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Abstract

In this paper, a memory-based pars-
ing method is extended for han-
dling compositional structures. The
method is oriented for learning to
parse any selected subset of target
syntactic structures. It is local, yet
can handle also compositional struc-
tures. Parts of speech as well as em-
bedded instances are being used si-
multaneously. The output is a par-
tial parse in which instances of the
target structures are marked.

1 Introduction

A variety of statistical methods were pro-
posed over the recent years for learning
to produce a full parse of free-text sen-
tences (e.g., Bod (1992), Magerman (1995),
Collins (1997), Ratnaparkhi (1997), and
Sekine (1998)). In parallel, a lot of work is
being done on shallow parsing (Abney, 1991;
Greffenstette, 1993), focusing on partial
analysis of sentences at the level of local
phrases and the relations between them.

Shallow parsing tasks are often formu-
lated as dividing the sentence into non-
overlapping sequences of syntactic struc-
a task called Most
of the chunking works have concentrated
on noun-phrases (NPs, e.g. Church (1988),
Ramshaw and Marcus (1995), Cardie and
(1998), Veenstra (1998)). Other
chunking tasks involve recognizing subject-
verb (SV) and verb-object (VO) pairs (Arga-
mon et al., 1999; Munoz et al., 1999).

tures, chunking.

Pierce

The output of shallow parsers is useful
where a complete parse tree is not required
(e.g., classification, summarization, bilingual
alignment). The complexity of training full
parsing algorithms may therefore be avoided
in such tasks. On the other hand, full pars-
ing has the advantages of producing composi-
tional structures, finding multiple structures
simultaneously, and using sub-structures for
inference about higher-level ones. While shal-
low systems typically make use of single-word
data, a full parser can use higher-level struc-
tures in a compositional manner, e.g., a NP
for identifying a VP, or a conjunction of NPs
in order to identify a longer NP.

A partial parser is typically concerned only
with a small number of target syntactic pat-
terns, and may therefore require less train-
That would not be the
case when evaluating a full parser on selected

ing information.

target patterns, because its training mate-
rial would still include full parse-trees labeled
with other patterns as well.

The approach presented here, of trainable
partial parsing, attempts to reduce the gap
between shallow and full parsing. It is an ex-
tension of shallow parsing towards handling
composite and multiple patterns, while main-
taining the local nature of the task, and sim-
plicity of training material.

One approach to partial parsing was pre-
sented by Buchholz et al. (1999), who ex-
tended a shallow-parsing technique to partial
parsing. The output of NP and VP chunk-
ing was used as an input to grammatical rela-
tion inference. The inferences process is cas-
caded, and a clear improvement was obtained
by passing results across cascades.



Another approach for partial parsing
was presented by Skut and Brants (1998).
Their method is an extension of that of
Church (1988) for finding NP’s, achieved by
extending the feature space to include struc-
tural information. Processing goes simultane-
ously for structures at all levels, from left to
right. Since there are no cascades, the struc-
tural level of the output is limited by that of
the feature set.

This paper presents an extension of the
algorithm of Argamon et al. (1998, 1999,
hereafter MBSL), which handles and ex-
ploits compositional structures. MBSL is a
memory-based algorithm that uses raw-data
segments for learning chunks. It works with
POS tags, and combines segments of various
lengths in order to decide whether part of the
sentence may be an instance of a target pat-
tern. As a memory-based algorithm, it does
not abstract over the data during training,
but makes the necessary abstractions during
inference - for each particular instance.

In extending MBSL, which is a flat method,
we have kept the structure of the inference
This pa-

per describes the extended version in a self-

mechanism and its local nature.

contained manner, while elaborating mostly
on the extensions needed to handle composi-
tional cases. Section 2 describes the partial
parser. Results for NP and VP are presented
in Sec. 3, followed by a short discussion in
Sec. 4.

2 Algorithm

The training phase receives a list of target
types of syntactic patterns that need to be
identified (e.g., NP and VP), and a training
corpus in which target pattern instances are
marked with labeled brackets. It then stores
raw-data statistics about these instances in a
memory data structure. The parsing phase
receives a sentence to be parsed and identi-
fies instances of the target patterns based on
the information stored in the memory. In the
remainder of the paper we mostly adopt the

terminology of the flat version.

