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Abstract

In this paper we discuss the use
of cascaded finite state transducers
for machine translation. A num-
ber of small, dedicated transducers
is applied to convert sentence pairs
from a bilingual corpus into gener-
alized translation patterns. These
patterns, together with the trans-
ducers are then used as a hierarchi-
cal translation memory for fully au-
tomatic translation. Results on the
German-English VERBMOBIL cor-
pus are given.

1 Introduction

Corpus based approaches to automatic trans-
lation come in a number of different flavors.
In the simplest form, translations are stored
and reused for the translation of new input.
This approach, known as translation memory,
example-based or case-based translation, can
work on the word level as well as on structured
examples as they are generated during anal-
ysis and generation in more grammar-based
translation paradigms (Kitano, 1993; Brown,
1996).

Finite state transducers, which can be
learned from bilingual corpora, have been
proposed for automatic translation (Amen-
gual et al., 2000), as have been bilingual
stochastic grammars (Wu, 1996). Statistical
approaches (Wang and Waibel, 1997; Och et
al., 1999) also fall into the category of corpus
based approaches.

In this paper, a translation method is pro-
posed which is based on the very same princi-

ples as the aforementioned approaches. One
difference is, that not a fully automatic train-
ing of the translation model is performed.
Rather, a number of special purpose trans-
ducers are hand-crafted and used then at two
points. First, to convert the bilingual train-
ing corpus into a translation memory contain-
ing translation patterns rather than merely
sentence pairs, and which is itself used as a
transducer in the translation process. Second,
when new sentences are to be translated, the
transducers are applied to transform the in-
put sentence into one or many possible target
sentences the best of which, according to some
scoring scheme, is selected as the translation.
In the next section, the construction of the
transducers and the translation memory is
outlined. Then, the application of the trans-
ducers for the translation of new sentences is
described. In the last section the results of
some translation experiments are given.

2 The Transducers

2.1 Overview

A finite state transducer (FST) is a finite
state device which reads symbols from one
channel and outputs a stream of symbols to a
second channel. So, a FST can be depicted as
a transition net with edges and nodes, where
the nodes represent the states and the edges
the possible state transitions. The edges are
labelled with an input symbol and an output
string, which may be the empty words of the
two vocabularies. The final states can pro-
duce additional output.

We want to construct transducers for auto-
matic machine translation from a given bilin-
gual corpus. In fact, a collection of sentence



pairs can be viewed as a trivial transducer,
where each sentence pair is represented by a
distinct line of nodes connected by edges la-
beled with the source sentence words and the
target sentence emitted from the final state.
This can be easily transformed into a tree
transducer by building a prefix tree over the
source sentences.

In (Amengual et al., 2000) a method is
given to propagate prefixes of the transla-
tions towards the root of such a tree trans-
ducer and to coalesce states to gain gener-
alization power. We choose here a different
route to generalization by using an approach
similar to the one used for chunk parsing,
where a cascade of FST is applied (Abney,
1997). Each transducer, defined by a set of
regular-expression patterns, reads part of the
input sentence and writes a stream of cate-
gory labels, which form, together with the un-
analyzed parts of the sentence, the input to
the next transducer in the cascade.

Our approach differs from the aforemen-
tioned chunk parsing in that an analyzed se-
quence of words is not replaced by the cat-
egory label but is kept as a parallel option
for transducers applied at a later stage. How
this leads to the construction of a translation
graph will be explained in Section 3.

For translation, not only the analysis of the
source sentence is required but also the gen-
eration of the target sentence. This can be
achieved if the transducers write category la-
bels as well as translations to the output chan-
nel.

We allow for more than one translation for
a given input sequence. This raises the ques-
tion of how to select one translation over the
others. Some kind of scoring is required, a
point we will return to in section 2.3.

