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Abstract
We present an LFG-DOP parser which uses
fragments from LFG-annotated sentences to parse
new sentences. Experiments with the Verbmobil
and Homecentre corpora show that (1) Viterbi n
best search performs about 100 times faster than
Monte Carlo search while both achieve the same
accuracy; (2) the DOP hypothesis which states
that parse accuracy increases with increasing frag-
ment size is confirmed for LFG-DOP; (3) LFG-
DOP's relative frequency estimator performs
worse than a discounted frequency estimator; and
(4) LFG-DOP significantly outperforms Tree-
DOP if evaluated on tree structures only.

1  Introduction
Data-Oriented Parsing (DOP) models learn how
to provide linguistic representations for an
unlimited set of utterances by generalizing from a
given corpus of properly annotated exemplars.
They operate by decomposing the given
representations into (arbitrarily large) fragments
and recomposing those pieces to analyze new
utterances. A probability model is used to choose
from the collection of different fragments of
different sizes those that make up the most
appropriate analysis of an utterance.

DOP models have been shown to achieve
state-of-the-art parsing performance on
benchmarks such as the Wall Street Journal
corpus (see Bod 2000a). The original DOP model
in Bod (1993) was based on utterance analyses
represented as surface trees, and is equivalent to a
Stochastic Tree-Substitution Grammar. But the
model has also been applied to several other
grammatical frameworks, e.g. Tree-Insertion
Grammar (Hoogweg 2000), Tree-Adjoining
Grammar (Neumann 1998), Lexical-Functional
Grammar (Bod & Kaplan 1998; Cormons 1999),
Head-driven Phrase Structure Grammar

(Neumann & Flickinger 1999), and Montague
Grammar (Bonnema et al. 1997; Bod 1999).
Most probability models for DOP use the relative
frequency estimator to estimate fragment
probabilities, although Bod (2000b) trains
fragment probabilities by a maximum likelihood
reestimation procedure belonging to the class of
expectation-maximization algorithms. The DOP
model has also been tested as a model for human
sentence processing (Bod 2000d).

This paper presents ongoing work on
DOP models for Lexical-Functional Grammar
representations, known as LFG-DOP (Bod &
Kaplan 1998). We develop a parser which uses
fragments from LFG-annotated sentences to parse
new sentences, and we derive some experimental
properties of LFG-DOP on two LFG-annotated
corpora: the Verbmobil and Homecentre corpus.
The experiments show that the DOP hypothesis,
which states that there is an increase in parse
accuracy if larger fragments are taken into account
(Bod 1998), is confirmed for LFG-DOP. We
report on an improved search technique for
estimating the most probable analysis. While a
Monte Carlo search converges provably to the
most probable parse, a Viterbi n best search
performs as well as Monte Carlo while its
processing time is two orders of magnitude faster.
We also show that LFG-DOP outperforms Tree-
DOP if evaluated on tree structures only.

2  Summary of LFG-DOP
In accordance with Bod (1998), a particular DOP
model is described by

•  a definition of a well-formed representation for
utterance analyses,
•  a set of decomposition operations that divide a
given utterance analysis into a set of fragments,



•  a set of composition operations by which such
fragments may be recombined to derive an
analysis of a new utterance, and
•  a definition of a probability model that indicates
how the probability of a new utterance analysis is
computed.

In defining a DOP model for LFG
representations, Bod & Kaplan (1998) give the
following settings for DOP's four parameters.

2.1  Representations
The representations used by LFG-DOP are
directly taken from LFG: they consist of a c-
structure, an f-structure and a mapping φ between
them. The following figure shows an example
representation for Kim eats. (We leave out some
features to keep the example simple.)

S

NP VP

Kim eats

PRED   'Kim'

NUM	    SG 
SUBJ

TENSE      PRES

PRED      'eat(SUBJ)'

Figure 1

Bod & Kaplan also introduce the notion of
accessibility which they later use for defining the
decomposition operations of LFG-DOP:

An f-structure unit f is φ-accessible from a node

n iff either n is φ-linked to f (that is, f = φ(n) )

or f is contained within φ(n) (that is, there is a

chain of attributes that leads from φ(n) to f).

