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Abstract

In this paper, a level-synchronous parsing mechanism, named Phrase-Level

Building (PLB), is proposed to incorporate wide-scope contextual in® rmation for

parsing ill-formed sentences. This mechanism regards the task of parsing a sentence as

the task of building the phrase-levels for the sentence. Therefore, the wide-scope

contextual information in the phrase-levels can be used to help narrow down the search

space and to select the most likely partial parses. Compared with the system which

uses both the stochastic context-free grammar and the heuristics of preferring the

longest phrase, the proposed PLB approach improves the precision rate for brackets in
the partial parse forests from 69.37% to 79.49%. The recall rate for brackets is also

improved from 78.73% to 81.39%.

The proposed PLB parsing method can also be used to recover errors in

ill-formed sentences, so that more complete syntactic information can be provided in

later stages. Experimental results show that 35% of the ill-formed sentences can be

recovered to well-formed parses. The recall rate for brackets is also significantly

improved from 68.49% to 76.60% while the precision rate for brackets is improved

slightly from 79.49% to 80.69%.

Keywords: natural language parsing, ill-formed sentence parsing, partial

parsing, robust parsing, error recovery.

1. Introduction

Parsing techniques play important roles in various applications of natural language

processing, such as machine translation [Hutchins, 1986; Su and Chang, 1990], speech
recognition [Su, Chiang, and Lin 1990; Seneff, 1992; Meteer and Gish, 1994], and
information extraction [Hobbs et al., 1992; McDonald, 1992]. It constructs the syntactic
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relationship of the words in an input sentence according to a given grammar, which
formally specifies the allowable syntactic structures in the language. However, in real
applications, a parser often encounters the problems resulting from ambiguous syntactic
structures and ill-formed input sentences.

Ambiguous syntactic structures are generated due to the implied ambiguity in
language usage or due to the over-generation of the given grammar. The number of
syntactic ambiguities in a sentence depends on the given grammar. In practical
applications, a sentence of average length can have up to hundreds of ambiguities, and the
number of ambiguities can even reach millions in case of parsing a long sentence. To
correctly interpret an input sentence, a natural language parser, therefore, must be able to
choose the correct syntactic structure from a large number of ambiguities. In the past,
many algorithms have been proposed solving this problem, and significant improvements
have been made [Briscoe and Carroll, 1993; Chiang, Lin and Su, 1995].

As for ill-formedness, its major sources are: (1) incorrect sentences resulting from
typographical errors, OCR scanning, etc., (2) unknown words which are not contained in
the system dictionary, and (3) insufficient coverage of the grammar. An ill-formed sen-
tence cannot be fitted into any well-formed syntactic structures generated by the given
grammar. In other words, it is beyond the scope allowed by the system grammar.
Compared with the topic of syntactic disambiguation, the issue of recovering ill-formed
input has been less investigated in the literature and has often been ignored in experi-
mental works. However, ill-formed sentences are usually inevitable in real applications
because incorrect sentences always exist in the real world, and it is impossible to force
users to only use the pre-specified artificial grammar and the built-in vocabulary.
Therefore, the parser in a real natural language processing system must cope with the
problem of ill-formed input.

In dealing with ambiguity problems in natural language processing, past researches
have shown that contextual information is helpful. (One example is the well-known
trigram part-of-speech tagger [Church, 1989].) Therefore, a level-synchronous parsing
mechanism, called Phrase-Level-Building (PLB) parsing, which incorporates contextual
information while parsing ill-formed sentences is proposed in this paper. In this
framework, the syntactic structure of a sentence is represented by a set of phrase-levels,
and sentence parsing is achieved by building a phrase-level set. Here, a phrase-level
refers to a sequence of terminals and nonterminals captured by a particular snapshot of
the parsing process. For example, in the sentence "Printer buffers are made by DRAM",
suppose that a parser has just constructed a noun phrase for "Printer buffers" and a verb
phrase for "are made by DRAM". Then, the phrase-level at this particular time would
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consist of "[N3l Printer buffers]" and "[V2 are made by DRAM]". To accelerate the
parsing process, a fast level-synchronous searching mechanism is also proposed in this
paper to remove less likely phrase-levels. As a result, only the partial parse forests
[Tomita, 1987] with large likelihood values are generated by the PLB parser. Whenever
all the different active phrase-levels in the search beam cannot be further reduced by
means of any grammar rules, the process of building phrase-levels stops, and the forests
retained in the search beam are scored by consulting the contextual information in the
phrase-levels. Compared with the baseline system which uses both the stochastic con-
text-free grammar and the "longest leftmost phrase first" heuristics, the proposed PLB
approach improves the precision rate for brackets in the forest from 69.37% to 79.49%.
The recall rate for brackets is also improved from 78.73% to 81.39%.

However, parsing ill-formed input sentences without recovering their errors only
provides limited syntactic information. It would be more helpful in later stages if more
complete syntactic structures can be provided. Therefore, errors in ill-formed input
should be fixed. In 1981, Kwasny and Sondheimer [1981] proposed parsing and
recovering errors of ill-formed sentences with an Augmented Transition Network (ATN)
parser. In their approach, different types of errors are first carefully identified, and then
a set of corresponding transition arcs, called relaxed arcs, is manually built into the
network to recover the errors. Those relaxed arcs are blocked in normal cases. They are
attempted only after all the grammatical paths have failed. Weischedel and Sondheimer
[1983] used a similar approach. They used meta-rules to associate certain ill-formed
sentence patterns with particular well-formed structures, which were obtained by
modifying the violated grammar rules.

In 1989, Mellish [1989] proposed finding the full parse by running a modified
top-down parser over the partial parses, which were generated by a bottom-up chart
parser. This modified top-down parser attempts to find a full parse tree by considering
only one word error. On the other hand, in 1990, Abney [1990; 1991] proposed parsing
natural language by segmenting a part-of-speech sequence into chunks and then
assembling the chunks into a complete parse tree. In his work, the chunks were repaired
and assembled based on predefined heuristic rules. Recently, Lee et al. [1995]
generalized the least-error recognition algorithm [Lyon, 1974] to find the full parses of
minimum errors with a small grammar of only 192 grammar rules. Since exhaustively
finding the full parses with minimum errors is very time-consuming, they used heuristic
rules and scores to cut down the search space.

! See Appendix A for the definitions of the grammar symbols used in this paper.
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All the approaches mentioned above employ ad hoc heuristic rules to fix errors or to
restrict the search space. These heuristic rules are usually system-specific and are not
easily re-used by other systems. Furthermore, although these approaches may work well
for some small tasks in a given specific domain, they do not possess the characteristic of
extensibility and are hard to scale-up. Therefore, a generalized approach, independent of
any particular system and domain, is highly demanded.

