

structure, an f-structure and a mappipgetween pgoq & Kaplan extendTree-DOP'sRoot and
them. The following figure shows an example Frontier operations so that they also apply to the
representation foKim eats (We leaveout some  nodes of the c-structure in LFG, while respecting
features to keep the example simple.) the principles of c/f-structure correspondence.
When anode is selected by thRoot
operationall nodes outside of that node's subtree

PRED 'Kim'
PN SUBY oM se are erased, just as in Tree-DOP. Further, for
%— TENSE  PRES LFG-DOP, allg links leaving the erased nodes
Kim elats PRED  'eatfUB) are removed and all f-structummits that are not
@-accessible from the remaining nodes en&sed.
Figure 1 For example, ifRootselectsthe NP in figure 1,

then the f-structure corresponding to the S node is

Bod & Kaplan also introduce the notion of A )
erased, giving figure 2 as a possible fragment:

accessibility which they later use for definitig
decomposition operations of LFG-DOP:

An f-structure uniff is ¢-accessibldrom anode NP [ ET,ED :(;m
n iff either n is @-linked tof (that is,f = @(n) ) KiIm

or f is contained withinp(n) (that is,there is a

chain of attributes that leads frap(n) to f). Figure 2

In addition theRootoperation deletes from the
remaining f-structure all semantic forms that are
local to f-structures that correspond to erased ¢
structure nodes, and it thereby also maint#ias
fundamental two-way connectidetween words
and meanings. Thus, Rootselects the VP node
so that the NP is erased, the subjsemantic
form "Kim" is also deleted:

According to theLFG representation theory; ¢
structures and-structures must satisfy certain
formal well-formedness conditions. A
structure/f-structure pair avalid LFG represent
ation only if it satisfies the Nonbranching
Dominance, Uniqueness, Coherermed Com-
pleteness conditions (Kaplan & Bresnan 1982).

2.2 Decomposition operations and Fragments

The fragments for LFG-DOP consist of SuBJ [NUM SG]
connected subtrees whose nodes areq- V|P7" [ vense  pres
correspondence with theorreponding sub-units eats PRED  ‘eatfUB)’

of f-structures. To give a preciggefinition of .
Figure 3



As with Tree-DOP, the~rontier operationthen  probability of derivingR is the sum of the
selects a seof frontier nodes and deletes all individual derivation probabilities:
subtrees they dominatd.ike Root, it also
removes thep links of the deleted nodeand 1  P® = 2D derivesk P(D)
erases any semantic form that corresponds to amyn LFG-DOP derivation is produced by a
of those nodes. For instancethie NP in figure 1 stochastic process whichktarts by randomly
is selected as a frontier noderontier erasegshe  choosing a fragment whose c-structurdalseled
predicate "Kim" from the fragment: with theinitial category. At each subsequent step,
a next fragment is chosext random from among
the fragments thatan be composed with the
S suBl  [num sG] current subanalysisThe chosen fragment is
NP/\VP TENSE  PRES composed with the current subanalytsiproduce
a new one; the process stops when an analysis
results with no non-terminal leaves. Wil call
the set of composable fragments at a cerdéep
in the stochastic process tb@mpetition seat that
Finally, Bod & Kaplan present athird step. Let CP{(| CS) denote the probability of
decomposition operatiorDiscard, defined to choosing dragmentf from a competition set CS
construct generalizationsf the fragments containingf, then the probability of a derivatidn
supplied byRootand Frontier. Discardactsto = <fy, fo... fx> is
delete combinations of attribute-valygairs
subject to theollowing condition: Discarddoes (@) P(<f1, f2...f>) = [l CP{i | C9)

not delete pairs whose valugscorrespondo  where thecompetition probabilityCP§ | CS) is

remaining c-structure nodes. According to Bod &expressed in terms of fragment probabilitie: P(
Kaplan (1998) Discard-generated fragments are P()

needed to parse sentences that are "ungrammatiqa) CPf|CS) : —
with respect to theorpus”, thus increasing the 2¢0cs P()
robustness of the model.