According to the LFG representation theory, c-
structures and f-structures must satisfy certain
formal well-formedness conditions. A c-
structure/f-structure pair is a valid LFG represent-
ation only if it satisfies the Nonbranching
Dominance, Uniqueness, Coherence and Com-
pleteness conditions (Kaplan & Bresnan 1982).

2.2  Decomposition operations and Fragments
The fragments for LFG-DOP consist of
connected subtrees whose nodes are in φ-
correspondence with the correponding sub-units
of f-structures. To give a precise definition of

LFG-DOP fragments, it is convenient to recall the
decomposition operations employed by the
orginal DOP model which is also known as the
"Tree-DOP" model (Bod 1993, 1998):

(1)  Root: the Root operation selects any node of
a tree to be the root of the new subtree and
erases all nodes except the selected node and the
nodes it dominates.

(2)  Frontier: the Frontier operation then
chooses a set (possibly empty) of nodes in the
new subtree different from its root and erases all
subtrees dominated by the chosen nodes.

Bod & Kaplan extend Tree-DOP's Root and
Frontier operations so that they also apply to the
nodes of the c-structure in LFG, while respecting
the principles of c/f-structure correspondence.

When a node is selected by the Root
operation, all nodes outside of that node's subtree
are erased, just as in Tree-DOP. Further, for
LFG-DOP, all φ links leaving the erased nodes
are removed and all f-structure units that are not
φ-accessible from the remaining nodes are erased.
For example, if Root selects the NP in figure 1,
then the f-structure corresponding to the S node is
erased, giving figure 2 as a possible fragment:

NP

Kim

PRED   'Kim'

NUM	    SG 

Figure 2

In addition the Root operation deletes from the
remaining f-structure all semantic forms that are
local to f-structures that correspond to erased c-
structure nodes, and it thereby also maintains the
fundamental two-way connection between words
and meanings. Thus, if Root selects the VP node
so that the NP is erased, the subject semantic
form "Kim" is also deleted:

VP

eats

NUM	    SG SUBJ

TENSE      PRES

PRED      'eat(SUBJ)'

Figure 3



As with Tree-DOP, the Frontier operation then
selects a set of frontier nodes and deletes all
subtrees they dominate. Like Root, it also
removes the φ links of the deleted nodes and
erases any semantic form that corresponds to any
of those nodes. For instance, if the NP in figure 1
is selected as a frontier node, Frontier erases the
predicate "Kim" from the fragment:

eats

S

NP VP

NUM	   SG SUBJ

TENSE      PRES

PRED      'eat(SUBJ)'

Figure 4

Finally, Bod & Kaplan present a third
decomposition operation, Discard, defined to
construct generalizations of the fragments
supplied by Root and Frontier. Discard acts to
delete combinations of attribute-value pairs
subject to the following condition: Discard does
not delete pairs whose values φ -correspond to
remaining c-structure nodes. According to Bod &
Kaplan (1998), Discard-generated fragments are
needed to parse sentences that are "ungrammatical
with respect to the corpus", thus increasing the
robustness of the model.

2.3  The composition operation
In LFG-DOP the operation for combining
fragments is carried out in two steps. First the c-
structures are combined by leftmost substitution
subject to the category-matching condition, as in
Tree-DOP. This is followed by the recursive
unification of the f-structures corresponding to the
matching nodes. A derivation for an LFG-DOP
representation R is a sequence of fragments the
first of which is labeled with S and for which the
iterative application of the composition operation
produces R. For an illustration of the composition
operation, see Bod & Kaplan (1998).