In this paper, we propose an error recovery mechanism which uses a generalized
probabilistic score function to identify and recover errors. Since errors can occur at any
place in an input sentence, exhaustively searching all the possibilities is infeasible. Thus,
a two-stage strategy for limiting the search space is proposed in this paper. In the first
stage, the most likely forest of partial parses is checked to see if it will fit into the
S-productions (i.e., the production rules whose left-hand side symbols are the start
symbol "S"). If the partial parse forest cannot be well fitted by applying one or two
modification actions, fixing part-of-speech errors is attempted in the second stage.
Experimental results show that 35% of ill-formed sentences can be recovered to their
correct well-formed full parses using this proposed approach. The recall rate for brackets
is increased from 68.49% to 76.60%, while the precision rate for brackets is improved
slightly from 79.49% to 80.69%.

2. Baseline System

In many frameworks [Jensen, Miller and Ravin, 1983; Mellish, 1989; Seneff, 1992;
Hobbs et al., 1992], the heuristics of preferring the longest phrase is used either alone or
with some other system-dependent heuristics to constrain the number of possible partial
parses when ill-formed sentences are parsed. We will call this type of approaches the
longest phrase first (LF) approach. On the other hand, some parsers (such as the LR
parser) parse natural language sentences from left to right and use the left context to limit
the search space. If the input sentence is ungrammatical, only the partial parses beginning
at the left are available in these systerﬁs. Therefore, these parsers usually select the
longest leftmost phrase, which we will call longest leftmost phrase first (LLF) approach,
as the candidate and then start to parse again from the subsequent word. To make a
comparative study, both the LLF approach and the LF approach are implemented in our
baseline system for handling ill-formed sentences.

The baseline system consists of two components: a Cocke-Younger-Kasami (CYK)
parser [Aho and Ullman, 1972] and a partial parse assembler. As the CYK parser can
efficiently parse an ill-formed sentence into all of its possible partial parses if the
grammar is written in the Chomsky normal form [Chomsky, 1959], we first convert our
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normal context-free grammar into its corresponding Chomsky Normal Form (CNF)%
Then, the CYK parser is used to obtain all the possible partial parses. Finally, according
to the adopted heuristic rule (LF or LLF), the partial parses are assembled by the partial
parse assembler, which ranks these partial parses based on the probabilities of their
stochastic context-free rules [Fujisaki et al., 1989; Ng and Tomita, 1991]. The probability
parameters adopted in this system are smoothed using the Good-Turing method [Good,
1953]. :

Figure 1 A forest of partial parses for the ill-formed sentence
"Printer buffers are by DRAM".

2.1 Evaluation Method
The performance of different approaches is measured based on three factors: the bracket

precision rate, the bracket recall rate and the forest accuracy rate. Take the forest® of

partial parses in Figure 1 as an example. There are six brackets in the forest as shown
below:

[N* Printer],

[N3 Printer buffers],
[AUX are],

[B by],

[N3 DRAM)],

[ADTC by DRAM].

Each of the brackets corresponds to the application of a production rule. The precision
rate and the recall rate are then computed as follows:

2 It is not necessary for the proposed approach to adhere to a CNF grammar. The CYK parsing algorithm
can also work on a context-free grammar [Hopcroft and Ullman, 1976]. The only reason for converting
a CFG into its CNF is to make the parsing mechanism as simple as possible.

3 It should be noticed that the forest in Figure 1 is only one of the possible forests.
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number of exactly matched brackets

bracket precision rate = :
number of brackets generated by the parser

e s number of exactly matched brackets

number of brackets in correct parses

In the literature [Black et al., 1991; Doran et al., 1994], the evaluation of precision
and recall rates, in general, does not take the associated bracket labels into account
because the grammar used by the parser may differ from the one that is used in the
treebank for benchmarking. However, in this task, both the parser and the treebank adopt
the same grammar. Therefore, the labels of brackets are also taken into account in this
paper during computation of precision and recall rates [Magerman, 1995]. In other
words, we regard two brackets as being "matched" only if they also have the same label.
Last, the forest accuracy rate is calculated by dividing the number of correctly parsed
ill-formed sentences by the total number of ill-formed sentences. An ill-formed sentence
is said to be correctly parsed if its parsed brackets are the same as those labeled manually.

Since the performance of a robust parser strongly depends on whether the parser can
accurately partition the input sentence into fragments, the "fragment precision" and "
fragment recall" are also measured to determine the performance of a robust parser in
partitioning ill-formed sentences. Here, fragments are the brackets which are not
enclosed by any other brackets, i.¢., the outermost brackets. For example, there are three
fragments in the forest shown in Figure 1: "[N3 Printer buffers]", "[AUX are]" and
"[ADTC by DRAM]".

2.2 Simulation Results and Discussion

In the baseline system, 8,727 well-formed sentences, collected from computer manuals,
and their correct parse trees were used as the training data. The average length of these
sentences was about 13 words. All the training sentences were parsed by a context-free
grammar4 provided by the Behavior Design Corporation. This grammar consists of 29
terminals, 140 nonterminals and 1,013 production rules. To test the performance of the
baseline system, 200 ill-formed sentences and their manually corrected forests were used
as the testing data and the benchmark, respectively. The average length of the test sen-
tences was also about 13 words.

4 This grammar is a wide-coverage English grammar and has been used in commercial English-Chinese

machine translation applications for several years.
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Table 1 lists the simulation results obtained using different heuristic rules. The
precision and recall rates for the labeled brackets are given in the first and second
columns. The third column shows the accuracy rate for forests, and the last column gives
the average processing time for parsing a sentence using a "SUN SPARC station ELC".
The experimental results show that the LLF heuristics slightly outperforms the LF
heuristics. This is because the LF heuristics, compared with the LLF heuristics, is more
likely to grab the words belonging to neighboring constituents. In fact, due to the pref-
erence for a longer partial parse rather than a shorter one, the LF heuristics always
partitions a sentence into as few fragments as possible. As shown in Table 2, the number
of fragments generated using the LLF heuristics is only 355, which is significantly
smaller than the number of correct fragments (which is 605, as shown in Table 2).
However, the number of fragments generated using the LF heuristics is even smaller. In
other words, the LF heuristic rule partitions ill-formed sentences more inaccurately than
the LLF heuristic rule does.

Table 1. The performance of the baseline system in the testing set using "longest phrase
first" (LF) and "longest leftmost phrase first" (LLF) heuristics.

Bracket and its label Forest Parsing time
Precision Recall accuracy | (sec./sent.)
LF 67.98% 77.54% 16.5% 2.16
LLF 69.37% 78.73% 16.5% 2.16

The performance of this baseline system is similar to that of other systems. For
example, Doran et al. [1994] reported that their XTAG system, based on Lexicalized
Tree Adjoining Grammar formalism, achieved an 84.32% recall rate and a 59.28%
precision rate in parsing part of the IBM-manual treebank. Skut and Brants [1998]
reported a 72.6% precision rate in parsing the Penn Treebank using a chunk tagger.
However, the values reported in those studies should not be used to infer which approach
is superior because the performance of different approaches is usually measured based on
different testing data.