eats PRED 'eatS§uB)’

Figure 4

Bod & Kaplan give threelefinitions of increasing
2.3 The composition operation complexity for the competition set: the first

In LFG-DOP the operation forcombining definition groups all fragments thanly satisfy

fragmentsis carried out in two steps. First the ¢ the Category-matching conditiorof the
structuresare combined by leftmost substitution COMPOsition operationthe second definition
subject to thecategory-matching condition, as in 9roups all fragments which satisfy both Category
Tree-DOP. This is followed bythe recursive matching and Uniqueness; atie third definition
unification of the f-structures correspondigthe ~ 9roups all fragmentsvhich satisfy Category
matching nodes. A derivation for an LFG-DOPMatching, Uniquenesand Coherence. Bod &
representatioR is a sequence of fragments theKaplanpoint out that the Completeness condition
first of whichis labeled withS and for which the ~Cannot be enforced aach step of the stochastic
iterative application ofhe composition operation derivation Process, and & property of the final
producesR. For an illustration of the composition '€Présentation whickan only be enforced by

operation, see Bod & Kaplan (1998). sampling va]id representat.ions from the qutput of
the stochastiprocess. In this paper, we will only
2.4 Probability models deal with the third definition of competiticset, as

As in Tree-DOP, an LFG-DOP representatRn it selects only those fragmerds$ each derivation

can typically be derived in many different ways. Ifstep that mayfinally result into a valid LFG

each derivatiorD has a probability Ff), then the representation, thus reducing the off-line validity
checking to the Completeness condition.



Note that the computation of the (5) P(f|fis generated Discard =
competition probability in the above formulas still
requires a definitiorfor the fragment probability | ]
P@). Bod and Kaplan define the probability of a (n/N)
fragment simply as its relative frequentythe
bag of all fragments generated from the corpus\Ve will refer to this fragment probability
just as in most Tree-DOP models. We wifer estimator as "discounted relative frequency" or
to this fragment estimator as "simple relative'discounted RF".
frequency" or "simple RF". _ _

We will also use an alternative definition 4 Pgrang W'th_LFG'DOP
of fragment probability which ia refinement of In h'_s PhD-theS|s, Cormons (1999).presents a
simple RF. This alternative fragment probability Parsing algorithm for LFG-DOmvhich is based
definition distinguishes between fragments©" the Tree-DOParsing technique described in
supplied by RoofFrontier and fragments Bod (1998.). C'ormons first conyerts LFG
supplied byDiscard. We will treat the first type representations into more compact indexed trees:

of fragments as seen events, and the second tyf&¢N node in the c-structureassigned an index
of fragments as previously unseen events. w¥hich refers to theg-corresponding f-structure
thus create two separate bags corresponding ténit. For example, the representatiorfigure 1 is
two separatelistributions: a bag with fragments indexed as

generated byrRootand Front-ier, and a bag vyith (S1 (NP2 Kim.2)

fragments generated bRiscard. We assign (VP.1 eats.1))

probability mass to the fragments of each bag by

means ofdiscounting the relative frequencies of where

seen events areliscounted and the gained

probability mass is reserved for the bag of unseeh > [ (SUBJ =2)

events (cf. Ney et al. 1997). Waecomplish this (TENSE = PRES)

by a very simple estimator: th&uring-Good (PRED = eat(SUBJ)) ]

estima‘qu (Good1953) which computes the 2 -->[ (PRED = Kim)

probability mass of unseegvents as /N where (NUM = SG) |

Ny is the number of singleton events axds the

total number of seen event¥his probability The indexed treesre then fragmented by

mass isassigned to the bag @fiscard-generated applying theTree-DOP decomposition operations
fragments. The remainingass (1- ny/N) is describedin section 2. Next, the LFG-DOP

assigned to the bag d?oofFrontier-generated d€COMPpOsition operation®oot Frontier and
fragments.The probability of each fragment is Discard are applied tdhe f-structure units that
then computed as its relative frequency in its bagerreéspondto the indices in the c-structure

multiplied by the probability mass assignedtis ~ Subtrees. Having obtained the sétLFG-DOP
bag. Let f | denote the frequency of a fragmént fragments in this way, each test sentence is parsed

then its probability is given by: by a bottom-up chart parser using initialilge
indexed subtrees only.