To summarize: each transducer is given as
a set of quadruples of the form: [label #
source pattern # target pattern # score]. At
runtime these patterns are stored in a pre-
fix tree with respect to the source patterns.
We write the labels at first position as these
translations patterns can be used in the re-
verse direction, i.e. from target language to
source language. In section 2.4 this property

is used to convert a bilingual corpus into a
set of translation patterns which are formu-
lated in terms of words and category labels.
It also shows the structural identity to bilin-
gual grammars as used in (Wu, 1996).

2.2 Construction of the Transducers

Most of the transducers are customized to-
wards the domain for which the translation
system is developed. In the VERBMOBIL
Corpus, which is used for the experiments,
time and date expressions are very promi-
nent. To translate those expressions, a small
grammar has been developed and coded as
finite state transducer. Actually, two trans-
ducers are used. On the first level, words
are replaced by labels, like DAYOFWEEK
= {Montag/Monday, Dienstag/Tuesday, ...}.
On the second level, these labels together with
labeled numbers (ordinal, cardinal, fractions)
from the number transducer are used to form
complex time and date expressions. Some ex-
amples are given in Table 1.

All in all we use currently seven of
those dedicated transducers: names (persons,
towns, places, events, etc), spelling sequences
(e.g. ‘D A double L’), numbers (ordinal, car-
dinal, fractions, etc.), simple time and date
expressions, compound time and date expres-
sions, part-of-speech tagging, grammar (noun
phrases, verb phrases). The relationship be-
tween these different transducers is depicted
in figure 1. The arrows indicate that category
labels introduces by one transducer are used
by another transducer.

The division into these transducers is
mainly a conceptual one. The five base level
transducers could be coalesced into one trans-
ducer. Actually, this is done at runtime for
efficiency. However, to keep them appart at
construction time gives more flexibility. For
example, while for a closed vocabulary in a
speech translation task these transducers boil
down to simple substitution list an open vo-
cabulary task will require a more elaborate
approach to proper name spotting or handling
of numbers.

The part-of-speech transducer has been
constructed semi-automatically. A tagger was



Table 1: Compound date translation patterns.

Figure 1: Hierarchy of transducers.

used to get a word — POS tag list. This
was combined with an automatically gener-
ated translation lexicon (Och et al., 1999) to
produce a list of label — word — translation
patterns. This was then manually corrected
and augmented where necessary.

Ideally, one would like to have a common
tagset for both source and target language.
If this is not available an alternative is to
use a tagset for one language and induce via
the word to word correspondences a tagging
for the second language. This is the ap-
proach taken in this study. As tagset we
use the Stuttgart-Tiubinger tagset for German
(Schiller et al., 1995).

Finally, a small bilingual grammar based
on POS tags has been crafted manually. The
purpose of the grammar is twofold: First, im-
proving generalization by recognizing simple
noun and prepositional phrases. Second, to
handle the different word ordering in source
and target language, especially in the verb
phrases.

TIME # um NUM_ORD Uhr # at NUM_ORD o’clock # -0.7
PERIOD  # NUM_CARD bis NUM_CARD # NUM_CARD till NUM_CARD # -0.7
PERIOD  # NUM_ORD Monate lang # for NUM_ORD months # -3.0
DATE_ DAY # am DAY _OF _WEEK # on DAY_OF_WEEK # -2
DATE # in der NUM_CARD Woche # in the NUM_CARD week # -0.7
DATE # Anfang MONTH # beginning of MONTH # -0.7
DATE # DATE bis zum DATE # from DATE till DATE # -0.7
Nane 2.3 Scoring
The scores attached to the translation pat-
Spel | terns can be viewed as a kind of transla-
tion scores. In the current implementation
a rather crude heuristics together with some
Nunber manual tuning in the grammar transducer is
applied. The idea is to give preference to
Si npl e longer translation patterns as they take more
Dat e context into account and encode word re-
ordering in an explicit manner. So, for simple
PCS- Tags and compound translation patterns the score

is exponential to the length of the source pat-
tern. The scores are negative by convention:
not translating a word gives zero cost, trans-
lating it gives a benefit, i.e. negative costs.