2.4  Probability models
As in Tree-DOP, an LFG-DOP representation R
can typically be derived in many different ways. If
each derivation D has a probability P(D), then the

probability of deriving R  is the sum of the
individual derivation probabilities:

(1) P(R)  =  ΣD derives R P(D)

An LFG-DOP derivation is produced by a
stochastic process which starts by randomly
choosing a fragment whose c-structure is labeled
with the initial category. At each subsequent step,
a next fragment is chosen at random from among
the fragments that can be composed with the
current subanalysis. The chosen fragment is
composed with the current subanalysis to produce
a new one; the process stops when an analysis
results with no non-terminal leaves. We will call
the set of composable fragments at a certain step
in the stochastic process the competition set at that
step. Let CP(f | CS) denote the probability of
choosing a fragment f from a competition set CS
containing f, then the probability of a derivation D
= <f1, f2 ... fk> is

(2) P(<f1, f2 ... fk>)  =  Πi  CP(f i | CSi)

where the competition probability CP(f | CS) is
expressed in terms of fragment probabilities P(f):

Σf'∈CS P(f')

P(f)  

(3) CP(f | CS)  =

Bod & Kaplan give three definitions of increasing
complexity for the competition set: the first
definition groups all fragments that only satisfy
the Category-matching condition of the
composition operation; the second definition
groups all fragments which satisfy both Category-
matching and Uniqueness; and the third definition
groups all fragments which satisfy Category-
matching, Uniqueness and Coherence. Bod &
Kaplan point out that the Completeness condition
cannot be enforced at each step of the stochastic
derivation process, and is a property of the final
representation which can only be enforced by
sampling valid representations from the output of
the stochastic process. In this paper, we will only
deal with the third definition of competition set, as
it selects only those fragments at each derivation
step that may finally result into a valid LFG
representation, thus reducing the off-line validity
checking to the Completeness condition.



Note that the computation of the
competition probability in the above formulas still
requires a definition for the fragment probability
P(f). Bod and Kaplan define the probability of a
fragment simply as its relative frequency in the
bag of all fragments generated from the corpus,
just as in most Tree-DOP models. We will refer
to this fragment estimator as "simple relative
frequency" or "simple RF".

�We will also use an alternative definition
of fragment probability which is a refinement of
simple RF. This alternative fragment probability
definition distinguishes between fragments
supplied by Root/Frontier and fragments
supplied by Discard. We will treat the first type
of fragments as seen events, and the second type
of fragments as previously unseen events. We
thus create two separate bags corresponding to
two separate distributions: a bag with fragments
generated by Root and Frontier, and a bag with
fragments generated by Discard. We assign
probability mass to the fragments of each bag by
means of discounting: the relative frequencies of
seen events are discounted and the gained
probability mass is reserved for the bag of unseen
events (cf. Ney et al. 1997). We accomplish this
by a very simple estimator: the Turing-Good
estimator (Good 1953) which computes the
probability mass of unseen events as n1/N where
n1 is the number of singleton events and N is the
total number of seen events. This probability
mass is assigned to the bag of Discard-generated
fragments. The remaining mass (1 −  n1/N) is
assigned to the bag of Root/Frontier-generated
fragments. The probability of each fragment is
then computed as its relative frequency in its bag
multiplied by the probability mass assigned to this
bag. Let | f | denote the frequency of a fragment f,
then its probability is given by:

| f |

Σf': f' is generated by Root/Frontier | f'|
(1 − n1/N)

(4) P(f | f is generated by Root/Frontier)  =

(5) P(f | f is generated by Discard)  =

(n1/N)
| f |

Σf': f' is generated by Discard | f'|

We will refer to this fragment probability
estimator as "discounted relative frequency" or
"discounted RF".