Zf': f'is generated byDiscard | f'|

(4)  P(f|fis generated tRootFrontier) = Thus only the Category-matching
condition is enforced duringhe chart-parsing
[f] process. TheUniqueness and Coherence

(1-mN)

conditionsof the corresponding f-structure units
are enforced durinthe disambiguation or chart
decoding process. Disambiguation is
accomplished byomputing a large number of

f: f'is generated byRoot Frontier | ']



random derivations from thehart and by for LFG-DOP estimates thenost probable
selecting the analysis which results most oftermnalysis by computingn most probable
from these derivationsThis technique is known derivations, andby then summing up the
as "Monte Carlo disambiguatior@nd has been probabilities of the valid derivatiorthat produce
extensively described in the literature (e.g. Bodhe same analysis. The algoritlior computingn
1993, 1998; Chappelier & Rajmaf000; most probable derivations follows straight
Goodman 1998; Hoogwed000). Sampling a forwardly from the algorithm which computés
random derivation from the chadonsists of most probable derivation bsneans of Viterbi
choosing at random one of tliemgments from optimization (see e.g. Sima'an 1999).
the set ofcomposabldragments at everiabeled ] ]
chart-entry (where the random choicalseach > EXperimental Evaluation _
chart-entry are based on tpeobabilities of the W€ derived some experimental propertiefs
fragments). Thelerivations are sampled in a top- -FG-DOP by studying its behavior dhe two
down, leftmost order so as to maintain the 1-FG LFG-annotated corpora thaare currently
DOP derivation order. Thus the competition set@vailable: the Verbmobil corpus and the
of composable fragments are computed on the flifomecentre corpusoth corpora were annotated
during the Monte Carlo sampling procebg 2t Xerox P_ARC. They contain packed LFG
grouping the f-structurenits that unify and that representations (Maxwell & Kaplan 1991) e
are coherent with the subderivation built so far, 9rammatical parses of each sentetugther with
As mentioned in section3, the an indication which of these parseshe correct
Completeness condition can oridg checked after ©Ne- For our experiments we only used the correct
the derivation process. Incomplete derivations ar@2/s€s 0f each sentence resulting in 540
simply removed from the sampling distribution. Yeromobil parses and 980 Homecentre parses.
After sampling asufficiently large number of Each corpus was divided into a 90%ining set
random derivations that satisfy the LFG validity@nd @ 10%iest set. This division was random
requirements, the most probable analyisis except for one constraint: that all the words in the
estimated by the analysis which results most ofteft¢St Sectually occurred in the training set. The
from the sampled derivations. As a stop conditiof€Nténces from the teset were parsed and
on the number of sampled derivations, wedisambiguated by means of the fragments from
compute the probability of error, whids the the training set. Due to memory limitations, we
probability that the analysis that is most frequently€Stricted the maximum depth of thedexed
generated by the sampled derivations is not equitbtrees to 4. Because of temall size of the
to the most probable analysis, and which is set fgP"Porawe averaged our results on 10 different
0.05 (see Bod 1998). In order to rule dhe training/test set splitsBesides anexact match

possibility that the sampling process nestaps, accuracy metric, we also usednare fine-grained
we use a maximum sample size of 10,0005¢Ore based orhe well-known PARSEVAL

derivations. metricsthat evaluate phrase-structure trees (Black
While the Monte Carlo disambiguation et al. 1991). The PARSEVAL metrics compare a

technique convergegrovably to the most proposed parsB with the corresponding correct

probable analysis, it is quitmefficient. It is  reebank parsg as follows:

possible touse an alternative, heuristic search

based on Viterbn best(we will not go into the Precision :