2.4 Bilingual Labeling

The sentence pairs in the bilingual training
corpus could be used directly as a simple
translation memory. However, to improve
the coverage on unseen data, these segments
are transformed into translation patterns con-
taining category labels. For each transducer
taken from the complete cascade — as given
in Figure 1 — the transducers are applied to
both, the source and the target sentences
of the bilingual training corpus (Vogel and
Ney, 2000). Those sentence pairs where num-
ber and types of category labels in source
and target sentence match each other are se-
lected into the database of compound trans-
lation patterns. Table 2 shows examples of
some translation patterns which resulted from
bilingual labeling.

3 The Translation Process

The working of the transducers is best de-
scribed as the construction of a translation



Table 2: Compound translation patterns.

CTP # DATE ginge es wieder

CTP # NP dauert DATE
CTP # nehmen PPER NP DATE

# DATE it is possible again
CTP # NAME SURNAME am Apparat # this is NAME SURNAME speaking # -4.6
# NP takes DATE

# let PPER take NP DATE

# 4.6

#-3.3
4 -4.6

graph. That is to say, the sentence to be
translated is viewed as a graph which is tra-
versed from left to right. For each matching
source pattern, as stored in the transducers,
a new edge is added to the graph. The edge is
labeled with the category label of the transla-
tion pattern. The translation and the trans-
lation score are attached to the edge. In this
way a translation graph is constructed. In
those cases, where a source pattern has sev-
eral translations, one edge for each translation
is added to the graph. One advantage of this
approach is that it can be applied to perform
translation on word lattices as generated by
speech recognition systems without any mod-
ifications.

The left-right traversal of the graph is or-
ganized in such a way that all paths are tra-
versed in parallel and the patterns stored in
the transducer are matched synchronously.
For each node n and each edge e leading to
that node all patterns in the transducer start-
ing with the word or category label of e are
attached to m. This gives a number of hy-
potheses describing partially matching pat-
terns. Already started hypotheses are ex-
panded with the label of the edge running
from the previous node to the current node.

As an example, the translation graph for
the sentence ‘Samstag und Februar sind gut,
aber der vierte ware besser’ is shown in Fig-
ure 2. Actually, the graph is much bigger. In
the figure, only those edges are shown which
contributed to the construction of the best
path.

3.1 Error Tolerant Match

To improve the coverage on unseen test data,
it may be advantageous to allow for only ap-
proximative matching with the segments in
the translation memory. The idea is to apply

longer segments for syntactically better trans-
lations without losing too much as far as the
content of the sentences is concerned. We use
a weighted edit distance, i.e. each error (inser-
tion, deletion, substitution) is associated with
a score. Thereby, the deletion or insertion of
typical filler words can be allowed, whereas
the deletion or insertion of content words is
avoided.

Hypotheses with to high a matching er-
ror score are discarded. A threshold propor-
tional to the number of covered positions is
used. Thus, longer translation patterns can
be matched with more insertions, deletions
and substitutions. A drawback of this is, how-
ever, that for long patterns mismatches on
content words may occur.

Each transducer has its own list of inser-
tion, deletion and substiution scores. Ac-
tually, only for those transducers where the
translation patterns cover longer sequences
of words and labels do we use error tolerant
matching.

Error-tolerant matching may also help to
compensate for speech recognition errors in
the case of speech translations. In that case
the confusion matrix obtained by comparing
the recognizer output for the training speech
data with the transliteration can be used.

3.2 Using a Language Model

The application of the transducers to a given
source sentence yield a large number of tar-
get sentences. These are scored according to
the cumulative scores of the applied transla-
tion patterns. As an independent and direct
model of the likelihood of the target sentences
a language model is applied. We use a word-
based trigram language model (Sawaf et al.,
2000). The logarithm of the language model
probabilities is added to the transducer scores
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Figure 2: Translation example.

when the best path through the translation
graph is extracted. A scaling factor allows for
a bias on the effect of the language model.