Although the heuristics of preferring the longest phrase is adopted in many systems,
it uses rather coarse knowledge to assemble partial parses. These systems 2lways append
the largest partial parse, either the leftmost one or a global one, to the forest, regardless
of the context of the given partial parse. Therefore, poor performance can be expected.
To remedy this drawback, a level-synchronous parsing mechanism is, thus, proposed in
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the next section to parse ill-formed sentences by consulting more contextual information.

Table 2. The performance in partitioning ill-formed sentences in the testing set using 478
and LLF heuristics.

Number of fragments o
Precision Recall
Total Matched
Treebank 605 — — —
LF 331 160 48.3% 26.5%
ELE 3554 179 50.4% 29.6%

3. PLB Parsing

To incorporate wide-scope contextual information in parsing ill-formed sentences, a
Phrase-Level Building (PLB) parsing algorithm is proposed in this section. This algo-
rithm treats the parsing process as a procedure for building a set of phrase-levels. In
building the phrase-levels, a fast level-synchronous searching mechanism is used to cut
down the search space. Unlike other approaches, instead of using heuristics, the final
parse trees are ranked by a probabilistic score function which makes use of the contextual
informaticn in the phrase-levels. The details of this algorithm are presented in the fol-
lowing sections.

3.1 Phrase-Levels of Partial Parses

The basic idea in PLB parsing is to model the parsing process as a series of trans-
formations between adjacent phrase-levels. Figure 2 is an example showing the
relationship between a forest and its corresponding phrase-levels under a particular
sequence of parsing actions. In this example, the forest is decomposed into four
phrase-levels. The lowest one, L,, corresponds to the input words. The second

phrase-level consists of the parts of speech of the input words. The other phrase-levels are
sequences of grammar symbols (i.e., terminals and nonterminals) that are obtained by
applying some production rules to the grammar symbols of their preceding adjacent
phrase-level. As a result, the parsing process can be considered as the procedure of
building the phrase-levels from L, to L, in a bottom-up manner.

To make the PLB technique, mentioned above, more clear, we further detail the
operational process as follows. In Figure 2, L, has five grammar symbols and is denoted

as L,=(N* n AUX P* N3}. By applying the productions "N3 — N* n" and "
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ADTC — P* N3" to the leftmost two and the rightmost two grammar symbols
respectively, L, can be built into L ,» Which has three grammar symbols and is denoted as

L,={N3 AUX ADTC}. As a result, the forest in Figure2 can be represented as
T={L1, Rl, L2, R2, L3, Rg, L4}, where Rl. denotes a sequence of actions which are
applied to build L, into L., ,. For example, to build L , from L in Figure 2, R, contains

two actions, which correspond to applying the productions "N3 — N* n" and "ADTC
— P* N3" to the leftmost two and the rightmost two grammar symbols in L3,

respectively.
L,={N3 AUX ADTC b2 N3 ~ ADTC
L;={N* n AUX P* N3 ~“}| |i N* . AUX Pt N3
R, o £ 1 0
L,={n n be ip'm } n n be p n
R, ' ’
={ Printer Buffers are by DRAM ) Printer Buffers are by DRAM

(a) (b)

Figure 2 (a) Parsing by building phrase-levels.
(b) The corresponding partial parses.

Making the parsing process a procedure for building phrase-levels, the rich con-
textual information in a phrase-level, thus, can be used to decide which production rules
are more likely to be applied (which helps us to stop building improbable structures

earlier). In the following section, two scoring functions are introduced to make use of
contextual information.

3.2 Scoring a Forest of Partial Parses
The likelihood value of a forest with N phrase-levels is computed as follows:

Br-r B 1. ® )=ﬁP(L,,R R e e e
= 3] - P(Li—l |I‘i’l{i-l))< P(Li’Ri—l)
gLy ,U AL
AP R PR L P
-1 PL.) 0
= i((ILN)) f[{P(Li—l lLi’Ri—I)X P(RH IL:‘)}

= P(LN)ﬁP(R,l,L IL,).
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In the above equation, the priori probability P(LN) is intentionally introduced by

applying the Bayesian formula, as it is useful information for assembling partial parses
into a forest. Taking the case of Figure 2 as an example, the preference of the forest,
according to Equation (1), is considered to be closely related to the likelihood value of the
nonterminal sequence "N3 AUX ADTC" {1c; LN, where N=4).

Becuase Ll._l is uniquely determined by Rt._l and Li e P(RH,Li_llLi) = P(Ri_ll

Li), Equation (1) can be rewritten as

P(T|Wl”) = MﬁP(Ri—l IL,)

PL,) 2 ; @

Furthermore, since P(L) is the priori probability of the input sentence, it is the same
for all competing forests and, thus, can be ignored without affecting the ranking order of
those competing forests. Therefore, once we can estimate the probabilities of P(L N) and

P(RHIL'_), we can determine the ranking order of the competing forests. The probability

P(L,) can be simplified by using a trigram model as follows:

P(L, = A,A)= J]P4, )

AjeLy (3)

where A R An are the n symbols in the phrase-level LN . For example, in Figure 2, the

priori probability P(L,) will be approximated as the product of P(N3 1$$)°,

P(AUX | $ N3) and P(ADTC | N3 AUX). This trigram model implicitly assumes that the
information of those two left partial parses is more relevant in determining the current
partial parse. Take the sentence "Include files provided to you" as an example. If the first
two partial parses are parsed to be [v Include] [N3 files], the partial parse of "provided to
you" should be a relative clause with a gap rather than a verb phrase.

On the other hand, the computation of P(Ri-l I L’.) is somewhat more complicated.

Let P L=< denote the j-th action in Ri_l, let and Ai j denote the j-th symbol in

LJ
Ll. , where r represents the production rule applied by Pl._1 IE and ¢ indicates that the

5 The symbol $ represents the sentence boundary marker.
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left-hand-side symbol of r is the #-th symbol in L.G.e., Ai’ ;). For example, in Figure 2, the
production rules "N3 — N* n"and "ADTC — P* N3" are applied to build L3 into

L4. Therefore, there are two actions P3’ = <N3 — N* n;l>and P Cin <ADTC —
Px N3 3> 11 R3, where the arguments "1" and "3" indicate that N3 (the left-hand-side

symbol of "N3 — N* n") is the first element and ADTC (the left-hand-side symbol of
"ADTC — P* N3") is the third element in L % respectively. Hereafter, all the level

indices (i and i-1) will be dropped for expression conciseness, if not causing misunder-
standing.