PCFG-reduction technique presented in Goodman

(1998) since that heuristic only works for Tree # correct constituents iR

DOP and is beneficial only if albubtrees are Recall:

taken into accounand if the so-called "labeled

recall parse" is computed). A Vitenbibestsearch

# correct constituents i

# constituents i

# constituents ifm



A constituent inP is correct if there exists a Also the morefine-grained precision and recall
constituent inT of the same label that spans thescores obtained with the simple RF estimator are
same words and thgtcorrespondgo the same quite low: e.g. 13.8% and 11.5% on the
f-structure unit (see Bod 2000c for some Verbmobil corpus, where the discount&F

illustrations of these metrics for LFG-DOP). estimator obtains 77.5% an@.4%. Interestingly,
_ _ the accuracy of the simple RF estimatomigsch
5.1 Comparing the two fragment estimators higher if Discard-generated fragmentsre

We were firstinterested in comparing the excluded. This suggests that treatigeneralized
performanceof the simple RF estimator against fragmentsprobabilistically in the same way as
the discounted RFestimator. Furthermore, we yngeneralized fragments is harmful.

want to study thecontribution of generalized The tables also show that the inclusion of
fragments to the parse accuratye therefore pjscard-generated fragments leads ortly a
created for each training set two setdrafjments:  gjight accuracy increase under tiscounted RF
one which containall fragments (up to depth 4) estimator. Unfortunately, according to paitted

and one which excludes the generalized fragmenfgsting onlythe differences for the precision
as generated biscard. The exclusion of these scores on the Homecentre corpusere

Discard-generated fragments means thalt  statistically significant.

probability mass goes to the fragmegenerated

by Rootand Frontier in which case the two 5.2 Comparing different fragment sizes
estimators are equivalent. The followingo We were also interested in the impact of fragment
tables presenthe results of our experiments Size on the parseaccuracy. We therefore
where +Discard refers to the full set of fragmentperformed a series of experimenthere the

and-Discard refers to the fragment set withoutfragment set is restricted to fragments of a certain
Discard-generated fragments. maximum depth (where the depol a fragment

is defined aghe longest path from root to leaf of
Exact Matc Precision Recal |ts.c'-structure unlt): We gsed the.same
+Discard-Discard +Discard -Discarc +Discard-Discarc ~ training/test set splits as irthe previous
experiments and used botingeneralized and
Simple RF LI 3.2 138% 7600 115% M3 generalized fragments together witthe
discounted RF estimator.

Estimato

Discounted R 35.9% 3520 775% 7600 764% 749

Table 1. Experimental results on the Verbmobil FragmentDept  ExactMatcl  Precisior  Recal
1 30.6% 74.2% 72.2%

Estimato Exact Matc Precision Recall <2 34.1% 76.2% 74.5%
+Discard-Discard +Discard -Discarc +Discard -Discarc <3 35.6% 76.8% 75.9%

<4 35.9% 77.5% 76.4%

Simple RF 2.1% 3799 171%  77.8¢ 155%  77.2¢

Discounted R 384% 379 800% 7780 T786% 772 Table 3. Accuracies on the Verbmobil

Table 2. Experimental results on the HomecentreFragment Dept  Exact Matcl ~ Precisiol Recal
The tables show that the simpRF estimator 1 31.3% 75.0% 71.5%
scores extremely bad if all fragments are used: the =2 36.3% 77.1% 74.7%

- 0 ; <3 37.8% 77.8% 76.1%
exact match is only 1.1% othe Verbmobil oy 38.4% 80,001 78 5%

corpus and 2.7% on thélomecentre corpus,
whereas thediscounted RF estimator scores
respectively 35.9% an88.4% on these corpora.