2.1 An Illustrating Example

Suppose the training data contains the sen-
tences as in Fig. 1, and the sentence to be
parsed is:

NN CC NN RB VBZ DT JJ NN
1 2 3 4 b5 6 7 8 9

and consider the task of finding VPs.

Every range of words in the sentence is con-
sidered a candidate for being a VP. The flat
MBSL algorithm tries to support that hy-
pothesis by matching POS subsequences of
the candidate (and possibly some of its sur-
rounding context) with subsequences of VPs
that appeared in the training corpus. These
subsequences, called tiles, should contain at
least one VP boundary bracket.

In the example above, consider the range
of words 4-8 as a candidate VP. That POS
sequence does not appear as a complete VP
in training, but some of its tiles do appear
and can provide supporting evidence. The tile
“[VP RB VBZ” provides a positive evidence
because the only appearance of “RB VBZ” is
at the beginning of a VP. On the other hand,
“NN [VP” provides a weaker evidence because
“NN” appears twice before a VP but three
times in other positions. Accordingly, each
tile has a positive count (pos_count), specify-
ing the number of times the POS sequence ap-
peared in training at the same position within
the VP as it appears within the candidate,
and a negative count (neg-count), specifying
the number of times the sequence appeared in
other positions. For “[VP RB VBZ” we have
pos_count = 1 and neg_count = 0, while for
“NN [VP” pos_count = 2 and neg_count = 3.

Tiles in the flat version are comprised of
POS sequences only. The compositional al-
gorithm considers also embedded structures,
hence a tile may accordingly include also pat-
tern labels that stand for a complete pattern
instance (typically a phrase).

Some of the VP tiles used by the composi-
tional algorithm are presented in Fig. 2. Tiles
1-5 are composed of POS only, and can be
used by the flat version too. Among these
tiles, Tiles 2 and 3 provide evidence for the
range 4-8 being a VP because together they



1. [NP NNS NP] [VP RB VBZ IN [NP JJ NNS NP] VP]
. [NP DT JJ NN NN NP] [VP VBZ [NP DT NN NP] VP]
3. [NP DT JJ JJ NN NP] [VP VBZ [NP DT JJ NN NP] VP]

Figure 1: An example training data

1 NN [VP

2. [VP RB VBZ

3. VBZ DT JJ NN VP]
4. NN VP]
5. NN VP]
6. [VP RB VBZ NP VP]
7. VBZ NP VP]
8. NP VP]

pos neg
2 3
1 0
1 0
2 3
2 0
1 0
2 0
3 6

Figure 2: Some of the VP tiles derived from the data in Fig. 1

cover the whole range. Assuming the inner
NP was detected, tiles 6-8 reflect the its pres-
ence within the composite VP. Tile 6 alone
already provides a positive evidence for the
entire VP, as it covers the whole range of the
candidate words. Note that the flat version
had to rely on Tile 3, originally from Sentence
3, in order to collect supporting evidence
that covers the whole range of the candidates
words. The composite algorithm could pro-
duce the evidence without this sentence, by
realizing the compositional evidence.

2.2 Data Structures and Definitions

Each sentence is represented by a sentence
graph: the nodes of the graph correspond to
positions between the sentence words, and the
edges correspond to either POS tags or pat-
tern instances. Figure 3 shows a sentence
graph for the example given above.

We now define the tiles of a pattern in-
stance in terms of the sentence graph. De-
note by ConLen the maximal length consid-
ered for the preceding and following contexts
of the given instance, and let 2 and 7 be the
starting and ending positions of the instance
(e.g., 4 and 9 for the VP in Figure 3). In
these terms, a tile ¢ of the given instance is a
path in the sentence graph that satisfies the
following conditions:

1. t is embedded within the range of nodes

t — ConLen to j + ConLen; that is, the
tile is embedded within the pattern in-
stance and its context.

2. t includes at least one of the instance
boundary nodes ¢, 7, which correspond to
the boundary brackets (e.g., [NP, NP]).

3. An edge of t that corresponds to a pat-
tern instance (rather than to a POS)
must be fully embedded within the range
of the instance itself (nodes 7 through j).