Traditionally, the stochastic context-free grammar obtains the likelihood value of a
set of production rules by multiplying the probabilities of those rules together. However,
recent researches [Briscoe and Carroll, 1993; Chiang, Lin and Su, 1995] have shown that
the contextual information should be taken into account if the training data is enough. For
example, in our task, the probability of deriving a pronoun from a noun phrase (i.e.,
applying the rule "N3 — pron") is about 0.12. But if the noun phrase is at the beginning
of the sentence and is followed by an auxiliary, the probability of deriving a pronoun
from a noun phrase is significantly increased to 0.28. Therefore, we derive the
conditional probability PR | L) in Equation (2) by incorporating the contextual

information as follows. Assume that there are m actions in Rl._1 and n symbols in Ll. ; then,

m

P(Ri—l lLi) = P(plm IAl”) =

Plp,1p/,4") = TIP(r147),

p=(rit)e R, “4)

~.
I

where the action P = <r ; > is assumed to be dependent on the its local context At_l and
A, - For instance, in Figure 2, the probability P(R, L)) is approximated as the product
of P(N3 — N* nl|$ N3 AUX)and P(ADTC — P* N3|AUX ADTC $).

According to Equations (2) - (4), the likelihood of a forest is then approximated as
follows:

N-1

x [1P@,14,,.4,,) x TT TP(147),

1 A€Ly i=l p=(rit) e R, (5)

P(TIw!) =
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where A is the short-hand notation for "A.,»A,,A, "inL, . As mentioned before,

the probability factor P(L ) can be ignored without changing the ranking order of forests

because it is the same for all competing forests. Therefore, we obtain the following score
function to rank the forests:

= [IPA;14,.4,,) X H HP(rIA’“ i (5)

AjeLy i=l p

where the subscript "FS" in S_(*) means "forest selection".

3.3 The PLB Parsing Mechanism

The PLB parser parses an input sentence by building a set of phrase-levels for the sen-
tence. Each possible sequence of phrase-levels represents a particular forest of partial
parses. Since many different action sets can be applied to a given phrase-level to build it
into a higher level, the number of possible phrase-level sequences increases expo-
nentially as the phrase-levels are built upward. Because it is infeasible to exhaustively
generate all possible phrase-level sequences, the beam search strategy is adopted here to
find forests with higher likelihood values.

To efficiently carry out the beam search, a score function which can rank the can-
didates of each phrase-level in a very short time is required. However, the score function
in Equation (6) spends too much computational time on ranking the candidates of a
phrase-level as explained below. Suppose that the parser is going to build a particular
phrase-level into its higher level. According to Equation (6), all possible candidates of
that phrase-level must be expanded because the contextual information of all possible
new phrase-levels is required so that every candidate can be scored. However, it is quite
time-consuming to expand all these candidates. One way to overcome this problem is to
adopt another time-saving score function to rapidly find the potential candidates for the
given phrase-level. If this scoring function can score the candidates based on the con-
textual information in the old phrase-level, not in the new just expanded phrase-levels,
the potential candidates for the new phrase-level, then, can be ranked even before they are
fully constructed. Therefore, the time required to fully expand the uninteresting candi-
dates can be saved. Afterwards, we only need to re-score the forests which are retained in
the search beam using Equation (6) to find the final best forest.
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.=l 3 AUX ADTC }
Transform <
: Losl [Nk ni [AuUxX] P> N3] )
Segment <~
Li={ N* n AUX P* N3 |

Figure 3 Segmenting and transforming phrase-levels.

To derive the time-saving score function, the process of building a phrase-level L,
into a higher phrase-level L., is remodeled as the process of first segmenting L. into
segments and then transforming these segments into L. - Recall the forest
shown in Figure 2. The phrase-level L ={N* n AUX P* N3} is built into
L,={N3 AUX ADTC} by applying the production rules "N3 — N* n" and
"ADTC — P* N3". This process can be decomposed into two steps. First, segment L,

into three segments: "[N* n]", "[AUX]" and "[P* N3]". Second, transform these three
segments into L,={N3 AUX ADTC}. Figure 3 gives a graphical illustration of these

two steps. Based on this viewpoint, a forest with i phrase-levels can alternatively be
represented by a sequence of unsegmented and segmented phrase-levels as {Ll, Cl,

L. . C . L}, where C/ denotes the segmented phrase-level of Lj . As aresult, the like-

lihood of a partial tree with i phrase-levels is computed as

P@“CquﬂwCHiﬁhﬁ):IIP@WCFJL“Q;mLFPCHJg4)
j=2

n 7
s 118 C. L. )

i=2

The approximation in the above equation is based on the assumption that the seg-
mentation and transformation results (i.e., Cj._l and Lj) only depend on the previous

phrase-level Lj_]. According to Equation (7), the "beam search" score function SBS(')6 18

defined as follows so that the score of a forest with i phrase-levels can be evaluated
rapidly:

6 The performance may be further improved if the evaluation score SFS(-) in Equation (6) is replaced by

the Log-linear interpolation of SFS(-) and SBS(').
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n

Slex (LZ’CI I IJl )XHSsyn (Lj’Cj—l I Lj—] )’

SO0 C..1 . .4
BS 1 1 1 1 ) o 3 ®)

where S, (L, , C, I' L)) denotes the lexical score of the part-of-speech sequence of L, ,
and Ssyn(Lj ] Cj_l | Lj_l) denotes the syntactic score corresponding to the j-th phrase-level
Lj . The lexical and syntactic scores are provided by the lexical and syntactic modules

respectively. The following sections describe these two modules in detail.

3.3.1 Lexical Module

The lexical module is basically a statistical tagger [Church, 1989] which finds the most
likely part-of-speech sequence for the input sentence. The likelihood of a part-of-speech
sequence L, for the input word sequence L, is computed according to the widely-used

trigram model [Church, 1989; Lin, Chiang and Su 1995] as follows:

P(L2’Cl lLl) = P(C1”|W1n) o ;,J(;,;)P(WNCI")
1

®

1 n :
3 WHP(CJ |"1—2’C1—I)P(Wf ch),
=

where n is the number of words in the input sentence, wj is the j-th input word, and cj

denotes the part of speech for w, . Since the probability P (Wln ) is a constant, it can be

ignored without affecting the ranking order of the likelihood probabilities of these
competing part-of-speech sequences. Therefore, the score function for the lexical module
is defined as

Six (L2, C, 1L,

HP(cj ch_z,cj_l)P(wj ch). (10)
j

3.3.2 Syntactic Module
The syntactic module is responsible for ranking the phrase-level candidates which are
one level higher than the given phrase-level. The likelihood of a phrase-level candidate
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L, for the given phrase-level L[‘_I is computed as