Table 4. Accuracies on the Homecentre



Tables 3 and &how that there is a consistenttree structures. In other word4,FG-DOP
increase irparse accuracy for all metrics if larger outperforms Tree-DOP if evaluatedn tree
fragments are included, but that the increase itsedtructures only. Accordingo paired t-tests all
decreases. This phenomenon is &sown as the differences in accuracywere statistically
DOP hypothesis (Bod 1998), antas been significant. This result ipromising since Tree
confirmed for Tree-DOP on the ATIS, OVIS andDOP has been shown to obtain state-of-the-art
Wall StreetJournal treebanks (see Bod 1993,performance orthe Wall Street Journal corpus
1998, 1999, 2000a; Sima'an 1999; Bonnema et dkee Bod 2000a).

1997; Hoogweg 2000). The current result thus _ _ _

extends the validity of the DOP hypothegis >4 Comparing Viterbi n best to Monte Carlo
LFG annotations. We do not yet know WhetherF'na“y’ ,We were mtgrgsted In comparing an
the accuracy continues to increase if even largef/ternative, more efficiensearch method for
fragments are included (for Tree-DOP it has beefiStimating the most probable analysis. the

shown that the accuraclecreasesfter a certain following set of e>.<p'er|mentwe ‘%Se a. V|terb.n
depth, probablydue to overfitting -- cf. Bonnema best search heuristic (as explained in section 4),

et al. 1997; Bod 2000a). and letn range from 1 to 10,000 derivations. We
’ also compute the results obtained by Monte Carlo
5.3 Comparing LFG-DOP to Tree-DOP for the same number of derivations. We used the

In the following experiment, we afiaterested in same training/test set splits as the previous
the impact of functional structures on predictingexperiments and used botingeneralized and
the correct tree structures. We therefore removegeneralized fragments up depth 4 together with
all f-structure units fromthe fragments, thus the discounted RF estimator.

yielding a Tree-DORmodel, and compared the
results against the full LFG-DORodel (using  Nr. of derivation Viterbin bes Monte Carls
the discounted RF estimator and all fragments up

to depth 4). Weevaluated the parse accuracy on 10 ;ggz gg%
the tree structures only, usingxact match 100 77.5% 67.0%
together with the standard PARSEVAL 1,00¢ 77.5% 77.1%
measures. We used the same training/sest 10,00¢ 77.5% 77.5%

splits as in the previous experiments.
Table 7. Precision on the Verbmobil

Model Exact Matcl Precision Recall
Tree-DOF 46.6% 88.99 86.7% Nr. of derivation Viterbin bes Monte Carl
1 75.6% 25.6%
LFG-DOP 50.8% 90.3% 88.4 10 76.2% 44.3%
10C 79.1% 74.6%
Table 5. Tree accuracy on the Verbmobil 1,00¢ 79.8% 79.1%
10,00( 79.8% 80.0%
Model Exact Matct  Precision  Recal Table 8. Precision on the Homecentre
- 0, 0, . .
Tree-DOF  49.0% 93.4%  92.1% The tables show that Viterbin best already
LFG-DOP 53,99 95.8% 94.7 achieves a maximum accuracy at I¥ivations

(at leaston the Verbmobil corpus) while Monte
Carlo needs a much larger number of derivations
to obtain these results. On the Homecentre
The results indicate that LFG-DOP's functionalcorpus,Monte Carlo slightly outperforms Viterbi
structures help tamprove the parse accuracy of n best at 10,000 derivations, but these differences

Table 6. Tree accuracy on the Homecentre



are notstatistically significant. Also remarkable Analysis”, Proceedings COLING-ACL'98
are the relatively high results obtained with Viterbi ~ Montreal, Canada.

n best if onlyone derivation is used. This scoreR- Bonnema, R. Bod and R. Scha, 1997. "A DOP
corresponds to the analysis generated by the most Model for Semantic —Interpretation”,
probable (valid)derivation. Thus Viterbi best is Proceedings ACL/EACL-9Madrid, Spain.

a promisingalternative to Monte Carlo resulting J. Chappelier and M. Rajman, 2000. "Monte Carlo