2.3 Memory Structure

As illustrated in Section 2.1, the algorithm
uses the training corpus statistics, pos_count
and total_count for every tile it encounters.
The memory encodes these statistics in a trie
data structure: each path from the root of the
trie to a certain node corresponds to a tile,
storing the tile statistics in the corresponding
node. The arc labels along the path are the
POS, instance types and labeled brackets of
the corresponding pattern. Tiles of candidate
instances can be retrieved from the memory
during parsing by following the corresponding
path in the trie. The trie is created during the
training phase by constructing the sentence
graph for each sentence and generating all the
tiles for each pattern instance.



NP

VP

NP

1 2 3 4 5 6 7 8 9
.START NN CC NN RB VBZ DT JJ NN

10 11
. END

Figure 3: A sample sentence graph with context symbols, the target patterns are NP and VP

2.4 Algorithm Outline

The partial parsing algorithm receives an in-
put sentence, represented by a POS sequence,
and labels of the target patterns. It first con-
structs a sentence graph consisting of only
POS edges and then performs the following
two steps:

1. Scoring candidate instances: The al-
gorithm considers each subsequence of
the sentence as a candidate for each of the
target pattern types and assigns a candi-
date score. Candidates with a positive

score are added to the sentence graph.

Candidates are considered in order of in-
creasing length. This way, when scoring
a certain candidate, shorter pattern in-
stances that might be considered as em-
bedded patterns are already represented
in the sentence graph, and contribute to
tiles and scoring.

2. Resolving candidate conflicts: Af-
ter the first step, some of the candidate
instances may be conflicting with each
other (crossing edges in the graph). This
step resolves such conflicts using the sim-
ple constraint propagation scheme used
by the flat MBSL method: candidates
are approved in order of decreasing score,
while eliminating all candidates that con-
flict with previously approved ones.

The following subsection describes the core
part of the algorithm, scoring a candidate.

2.5 Computing Candidate Score

Given a hypothesized candidate for a certain
pattern type, spanning between positions 7
and j, the algorithm searches for all tiles of

This is

the candidate in the memory trie.

done by traversing the sentence graph from
each possible starting position for the candi-
date tiles, using a DFS-like search. Whenever
an edge is traversed in the sentence graph, the
corresponding edge, if available, is traversed
also in the trie to fetch the statistics of the
corresponding tile.

The algorithm computes the following score
function for each tile found in the trie :

pos_count(t)

t) = .
fr(2) pos_count(t) + neg_count(t)

Tiles satisfying

fr(t) > or,

where 07 is a pre-specified threshold, are con-
sidered as supporting evidence for the candi-
date and contribute to its score.

Once all supporting tiles are found, the al-
gorithm tries to use them for covering the en-
tire candidate. Tile information is stored in a
cover graph, as in the flat version, to facilitate
efficient scoring. A cover for a candidate is a
set of tiles such that:

e each word of the candidate is contained
in at least one tile,

e no tile contains another tile entirely.

Often, a number of covers can be created from
a set of tiles, each may contain overlapping
tiles or tiles which cover different parts of the
context.

The scoring function uses the following
quantities for a given candidate c:

e The ratio of grand-total positive to
grand-total positive+negative counts of
tiles in all the covers, totalratio(c),



e The total number of different covers,
num(c),

e The length
minsize(c),

of the shortest cover,

e The maximum amount of total context
in any cover (left plus right context),
maxcontext(c), and

e The maximum over all covers of the total
number of tile elements that overlap be-
tween connecting tiles, maxoverlap(c).

The score of the candidate is a linear func-
tion of its cover statistics:

fc(e) = oqtotalratio(c) + a2 num(c)
—ag minsize(c)
+a4 maxcontext(c)

+as maxoverlap(c)

If candidate ¢ has no covers, f¢(c) = 0. Note
that minsize is weighted negatively, since a
cover with fewer tiles provides stronger evi-
dence for the candidate.

The weights in the current implementation
were chosen so as to give a lexicographic or-
dering on the features, preferring first can-
didates with a higher grand-total ratio, then
according to the following order: candidates
with more covers, with covers containing
fewer tiles, with larger covered contexts, and
when all else is equal, candidates whose covers
have more overlap between connecting tiles.