AL.C,IL,) = ALIC..L,)AC, IL.) = ALIC.)AC,IL.). ),

LepA, o2 ,Anbe those n symbols in L,,_l ,and let &, -+, ambe those m segments in
C,; then, P(C,, I L, ) is approximated as

m m

P(Ci—l |Li—1) = ( . lA”) HP(OC |a/l ") o H (Ot Ia, & 1)
= ﬁp(a_j | T, (a_/—Zaj—l ))’

J=1

(12)

where FR2(aj-2’ och]) denotes the rightmost two symbols in "Otj_ZOC. oA

J-1
Taking Figure 3 as an example, the score P(C3 IL;) is approximated as
P(N* n]1$,$) X P(AUX]IN*, n) X P(P* n3]ln, AUX).Likewise, P(Li

I'C._,) is further simplified as
PIL1C,.) = Plariar) = TTP(a, 147 0r) = T]P(4;10,.0,00,)

= ﬁ AT o el e e

=

where FRl(x) and I'| (x) denote the rightmost symbol and the leftmost symbol of x,
respectively. For example, in the case of Figure 3, P(L4 I C%) is approximated as

P(N3 | $, [N* n], AUX) X P(AUX | n, [AUX], P*) X P(ADTC | AUX, [P* n3],
$) . Therefore, according to Equations (11)- (13), the syntactic score function is defined
as

Ssyn (Lj’cj«l |L,,'—|) = ﬁ{P(a, |FR2(aj—2aj»-l )) P(Aj IrRl(aj—l )’a/ T (a_,'+1 )) }’ (14)
J=1

where OCj is the j-th segment in CI._1 , and Aj is the j-th symbol in Ll. ’

7 Since the segment sequence " 0!/,_7 ‘XH " is on the left side of 0‘/_ , the rightmost two symbols in

"o O " are adjacentto & .
j-2 -l J
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3.4 Simulation Results and Discussion

As mentioned above, the PLB parsing mechanism uses the score function SBS(-) in

Equation (8) to rapidly rank the candidates of phrase-levels and remove the less likely
ones during constructing the forests. Therefore, only the forests with higher likelihood
values are generated. Finally, the score function SFS(') in Equation (6) is used to select the

best one from these generated forests. The performance of PLB parsing in the testing set
is shown in Table 3 for various beam widths. Because the probability that the correct
forest is included in the search space (i.e., the including rate) increases as the beam width
increases, the accuracy rate shown in Table 3 rises until the beam width reaches a size of
20. Afterwards, the including rate saturates, and the effect of the increasing ambiguous
competitors due to the increasing beam width dominates the performance. These
introduced ambiguities not only slightly degrade the accuracy rate but also significantly
increase the computational time. Similar phenomena have also been observed in other
applications that adopt the beam search strategy [Chiang, Lin and Su, 1996]. Considering
both the accuracy rate and computational time, a beam width of 20 is recommended for
PLB parsing in this task.

The results of the baseline system with LLF heuristics (selecting the longest left-
most phrase first) are also listed in Table 3 for comparison. It is obvious that the PLB
approach significantly outperforms the baseline system. Even when a very small beam
width is used, the PLB approach achieves better results than the baseline system in terms
of the precision and recall rates for brackets as well as in terms of the forest accuracy.
Since the search space is cut down via a probabilistic score function during parsing, the
PLB approaéh can rapidly select the most likely combinations of partial parses for
ill-formed sentences. Therefore, the PLB approach with a small beam width can parse
sentences faster than the baseline system can. However, the above results cannot lead us
to the conclusion that the PLB approach can save more time than other systems with LLF
heuristics do. The reason is that the LLF heuristics can be implemented by a LR parser,
which is usually more efficient than the CYK parser used in the baseline system. How-
ever, since the PLB approach yields better results than the LLF heuristic approach does
within one second, the LLF heuristics is no more attractive even if it can be implemented
using a faster parser.

Table 3 also shows that the improvement in the bracket precision rate achieved by
using the PLB approach is better than that achieved in the bracket recall rate. For
instance, compared with using the LLF heuristics, the PLB approach with a beam width
of 20 improves the bracket precision rate by 10.12% (from 69.37% to 79.49%) while it
only improves the bracket recall rate by only 2.66% (from 78.73% to 81.39%). To further
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explore the reason for the above phenomenon. more detailed data are given in Table 4.
Compared with the PLB approach, the LLF approach yields significantly more brackets
(3794 versus 3423). This is because a longer phrase tends to have a deeper structure,
which will consist of more brackets. Since more brackets are generated with fewer
correct brackets (2632 versus 2721), the LLF approach achieves significantly lower
bracket precision rate than the PLB approach does.

Table 3. The performance of PLB parsing in the testing set for various beam widths.

e BTN Bracket and its label Forest |Parsing time
Precision Recall accuracy | (sec./sent.)
78.52% 719.27% 24.5% 0.46
78.22% 80.56% 25.5% 0.66
o ‘ 10 1 7878% 80.74%?“ , ,26'_(_)% 117
2000 T949% . B139% F 278% | 251
50 80.08% 80.92% 26.5% D175
100 80.11% 80.98% 27.0% 35.93:
LLF — 69.37% 78.73% 16.5% 2.16

Table 4. The detailed results for the baseline system and the PLB approach in the testing

set.
Number of brackets
Precision Recall
Total Matched
Treebank 3343 — —_ —_
LLE 3794 2632 69.37% 78.73%
PLB 3423 2721 79.49% 81.39%

Selecting the longest phrase also causes the baseline system to inaccurately partition
the ill-formed sentences. As shown in Table 5, there are 605 fragments in those 200
ill-formed sentences. However, the baseline system partitions these ill-formed sentences
into only 355 fragments, which is too few. This is due to the fact that the baseline system
does not consider the contextual information when partial parses are assembled. It always
prefers a longer partial parse to a shorter one, and, consequently, partitions a sentence
into as few fragments as possible. The baseline system, thus, has a very low recall rate for
fragments. On the other hand, the PLB approach can more accurately partition ill-formed
sentences because it uses statistical contextual information. The number of fragments that
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the PLB approach generates is almost equal to the number of correct fragments. Besides,
with the aid of contextual information, the PLB approach yields more matched fragments
than the baseline system does. Therefore, the PLB approach has a significantly higher
recall rate for fragments than the baseline system has (57.9% vs. 29.6%).

Table 5. The performance in partitioning ill-formed sentences in the testing set using
LLF and PLB approaches.

Number of fragments o
Precision Recall
Total Matched
Treebank 605 —_ — —
LLF 355 179 50.4% 29.6%
PLB 656 350 53.4% 57.9%

In summary, the proposed PLB approach outperforms the baseline system to a great
extent because it uses statistical contextual information. With a beam width of 20, the
PLB approach significantly improves the precision rate for brackets in the forests from
69.37% to 79.49%. The recall rate for brackets is also improved from 78.73% to 81.39%.
Although the above experiment was performed on ill-formed sentences, the proposed
model can also be used to parse well-formed sentences. However, since parsing
well-formed sentences is not the focus of this paper, it will not be further investigated
here.