4 Experiments and Results

In this section, we will give some results
obtained with the cascaded transducer ap-
proach. Experiments were performed on the
VERBMOBIL corpus. This corpus consists of
spontaneously spoken dialogs in the appoint-
ment scheduling domain (Wahlster, 2000). A
summary of the corpus used in the experi-
ments is given in Table 3. In Table 4 the sizes
of the special purpose transducers are given.

Table 3: Training and test conditions for the
VERBMOBIL task. The trigram perplexity
(PP) is given.

‘ ‘ German ‘ English ‘

Train Sentences 34465
Words 363514 | 383509
Voc. 6381 3766
Test  Sentences 147
Words 1968 2173
PP - 19.7

The sentences from the training corpus
were segmented into shorter segments using
sentence marks as breakpoints. This resulted
in 43609 bilingual phrases running form 1
word up to 82 words in length. The longest

Table 4: Size of the transducers.

‘ Transducer ‘ Patterns ‘
Names 442
Numbers 342
Spell 60
SimpleDate 161
CompoundDate 173
WordTags 6714
Grammar 124

phrases were discarded as it is very unlikely
that they will match other sentences. So,
for the construction of the translation pat-
terns only 40 000 sentence pairs were used, the
longest sentences containing sixteen source
words. Starting from those simple phrases,
successively more transducers were applied up
to the full cascade. A total of 15682 trans-
lation patterns containing one or more labels
resulted and nearly 4500 sentence pairs be-
came identical when words or word sequences
were replaced by labels.

For a test corpus consisting of 147 sen-
tences, the translations have been evalu-
ated according to two measures (Nieflen et
al., 2000): Multi-reference word error rate
(mWER): for each source sentence several
good translations are given. The word error
rate between the generated translation and
the closest reference is calculated. Subjective
sentence error rate (SSER): the translations



are evaluated by a human examiner using a
scale ranging from 0 to 10. The average of
these values is linearly transformed to give the
sentence error rate in percent.

4.1 Effect of Grammar

A simple translation memory without any
categorization gives insufficient coverage on
unseen test data. With the part-of-speech
transducer we get one or more translations
for each word in the vocabulary. But only
by applying transducers which handle longer
translation patterns is word reordering possi-
ble.

In Table 6 the results are given for differ-
ent combinations of transducers. The baseline
(T) is the combination of all special purpose
transducers (name, spell, number, date, word
tags) plus the simple translations patterns.
Then the grammar was added and finally the
compound translation patterns. The trigram
language model for the target language was
applied in selecting the best translation, but
no error tolerant matching was allowed.

Table 6: Effect of bilingual grammar on trans-
lation quality: T = POS-tagging, G = gram-
mar, C = compound translation patterns.

| Transducer | mWER[%] | SSER[%] |

T 41.2 25.8
TG 39.7 22.5
TGC 38.8 22.1

We observe a clear effect in word error rate
and subjective sentence error rate. The use of
the bilingual grammar, also very restricted,
improves translation quality. Applying the
compound translation patterns gives an ad-
ditional small improvement.

In Table 5 a simple and a more involved
example for the reordering effect of the bilin-
gual grammar are given. The first translation
pattern operates solely on the level of POS
tags whereas the second example generates a
hierarchical structure. We are not concerned
whether the source sentence parses are cor-
rect, good translations is what we are looking
for.

4.2 Effect of Language Model

The next experiment shows the effect of ap-
plying a language model for the target lan-
guage. A word-based trigram language model
was interpolated with the scores from the
transducers. In Table 7 the effect of the scal-
ing between the two models is shown.

There is a clear drop in the WER when
switching on the language model. This is due
to the fact, that several translation hypothe-
ses have the same score from the transducers.
So, it is rather by chance if the best transla-
tion for a given word is chosen. The language
model for the target language helps in doing
this.