. . Sampling for NP-hard Maximization Problems
in a speed up of about two orders of magnitude. in the Framework of Weighted Parsing”, in

NLP 2000, Lecture Notes in Artificial
Intelligence 1835106-117.

by probabilistically combining fraaments from B. Cormons, 1999Analyse et désambiguisation:
yp y 9 9 Une approche a base de corpus (Data-Oriented

LFG-annotated corpora into ne&na.lyses. We . Parsing) pour les répresentations lexicales
have seen that the parse accuracy increased With ¢ ctionnelles PhD thesis. Université de

6 Conclusion
We presented a parser which analyzes imgut

increasing fragmentsize, and that LFG's Rennes, France.

functional structures contribut® significantly | Good, 1953. "The Population Frequencies of
higher parse accuracy on tree structures. We Species and the Estimation of Population
tested two searchechniques for the most Parameters"Biometrika40, 237-264.

probable analysis, Viterli bestand MonteCarlo.  J. Goodman, 199&arsing Inside-OutPhD thesis,
While these two techniques achieved about the Harvard University, Mass.
same accuracy, Viterbi best was about 100 L. Hoogweg, 2000.Enriching DOP1 with the

times faster than Monte Carlo. Insertion Operation MSc Thesis, Dept. of
Computer Science, University of Amsterdam.
References R. Kaplan, and J. Bresnan, 1982. "Lexical-
E. Black et al.,, 1991. "A Procedure for Functional Grammar: A Formal System for
Quantitatively Comparing the Syntactic Grammatical Representation”, in J. Bresnan
Coverage of English"Proceedings DARPA (ed.), The Mental Representation of
Workshop Pacific Grove, Morgan Kaufmann. Grammatical Relations The MIT Press,

R. Bod, 1993. "Using an Annotated Language Cambridge, Mass.
Corpus as a Virtual Stochastic Grammar",J. Maxwell and R. Kaplan, 1991. "A Method for

Proceedings AAAI'9Q3Washington D.C. Disjunctive Constraint Satisfaction”, in M.
R. Bod, 1998.Beyond Grammar: An Experience- Tomita (ed.), Current Issues in Parsing
Based Theory of Languag€SLI Publications, Technology Kluwer Academic Publishers.
Cambridge University Press. G. Neumann, 1998. "Automatic Extraction of
R. Bod 1999. "Context-Sensitive Dialogue Stochastic Lexicalized Tree Grammars from
Processing with the DOP ModelNatural Treebanks",Proceedings of the 4th Workshop
Language Engineering(4), 309-323. on Tree-Adjoining Grammars and Related

R. Bod, 2000a. "Parsing with the Shortest Frameworks Philadelphia, PA.
Derivation”, Proceedings COLING-20Q0 G. Neumann and D. Flickinger, 1999. "Learning

Saarbriicken, Germany. Stochastic Lexicalized Tree Grammars from
R. Bod 2000b. "Combining Semantic and Syntactic =~ HPSG", DFKI Technical Report, Saarbrucken,

Structure for Language ModelingRroceed- Germany.

ings ICSLP-2000Beijing, China. H. Ney, S. Martin and F. Wessel, 1997. "Statistical
R. Bod 2000c. "An Empirical Evaluation of LFG- Language Modeling Using Leaving-One-Out",

DOP", Proceedings COLING-20Q0Saar- in S. Young & G. Bloothooft (eds.Corpus-

briicken, Germany. Based Methods in Language and Speech

R. Bod, 2000d. "The Storage and Computation of  ProcessingKluwer Academic Publishers.
Frequent Sentences'l?roceedings AMLAP- K. Sima'an, 1999Learning Efficient Disambigu-
200Q Leiden, The Netherlands. ation. PhD thesis, ILLC dissertation series

R.Bod and R. Kaplan, 1998. "A Probabilistic ~ nhumber 1999-02. Utrecht / Amsterdam.
Corpus-Driven Model for Lexical Functional