4. Error Recovery with Modification Actions

The above level-synchronous approach does not fix any errors in ill-formed sentences.
However, an unfixed error may affect neighboring words and prevent them from being
recognized by the parser. The wicked effect of these errors may even extend to other
processing stages following syntactic parsing. To reduce the effects caused by such
errors, the parser should recover as many errors as possible before they slip into sub-
sequent stages.

To fix the errors in a phrase-level, the modification actions of insertion, deletion and
substitution are incorporated into the parsing process. These actions are realized by three
modification productions: X — & (which denotes insertion of a symbol X), & — X
(which denotes deletion of a symbol X) and ¥ — X (which denotes replacement of the
symbol X with the symbol Y). A modification action consists of a rule argument and two

associated position arguments, such as p = <7;Lt,v> , where 7 stands for the applied
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modification rule, u and v indicate that this modification action is applied between the
-th and the v-th symbols in the modified phrase-level.

Take the input "Printer Buffers are by DRAM" as an example. This sentence misses
a verb after the auxiliary "are". To correct such an error, a verb should be inserted so that

L2={n n be p n} canbe modified to obtain iz ={n n be v p n}.Inthiscase,
the corresponding modification action set R, will consist of one modification action
p= <7 Vo Esu=3,v= 5> . In that modification action, the rule argument

F 1V = € indicates insertion of a verb, and the position arguments ¥ =3 and v = 5
indicate that the inserted verb will be placed between the third and the fifth symbols in the
modified phrase-level L,

After having incorporated with modification actions, the parsing process will apply
the modification actions and the normal reduction actions in turn. A modified parse tree

T of N phrase-levels can then be represented as

~ ~

T= {LI’RI’LI’RI’LZ’“"LN—I’RN-I’LN—I’RN—I’LN} :
where L. is the i-th phrase-level, R, is the set of modification actions adopted to modify
L., L, is the result obtained after applying R, to L., and R is the set of normal actions

applied to build L, from fJ,.. After some derivations and approximations (please see

Appendix B), the score of a modified parse trec is defined as

( )E HP(A lAI”AIl) XH H P(r|A1+l

AjeLy i=l p=<rit> € R;

(15)
xHP(R =) x[[{P®R, =0)x  [] PFIA);,

R¢¢ -<ruv>eR

where the subscript "MT" in SMT(-) means "modified tree", the notation R ; = ¢ indicates
that l~1,~ is an empty set (i.e., no modifications have been applied to modify L),

R, # ¢ denotes that it is not an empty set and includes some modification action rules,

and A is the short-hand notation for symbols from the u-th position to the v-th position



44 Yoo C.abhilna& Ke Y. S

in L, . The first two product terms, which are related to the normal productions, are the
same as those in Equation (6). The third product term gp (R; =9) is related to those

phrase-levels which do not need to be modified. The last product term

H{P R PGIA )} accounts for the modification actions, where the

R, 20 p=<iu.v> e R;

sequence Z,ﬁ' contains the left context (i.e., :4,,) and the right context (i.e., ;\v) of the

applied modification rule 7 . For example, to recover the error in the ill-formed sentence
"Printer Buffers are by DRAM" by inserting a verb after the auxiliary "are", a

modification set R, ={p = <7 Vo EUu=3,v= 5> } can be applied to modify L2

={n n be p n} toobtain L, ={n n be v p n}. In this case, the modification
rule "V — € " is considered depending on the third symbol (the left context) and the fifth

symbol (the right context) in L,. As a result, for this nonempty modification set R, , the

corresponding probability term H ~P (F14) is set to be the term

p=<Fu,v> € R,

P( v > &lbe v n).

5. Two-stage Strategy to Find Potential Modification Actions

One serious problem in doing error-recovery is that the possible moditcation actions are
much more than the possible normal production actions. It is infeasible to first rank all
possible alternatives and then retain the more likely ones, as we did in Section 3.
Therefore, a two-stage strategy is proposed solving this problem. Instead of blindly trying
all possible modification actions, this strategy only tries to fit the forest of partial parses
into an S-production rule (i.e., one whose left-hand-side symbol is the start symbol)
during the first stage, which is a low cost approach. If the forest of partial parses cannot
be well fitted into any S-production mle,. the sentence is then passed to the second stage
to recover the part-of-speech errors, which requires much more computational cost.
Therefore, without attacking every case with a full-blown approach, this practical
strategy tries the simple approach first (which works in most cases) and only passes the
unresolved ill-formed sentences to the second stage. These two stages are described in
detail in the following sections.

5.1 Fitting the Partial Parses
The errors in ill-formed sentences can be divided into two types: isolated errors and
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clingy errors. Isolated errors are those that do not hinder the parser from correctly parsing
other phrases. Taking the sentence "Printer buffers are made by DRAM" as an example,
if the noun phrase "Printer buffers" is missing, the other words can still be parsed into a
verb phrase. Therefore, such an error is an isolated error. On the other hand, if the word
"made" is missing, this error will hinder a parser from parsing the other three words "are
by DRAM" into a verb phrase. Thus, this error is a clingy error. (It clings to other words.)

Isolated errors can be recovered by fitting the partial parses [Jensen, Miller, and
Ravin, 1983]. In the past, the fitting procedure was usually guided by heuristic rules, such
as preferring some head phrases, preferring the widest phrase, etc. However, acquiring
these heuristic rules is expensive, and it is also difficult to maintain consistency among
a large number of rules. Therefore, the heuristic approach is hard to scale up. Further-
more, the heuristic rules are usually system-specific and are not easily re-used by other
systems. The probabilistic approach is, thus, proposed in this paper fixing these isolated
errors.

Because most of the partial parses are constituents of S-production rules, the forest
of partial parses is first tried to fit into an S-production rule. For example, once the
incomplete sentence "are made by DRAM" is parsed into a verb phrase, we can recover
it by fitting the verb phrase into the right-hand-side of the S-production "S — N3 V2".
In this case, a modified full parse can be obtained by inserting a noun phrase in front of
the verb phrase, as shown in Figure 4.

S

N3 -

W\Am
PN

AUX- V1 PA N3

be v P n
are made by DRAM

Figure 4 Fitting a verb phrase to a full parse according to the
S-production rule "S>N3 V2",

In our experiment, it was observed that most of the isolated errors could be fixed
with two modification actions. Besides, it is obvious that if too many modification
actions are allowed during fitting S-production rules, every ill-formed sentence can be
fitted into an S-production, including the ill-formed sentences of clingy errors, which
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should be fixed in the bottom phrase-level. (See next section for details.) Therefore, in the
current system, at most two modification actions are tried during fitting a forest of partial
parses into the right-hand side of a S-production rule. Different modification actions can
fit the forest into different S-production rules and construct different full parse trees.
Those full parse trees are then ranked based on the score function SMT(') in Equation (15).