Table 7: Effect of language model on word
error rate and subjective sentence error rate.

| LM Scale | mWER[%] | SSER[%] |

0.0 49.3 31.8
0.2 38.8 23.5
0.5 38.8 22.1
1.0 39.4 23.8
5.0 42.6 274

There is a second benefit gained from the
language model: sometimes the source sen-
tence can be covered with only very short
source patterns. That is to say, word con-
text is hardly taken into account. With a
language model context is brought into play
again. If the language model scaling factor is
increased too much translation quality dete-
riorates again. So, a good balance between
both knowledge sources is necessary.

In Table 8 some examples which show the
effect of the language model are given. The
first translation is without language model,
the second is the translation obtained when
the language model score is added using a
scaling factor of 0.5.

4.3 Effect of Error Tolerant Matching

Finally, the effect of error tolerant match-
ing has been investigated. Only for the sim-
ple and compound translation patterns errors
have been allowed in matching parts of the in-



Table 5: Example for the application of the bilingual grammar.

VP # PPER VMFIN PP VVINF # PPER VMFIN VVINF PP

VP { PPER { ich#I1#-01)
VMFIN { m”ochte # want # -0.1 }
PP { APPR { mit # with #-0.1 }
{ PPER { TIhnen # you # -0.1 }

NP { ART { einen # a # 0.01 }
{ NN { Termin # date # -0.1 }

# a date # -2.09 }

# a date with you # -6.29 }

VVINF  {

vereinbaren # to arrange # -0.1 }

# I want to arrange a date with you # -12.59 }

Table 8: Examples for the effect of the language model.

erst wieder ab dem sechzehnten.
no LM starting from the sixteenth only again.
with LM | only starting from the sixteenth.

ja, wunderbar. machen wir das so, und dann treffen wir uns dann in Hamburg.
no LM yes, nice. will we do which right, after all we meet us after all in Hamburg.
with LM | fine. let us do it like that, and then we will meet then in Hamburg.

put sentences to stored translation patterns.
The effect of increasing the error threshold is
given in Table 9.

Table 9: Effect of error tolerant matching.

Errors per word | mWER([%] | SSER[%] |

0.0 38.8 22.1
0.2 38.3 20.3
0.4 37.0 21.0
0.6 39.6 24.2

We see a considerable improvement when
allowing for a small number of errors in
matching the translation patterns to the in-
put sentence. However, if the match gets
too sloppy serious errors occur which alter
the meaning of the sentence. For longer se-
quences of words the number of errors allowed
becomes higher than the default score for sub-
stitutions. In such a case content words can
be substituted.

An example of how the same source sen-

tence gets different translations when more
matching errors are allowed is given in Ta-
ble 10.

5 Summary and future work

In this paper a translation approach based
on cascaded finite state transducers has been
presented. A small number of simple trans-
ducers is hand-crafted and then used to con-
vert a bilingual corpus into a translation
memory consisting of source pattern — target
pattern pairs, which include category labels.
Translation is then performed by applying the
complete cascade of transducers.

With the simple heuristic for the transla-
tion scores a language model for the target
language is paramount to select good trans-
lations. Error-tolerant matching improves
translation quality.

Experiments have shown the potential of
this approach for machine translation. Good
coverage on unseen test data could be ob-
tained. A major advantage of this translation



Table 10: Examples for the effect of error tolerant matching.

ja , wunderbar . machen wir das so , und dann treffen wir uns dann in Hamburg .

0.0 | fine . let us do it like that , and then we will meet then in Hamburg .

0.2 | fine . let us do that , and then we will meet in Hamburg .

0.4 | fine . let us do it like that , and then we will meet in Hamburg .

0.6 | fine . let us do it like that , and then we will meet in your office .

method is that it breaks the middle ground
between direct translation methods like sim-
ple translation memory or word-based statis-
tical translation and transfer based methods
involving deep linguistic analysis of the input.
In fact, the cascaded transducer approach al-
lows for building quickly a first version and
improving translation quality by gradually
adding more linguistic and domain specific
knowledge.

We expect further improvement by assign-
ing translation scores according to corpus
statistics. This will be the main focus for fu-
ture work.
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