4  Parsing with LFG-DOP
In his PhD-thesis, Cormons (1999) presents a
parsing algorithm for LFG-DOP which is based
on the Tree-DOP parsing technique described in
Bod (1998). Cormons first converts LFG-
representations into more compact indexed trees:
each node in the c-structure is assigned an index
which refers to the φ-corresponding f-structure
unit. For example, the representation in figure 1 is
indexed as

(S.1 (NP.2 Kim.2)
(VP.1 eats.1))

where

1 --> [  (SUBJ = 2)
(TENSE = PRES)
(PRED = eat(SUBJ)) ]

2 --> [  (PRED = Kim)
            (NUM = SG) ]

The indexed trees are then fragmented by
applying the Tree-DOP decomposition operations
described in section 2. Next, the LFG-DOP
decomposition operations Root, Frontier and
Discard are applied to the f-structure units that
correspond to the indices in the c-structure
subtrees. Having obtained the set of LFG-DOP
fragments in this way, each test sentence is parsed
by a bottom-up chart parser using initially the
indexed subtrees only.

Thus only the Category-matching
condition is enforced during the chart-parsing
process. The Uniqueness and Coherence
conditions of the corresponding f-structure units
are enforced during the disambiguation or chart-
decoding process. Disambiguation is
accomplished by computing a large number of



random derivations from the chart and by
selecting the analysis which results most often
from these derivations. This technique is known
as "Monte Carlo disambiguation" and has been
extensively described in the literature (e.g. Bod
1993, 1998; Chappelier & Rajman 2000;
Goodman 1998; Hoogweg 2000). Sampling a
random derivation from the chart consists of
choosing at random one of the fragments from
the set of composable fragments at every labeled
chart-entry (where the random choices at each
chart-entry are based on the probabilities of the
fragments). The derivations are sampled in a top-
down, leftmost order so as to maintain the LFG-
DOP derivation order. Thus the competition sets
of composable fragments are computed on the fly
during the Monte Carlo sampling process by
grouping the f-structure units that unify and that
are coherent with the subderivation built so far.

As mentioned in section 3, the
Completeness condition can only be checked after
the derivation process. Incomplete derivations are
simply removed from the sampling distribution.
After sampling a sufficiently large number of
random derivations that satisfy the LFG validity
requirements, the most probable analysis is
estimated by the analysis which results most often
from the sampled derivations. As a stop condition
on the number of sampled derivations, we
compute the probability of error, which is the
probability that the analysis that is most frequently
generated by the sampled derivations is not equal
to the most probable analysis, and which is set to
0.05 (see Bod 1998). In order to rule out the
possibility that the sampling process never stops,
we use a maximum sample size of 10,000
derivations.

While the Monte Carlo disambiguation
technique converges provably to the most
probable analysis, it is quite inefficient. It is
possible to use an alternative, heuristic search
based on Viterbi n best (we will not go into the
PCFG-reduction technique presented in Goodman
(1998) since that heuristic only works for Tree-
DOP and is beneficial only if all subtrees are
taken into account and if the so-called "labeled
recall parse" is computed). A Viterbi n best search

for LFG-DOP estimates the most probable
analysis by computing n most probable
derivations, and by then summing up the
probabilities of the valid derivations that produce
the same analysis. The algorithm for computing n
most probable derivations follows straight-
forwardly from the algorithm which computes the
most probable derivation by means of Viterbi
optimization (see e.g. Sima'an 1999).

5  Experimental Evaluation
We derived some experimental properties of
LFG-DOP by studying its behavior on the two
LFG-annotated corpora that are currently
available: the Verbmobil corpus and the
Homecentre corpus. Both corpora were annotated
at Xerox PARC. They contain packed LFG-
representations (Maxwell & Kaplan 1991) of the
grammatical parses of each sentence together with
an indication which of these parses is the correct
one. For our experiments we only used the correct
parses of each sentence resulting in 540
Verbmobil parses and 980 Homecentre parses.
Each corpus was divided into a 90% training set
and a 10% test set. This division was random
except for one constraint: that all the words in the
test set actually occurred in the training set. The
sentences from the test set were parsed and
disambiguated by means of the fragments from
the training set. Due to memory limitations, we
restricted the maximum depth of the indexed
subtrees to 4. Because of the small size of the
corpora we averaged our results on 10 different
training/test set splits. Besides an exact match
accuracy metric, we also used a more fine-grained
score based on the well-known PARSEVAL
metrics that evaluate phrase-structure trees (Black
et al. 1991). The PARSEVAL metrics compare a
proposed parse P with the corresponding correct
treebank parse T as follows:

Precision = 
 # correct constituents in P

# constituents in P  

 # correct constituents in P

# constituents in T 
Recall =  



A constituent in P is correct if there exists a
constituent in T of the same label that spans the
same words and that φ-corresponds to the same
f-structure unit (see Bod 2000c for some
illustrations of these metrics for LFG-DOP).