The flat version used a similar function
without using totalratio, hence num was the
most important quantity. In the composite
case, inner instances increase the number of
possible covers to the extent that it no longer
becomes a good measure of reliability (at least
not at face value).

3 Evaluation

The system was trained on the Penn Tree-
bank (Marcus et al., 1993) WSJ Sections 2-
21 and tested on Section 23 (Table 1), same
as used by Magerman (1995), Collins (1997),
and Ratnaparkhi (1997), and became a com-
mon testbed.

The tasks were selected so as to demon-
strate the benefit of using internal structure

Train Data, WSJ 02-21, 28884 sentences

base | composite | base:all
NP | 166242 61384 73%
VP | 43377 28017 61%
Test Data, WSJ 23, 2416 sentences

base | composite | base:all
NP | 13524 5106 73%
VP | 3496 2267 61%

Table 1: Sizes of training and test data, note
the similar proportions of base instances

data for learning composite structures. We
have studied the effect of noun-phrase infor-
mation on learning verb phrases by setting
limits on the number of embedded instances,
Tlemb 101 @ tile. A limit of zero emulates the flat
version since learning takes place from POS
tags only. The final output, however, may in-
clude embedded instances since instances may
be composite. Results indicate that nemp > 0
allows for NP information to contribute to VP
learning.

A minimal context of one word and up to
two words on each side was used, and tile
threshold was set to 87 = 0.6 following results
of the flat version. A minimal context was
not necessary in the flat version, but here the
additional evidence from embedded instances
gives rise to more precision errors - a phe-
nomenon compensated by setting a minimal
context. The maximal tile length was set to 5;
higher values gave a very small improvement
which did not justify the additional memory.

Table 2 presents results for simultaneous
NP and VP learning, and for learning VP
without NP. For ngy,, = 0, NPs do not con-
tribute to inference; the small performance
difference results from NP influence on con-
flict resolution. The effect of NPs is clearly
visible when nep,p, = 1 is allowed, yielding 24%
more recall and an improvement of 10% in Fj.

For NPs only (Table 3), allowing embedded
instances improved the recall in expense of
precision. We have experimented with seper-

ating NPs from base-NPs !. As Table 3 shows,

'when scoring non-recursive patterns, num was
the leading quantity and totalratio the second, based
on flat-version experience



seperating the tasks improved the overall pre-
cision for NPs. When nemp = 0, there was a
2.5% recall decrease, whereas when neyp = 1,
The ef-

fect of modeling the internal NP structure

the recall decrease was only 0.4%.

(nemb = 1) clearly shows for composite NP’s.
The table also shows that VP information in
did not have a significant impact on NP learn-

ing.
max. | rec. | prec. | Fpg
Tlemb
VP only 0 47.1 | 76.2 | 58.2
VP only 1 58.9 | 62.8 | 60.7
VP with NP 0 45.4 | 77.4 | 57.2
VP with NP 1 82.6 | 61.5 | 70.5

Table 2: VP Results, 87 = 0.6, tile length< 5

max. | rec. | prec. | Fpg

Tlemb
NP only 0 81.8 | 76.8 | 79.2
1 87.6 | 65.8 | 75.2
NP with VP 0 81.7 | 77.1 | 79.3
1 86.0 | 66.0 | 74.7
base NP 0 93.4 | 93.6 | 93.5
composite 42.0 | 67.1 | 51.7
all NP 79.3 | 88.5 | 83.7
base NP 1 93.2 | 93.5 | 93.3
composite 71.4 | 49.0 | 58.1
all NP 87.2 | 77.7 | 82.2

| NP (TKS99) | | 76.1 | 91.3 | 83.0 |

Table 3: NP Results, 87 = 0.6, tile length< 5.
Rows 5-10 refer to experiments where base-
NPs were distinguished from composite ones.

There are currently no other partial parsers
on these tasks to compare the combined VP
and NP results to. Tjong Kim Sang (1999)
presented result for composite NP, obtained
by repeated cascading, similar to our results
with seperate base and composite NPs and no
internal structure. Our results are lower than
those of full parsers, e.g., Collins (1997) — as
might be expected since much less structural
data, and no lexical data are being used.