If the forest of partial parses cannot be fitted into a full tree by means of one or two
modification actions, it is assumed that the errors in this ill-formed input are not isolated.
Then, the partial parses are passed to the second stage, where the clingy errors are fixed.

5.2 Recovering Part-of-Speech Errors

It is noticed that many clingy errors come from the parts of speech in the second
phrase-level. Therefore, in the second stage, attempts are made to recover the errors
originated from the second phrase-level. For example, as shown in Figure 5, the word
"sufflce”, which is a typo of the word "suffice", is initially regarded as an unknown word
and, thus, is regarded as a noun by default. To recover such an error, the part of speech for
the unknown word "sufflce" should be changed from noun to verb.

S
V2
ADTC
V2
N3 VN

/\ /\
NLM* N1 +AUX Vi NLM* N1
oSy I I I

quan a n modl @vcomp v a n n

Any suitable enclosure will sufflce to reduce unwanted noise pick-up

Figure 5 An ill-formed sentence correctly recovered in the
second stage, where "@V" indicates replacement of the part of
speech for the word "sufflce" with "v".

Since an enormous number of modifications can be applied to modify a
part-of-speech sequence, it is infeasible to try all of them. To be practical, currently, only
the modifications with one insertion, deletion or substitution are permitted. Furthermore,
since the number of ill-formed sentences in our training set is rather limited, we cannot
get reliable statistical parameters from them. Therefore, the statistical information of
these three score functions, described below, is acquired from well-formed training data.



Ill-formed Sentence parsing and Error Recovery 47

Using the trigram formulation, the likelihood of a part-of-speech sequence,

n
¢ =c,c,, - ,c can be approximated as I IP(C- IC‘—2’C_/‘vl) , Where c. denotes the

1 1 ) n oy J & j
I i

J-th part of speech. Therefore, the score for inserting a part of speech "x" in front of the
i-th part of speech is defined as

Sle(i’X;ér) = P(XIC:’-Z’Ci—l) X P(Ci ICi—l’x) X P(Cm lx’ci)
x [TPle;1e,0c,4)- (16)
=

j#i, i+

In other words, if we insert a part of speech "x" in front of the i-th part of speech in

the sequence €€y "€, We can obtain a new part-of-speech sequence
Cpo " 5 €y Cipp %o Cppps Cugn "% 5 €, s and then assign the trigram score of this new

sequence as the score of this insertion action. According to this score function, we can
find the most probable modification using one insertion action. Currently, only the top 5
insertion actions are applied to modify parts of speech. In the same way, the scores for

deleting the i-th part of speech and substituting the i-th part of speech with "x" are
defined, respectively, as follows:

LPne =
SbEL (l’cl ) = P(Cm ICi—Z’Ci-l) X P(Ci+2 lci—l’ci+l)

n
X HP(CJ' b 3¢ );
=l

G I+ i+2

Ssus (i’X;Cl") = P(X|Ci—2’ci—l) X P(cm Ici—l’x) X P(Ci+2 |x’ci+l) e

n
X HP(C,.|C]._2,CI._1).

LI+, 42

Again, only the top 5 deletion actions and the top 5 substitution actions are applied to
modify the parts of speech. These 15 modified part-of-speech sequences are then parsed
to find most likely full parse trees. Finally, the full parse trees are ranked based on the
score function SMT(-) defined in Equation (15).

5.3 Experimental Results and Discussion
To obtain those probability parameters, two training sets were used in the following
experiments. The first one, consisting of 8,727 well-formed sentences and their correct
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parse trees (as described in Section 2.2), was used to estimate the parameters relative to
the normal production actions. The second one, consisting of 300 ill-formed sentences
and their full parse trees manually annotated with the required modification actions, was
used to estimate the parameters relative to the modification actions in Equation (15). As
for the testing set, 200 ill-formed sentences were manually parsed into full parse trees
using correct modification actions, so that they could be used to test the performance of
the proposed error recovery mechanism. ‘

Table 6 lists the experimental results® of parsing the 200 ill-formed testing sen-
tences. The first row (PLB) corresponds to the performance of parsing ill-formed sen-
tences without error recovery. The second row (ER1) gives the results of error recovery
up to the first stage (i.e., fitting the partial parses only). The last row (ER2) shows the
results of error recovery up to the second stage (i.e., fitting the partial parses and also
recovering part-of-speech errors).

Table 6. Performance of parsing ill-formed sentences without and with error recovery

in the testing set.

Bracket and its label Parse tree
Precision Recall Accuracy | Fitting rate
PLB 79.49% 68.49% — -
ER1 80.02% 70.59% 25.0% 43.0%
ER2 80.69% 76.60% 35.0% 76.0%

The second row in Table 6 shows that, by fitting the partial parses into the
S-production rules, 25% of the ill-formed sentences can be correctly parsed and fitted
into full parse trees. The last column indicates that 43% of the ill-formed sentences can
be parsed into full parse trees by fitting their partial parses with one or two modification
actions. In other words, 18% (the result of subtracting 25% from 43%) of the ill-formed
sentences are parsed into incorrect full parse trees.

The last row of Table 6 shows that, using the two-stage error recovery mechanism,
35% of the ill-formed sentences can be correctly parsed into full parse trees. That is, 10%
(the result of subtracting 25% from 35%) of the ill-formed sentences are correctly parsed
by recovering the part-of-speech errors. After the second stage, 76% of the ill-formed
sentences can be fitted into well-formed syntactic structures.

8 The bracket recall rate listed in Table 6 for PLB should be interpreted differently from that listed in
Table 3. The data listed in Table 3 is evaluated based on the brackets of the forests in the original testing
set. However, the data listed here is evaluated based on the brackets of the annotated full parse trees
obtained by parsing the ill-formed sentences in the testing set using correct modifications. After the errors
have been recovered, the testing sentence can be more deeply parsed and, consequently, the number of*
brackets in its parse tree increascs.
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Upon carefully inspecting the results, we find that, in the first stage, the
improvement in the accuracy rate for parse trees is significant, but the improvement in the
bracket recall rate is small. The bracket recall rate is significantly improved only in the
second stage. This phenomenon is due to the fact that the errors recovered in the first
stage are isolated errors. This kind of error does not hinder the parser from correctly
parsing other words. On the contrary, the errors recovered in the second stage are not
isolated. They seriously affect the partial parses of other words. Therefore, recovering
such errors can significantly improve the bracket recall rate.