5.1 Comparing the two fragment estimators
We were first interested in comparing the
performance of the simple RF estimator against
the discounted RF estimator. Furthermore, we
want to study the contribution of generalized
fragments to the parse accuracy. We therefore
created for each training set two sets of fragments:
one which contains all fragments (up to depth 4)
and one which excludes the generalized fragments
as generated by Discard. The exclusion of these
Discard-generated fragments means that all
probability mass goes to the fragments generated
by Root and Frontier in which case the two
estimators are equivalent. The following two
tables present the results of our experiments
where +Discard refers to the full set of fragments
and −Discard refers to the fragment set without
Discard-generated fragments.

              Exact Match         Precision   Recall
+Discard  −Discard +Discard  −Discard +Discard  −Discard

Simple RF 1.1%       35.2% 13.8%        76.0% 11.5%       74.9%

35.9%        35.2% 77.5%        76.0% 76.4%       74.9%Discounted RF

Estimator

Table 1. Experimental results on the Verbmobil

              Exact Match         Precision   Recall
+Discard  −Discard +Discard  −Discard +Discard  −Discard

2.7%       37.9% 17.1%        77.8% 15.5%       77.2%

38.4%        37.9% 80.0%        77.8% 78.6%       77.2%

Simple RF

Discounted RF

Estimator

Table 2. Experimental results on the Homecentre

The tables show that the simple RF estimator
scores extremely bad if all fragments are used: the
exact match is only 1.1% on the Verbmobil
corpus and 2.7% on the Homecentre corpus,
whereas the discounted RF estimator scores
respectively 35.9% and 38.4% on these corpora.

Also the more fine-grained precision and recall
scores obtained with the simple RF estimator are
quite low: e.g. 13.8% and 11.5% on the
Verbmobil corpus, where the discounted RF
estimator obtains 77.5% and 76.4%. Interestingly,
the accuracy of the simple RF estimator is much
higher if Discard-generated fragments are
excluded. This suggests that treating generalized
fragments probabilistically in the same way as
ungeneralized fragments is harmful.

The tables also show that the inclusion of
Discard-generated fragments leads only to a
slight accuracy increase under the discounted RF
estimator. Unfortunately, according to paired t -
testing only the differences for the precision
scores on the Homecentre corpus were
statistically significant.

5.2 Comparing different fragment sizes
We were also interested in the impact of fragment
size on the parse accuracy. We therefore
performed a series of experiments where the
fragment set is restricted to fragments of a certain
maximum depth (where the depth of a fragment
is defined as the longest path from root to leaf of
its c-structure unit). We used the same
training/test set splits as in the previous
experiments and used both ungeneralized and
generalized fragments together with the
discounted RF estimator.

Fragment Depth Exact Match Precision Recall

1 30.6% 74.2% 72.2%
≤2 34.1% 76.2% 74.5%
≤3 35.6% 76.8% 75.9%
≤4 35.9% 77.5% 76.4%

Table 3. Accuracies on the Verbmobil

Fragment Depth Exact Match Precision Recall

1 31.3% 75.0% 71.5%
≤2 36.3% 77.1% 74.7%
≤3 37.8% 77.8% 76.1%
≤4 38.4% 80.0% 78.6%

Table 4. Accuracies on the Homecentre



Tables 3 and 4 show that there is a consistent
increase in parse accuracy for all metrics if larger
fragments are included, but that the increase itself
decreases. This phenomenon is also known as the
DOP hypothesis (Bod 1998), and has been
confirmed for Tree-DOP on the ATIS, OVIS and
Wall Street Journal treebanks (see Bod 1993,
1998, 1999, 2000a; Sima'an 1999; Bonnema et al.
1997; Hoogweg 2000). The current result thus
extends the validity of the DOP hypothesis to
LFG annotations. We do not yet know whether
the accuracy continues to increase if even larger
fragments are included (for Tree-DOP it has been
shown that the accuracy decreases after a certain
depth, probably due to overfitting -- cf. Bonnema
et al. 1997; Bod 2000a).