4 Discussion

We have presented a memory-based learning
method for partial parsing which can handle
and exploit compositional information. Like
other shallow-parsing systems, it is most use-
ful when the number of target patterns is
small. In particular, the method does not re-
quire fully-parsed sentences as training, un-
like trainable full parsing methods.

The training material has to contain only
bracketing of the target patterns, implying
much simpler training material when the
parsing task is limited. This and similar
methods are, accordingly, attractive in cases
where a fully parsed corpus is not available for
training, or when a full parse is not necessary
for handling the problem.

Scha et al. (1999) provide a thorough com-
parison of the flat MBSL method with DOP.
Considering POS data only, the composi-
tional method resembles the DOP1 model in
that it uses sub-constituent information in
order to construct evidence for higher-level
structures. There are, however, some differ-
ences:

e Consider the input [VP A [NP B C NP]
VP]. In DOP, B and C will be leaves in the
tree whose root is NP, and will contribute
to VP via that inner NP. In MBSL, these
tags will participate in NP tiles as well as
in VP tiles. That is, VP would be consid-
ered as comprised of [ A NP ] as well as
[ABCI.

e Even supposing B and C do not contribute
to evidence for VP, the MBSL score of VP
will be calculated with NP regarded as a
terminal. That is, the internal structure
and score of NP is not taken into account.
In DOP, the probability of the VP node
would be calculated from that of its con-
stituents.

e The scoring process of DOP is based on a
statistical model, whereas in MBSL, it is
based on properties calculated from the
cover graph.

e In MBSL it is possible to specify if tiles
of a composite instance will be created



bottom-up or top-down, and limit the
level. This can be useful in highly-nested
instances, where going all the way top-
down will create a lot of tiles.

e DOP can be naturally formulated to al-
low for wildcards, as in the DOP3 model,
by allowing some of the leaves to be un-

Allowing wildcards in MBSL

would be more complicated because it re-

known.

lies on tiling of continuous sequences.

A property both methods share is that they
will work harder when there is plenty of ev-
This

contradicts the intuition that more ’straight-

idence for a candidate (Sima’an, p.c.).

forward’ candidates would be identified faster.
We plan to tackle this problem in the future.

Another related algorithm was presented
by Sekine and Grishman (1995, Apple Pie
Parser) and Sekine (1998). The algorithm
extracts grammar rules with S and NP (and
possibly other structures) as non-terminals.
Both Apple Pie (hereafter APP) and MBSL
use raw-data examples for parsing, and can be
restricted to specified target non-terminals or
patterns. The differences lie in:

e MBSL recombines fragments of instances
for generalizations, while APP uses rules
derived from complete instances.

e The grammar rules of APP do not in-
clude context, which is taken into ac-
count when generating the non-terminal
S. In MBSL, the context is consulted for
each instance candidate.

e APP, like DOP, uses a probabilistic
model. The probability of a grammar
rule X + Y is Freq(X < y)/Freq(X). Anal-

ogously, the denominator in MBSL would
be Freq(Y).

The presented method concerns primarily
with phrases, which can be represented by a
tree structure. It is not aimed at handling
dependencies, which require heavy use of lex-
ical information (Hindle and Rooth, 1993, for
PP attachment). As (Daelemans et al., 1999)

show, lexical information improves on NP and

VP chunking as well. Since our method uses
raw data, representing lexical entries will re-
quire a lot of memory.

In a future work, we plan to use the system
for providing instance candidates, and disam-
biguate them using an algorithm more suit-
able for handling lexical information. An ad-
ditional possibility is to use word-types, such
as a special tag for be-verbs, or for preposi-
tions like 'of’” which attaches mainly to nouns
(Sekine and Grishman, 1995).

In a similar vain to Skut and Brants (1998)
and Buchholz et al. (1999), the method ex-
tends an existing flat shallow-parsing method
It yields a
significant improvement over the flat method,

to handle composite structures.

especially for long and more complex struc-
tures. As can be expected, the performance
of the partial method is still lower than that of
full parsers, which exploit (and require) much
richer information. The results of this line of
research enrich the space of alternative pars-
ing approaches, aiming to reduce the gap be-
tween shallow and full parsing.
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