5.3 Comparing LFG-DOP to Tree-DOP
In the following experiment, we are interested in
the impact of functional structures on predicting
the correct tree structures. We therefore removed
all f-structure units from the fragments, thus
yielding a Tree-DOP model, and compared the
results against the full LFG-DOP model (using
the discounted RF estimator and all fragments up
to depth 4). We evaluated the parse accuracy on
the tree structures only, using exact match
together with the standard PARSEVAL
measures. We used the same training/test set
splits as in the previous experiments.

        Exact Match   Precision   Recall

Tree-DOP     46.6%     88.9% 86.7%

LFG-DOP     50.8%     90.3%         88.4%

Model

Table 5. Tree accuracy on the Verbmobil

        Exact Match   Precision   Recall

Tree-DOP     49.0%     93.4% 92.1%

LFG-DOP     53.2%     95.8%         94.7%

Model

Table 6. Tree accuracy on the Homecentre

The results indicate that LFG-DOP's functional
structures help to improve the parse accuracy of

tree structures. In other words, LFG-DOP
outperforms Tree-DOP if evaluated on tree
structures only. According to paired t-tests all
differences in accuracy were statistically
significant. This result is promising since Tree-
DOP has been shown to obtain state-of-the-art
performance on the Wall Street Journal corpus
(see Bod 2000a).

5.4 Comparing Viterbi n  best to Monte Carlo
Finally, we were interested in comparing an
alternative, more efficient search method for
estimating the most probable analysis. In the
following set of experiments we use a Viterbi n
best search heuristic (as explained in section 4),
and let n range from 1 to 10,000 derivations. We
also compute the results obtained by Monte Carlo
for the same number of derivations. We used the
same training/test set splits as in the previous
experiments and used both ungeneralized and
generalized fragments up to depth 4 together with
the discounted RF estimator.

Nr. of derivations Viterbi n best Monte Carlo

1 74.8% 20.1%
10 75.3% 36.7%
100 77.5% 67.0%
1,000 77.5% 77.1%
10,000 77.5% 77.5%

Table 7. Precision on the Verbmobil

Nr. of derivations Viterbi n best Monte Carlo

1 75.6% 25.6%
10 76.2% 44.3%
100 79.1% 74.6%
1,000 79.8% 79.1%
10,000 79.8% 80.0%

Table 8. Precision on the Homecentre

The tables show that Viterbi n best already
achieves a maximum accuracy at 100 derivations
(at least on the Verbmobil corpus) while Monte
Carlo needs a much larger number of derivations
to obtain these results. On the Homecentre
corpus, Monte Carlo slightly outperforms Viterbi
n best at 10,000 derivations, but these differences



are not statistically significant. Also remarkable
are the relatively high results obtained with Viterbi
n best if only one derivation is used. This score
corresponds to the analysis generated by the most
probable (valid) derivation. Thus Viterbi n best is
a promising alternative to Monte Carlo resulting
in a speed up of about two orders of magnitude.

6  Conclusion
We presented a parser which analyzes new input
by probabilistically combining fragments from
LFG-annotated corpora into new analyses. We
have seen that the parse accuracy increased with
increasing fragment size, and that LFG's
functional structures contribute to significantly
higher parse accuracy on tree structures. We
tested two search techniques for the most
probable analysis, Viterbi n best and Monte Carlo.
While these two techniques achieved about the
same accuracy, Viterbi n best was about 100
times faster than Monte Carlo.
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