In both the first stage and the second stage, some ill-formed sentences are parsed
into incorrect full parse trees. The number of incorrect brackets thus increases in both
stages. When the precision rate for brackets is computed, the increasing incorrect
brackets compensate for the increasing correct brackets, which result from correctly
parsing ill-formed sentences. As a result, there is almost no improvement in the bracket
precision rates in either the first stage or the second stage.

Although the above experiments were performed based on the English text, we
believe that this proposed approach can be applied to other languages as no
language-specific assumption is made in the model. Also, nothing that would prevent this
model from being applied to other languages has been observed so far.

6. Error Analysis

Although 35% of the ill-formed sentences can be recovered and correctly parsed into full
parse trees, there are still many errors which remain unresolved. By inspecting the
unirecovered sentences (65% of the test sentences), three different types of errors can be
identified and their proportions are listed in Table 7.

About 36% of the unrecoverable sentences have multiple errors. For example, the
sentence "The tutorial explains how and why to use the tool" can not be covered by our
grammar. Our grammar only covers the noun clause with only one question word (i.e., "
why") followed by an infinitive (i.e., "fo use the tool"). The desired modification for this
sentence is to delete the parts of speech of the words "how and". To recover such errors,
multiple modification actions should be employed to modify the parts of speech in the
second stage. Because multiple modifications are not allowed in our current system, this
sentence is an unrecoverable one.
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Table 7. Error types and their proportions.

Error type Proportion
Multiple errors 36%
Syntactic errors 35%

Incorrect modifications 29%

Since the number of different ways to modify a part-of-speech sequence with
multiple modification actions is very large, a fast scarching method to find the most likely
combinations of modification actions is required (if we still want to recover the multiple
errors). Besides, applying multiple modification actions, such as two insertions or two
deletions, will significantly change the number of parts of speech. However, a full parse
tree with fewer parts of speech is usually more likely to have a higher score than one with
more parts of speech. Therefore, the normalization issue must be considered to fairly
score the full parse trees having different numbers of parts of speech.

Besides the sentences of multiple errors, about 35% of the unresolved errors are
caused by syntactic ambiguity. Most of those syntactic errors result from incorrect
attachment of prepositional phrases. To eliminate such errors, purely syntactic
information is not enough; higher level language knowledge, such as semantic knowl-
edge, should be incorporated.

The final portion of the unrecovered errors result from incorrectly applying
modification actions. This accounts for 29% of the errors. Such errors usually occur in the
second stage, where modification actions are applied to modify the parts of speech.
About half of the errors occur in the situations that the correct modification actions are
not included in the top 15 modification actions. To deal with this problem, the
discrimination power of the score function, which is used to select the most likely
modification actions, should be enhanced. The other half of the errors result from
selecting the full parse tree relative to the undesired modification actions. For example,
the correct modification action for the ill-formed sentence "An may appear in the display
" is to insert a noun after the word "An". However, the output tree is derived from the
undesired modification action, which replaces the part of speech of the word "An" with
a pronoun. This is because the incorrectly modified full tree, which has fewer parts of
speech, is considered to be better than the correctly parsed full tree, which has more parts
of speech, from the syntactic point of view. Therefore, such errors can be regarded as
being related to "syntactic ambiguity"; and discourse information might be needed to
eliminate this kind of error.
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In summary, further improvements should be made in the following areas. First,
semantic knowledge should be incorporated to eliminate errors resulting from syntactic
ambiguity and some errors caused by incorrectly applying modification actions. Second,
the discrimination power and speed of the score function for searching potential
modification actions should be enhanced. Third, the normalization issue should be con-
sidered in order to deal with ill-formed sentences with multiple errors.

7. Conclusion

Parsing ill-formed sentences usually encounters more serious ambiguity problem than
parsing the grammatical sentences does. The ambiguities in an ill-formed sentence
consist of various partial tree forests, each of which is a combination of partial parses,
which jointly generate the input sentence. Since the number of possible forests is very
large, it is usually infeasible to enumerate all of them. In the past, the heuristic rule of
preferring a larger phrase was used to limit the number of partial parses. Ho vever, this
heuristic rule, although simple to implement, fails to achieve satisfactory performance
because the longest phrase is not always the correct phrase.

This paper has presented a Phrase-Level-Building (PLB) parsing mechanism for
handling ill-formed input. In this framework, a parse tree is represented as a set of
phrase-levels so that the wide-scope contextual information can be used to efficiently
narrow down the search space and accurately choose the desired forest of partial parses.
Compared with the baseline system, which uses a stochastic context-free grammar and
the "longest leftmost phrase first" heuristics, the proposed PLB approach improves the
precision rate for brackets from 69.37% to 79.49%. The recall rate for brackets is also
improved from 78.73% to 81.39%.

Since partial parsing without fixing errors only provides coarse and limited
syntactic information about ill-formed sentences, the proposed level-synchronous
parsing algorithm is further generalized to recover errors so that more complete syntactic
information can be provided. A two-stage strategy has also been proposed efficiently
finding the most probable modification actions to recover these errors. The experimental
results show that the enhanced parser can correctly recover 35% of ill-formed sentences.
The recall rate for brackets is significantly improved from 68.49% to 76.60% while the
precision rate for brackets is improved slightly from 79.49% to 80.69%. Although 35%
of the sentences can be recovered and correctly parsed into full parse trees, many errors
still remain. Further improvements should be made in three areas: incorporating semantic
knowledge to eliminate syntactic ambiguity of partial parses, enhancing the discrim-
ination power and speed of the score function to allow more modification actions, and
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dealing with the normalization problem resulting {rom multiple errors.
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Appendix A:  Descriptions of Grammar Symbols

Terminals:

a
be

comp
modl

guan

v
Nonterminals

ADTC
AUX
N*

1k

N3
NLM*
p*

S

V1
V2
VN

Adjective

Verb "be" used as an auxiliary
Complementizer

Modal

Noun

Preposition

Quantifier

Verb

Adjunct used to modify a verb phrase

Auxiliary phrase

A list of nouns (or noun phrases) in recursive form

Noun phrase (level 1)

Noun phrase (level 3)

A list of left modifiers for a noun phrase (in recursive form)
A list of prepositions (in recursive form)

Sentence (the start symbol of the grammar)

Verb phrase (level 1)

Verb phrase (level 2)

The noun phrase which is an argument of a verb phrase
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Appendix B: Derivation of the Score Function for Modified Parse Trees

As stated in Section 4, a modified parse tree T of N phrase-levels can be represented as
IT={L R L R;b.. L. R, Lo Ry Byl

where L. is the i-th phrase-level, R, is the set of modification actions used to modify Ll.
, L, is the result after applying R, to modify L., and Rl, is the set of normal actions
applied to build L, , from L, . Similar to Equation (1), the likelihood of a modified parse

tree T of N phrase-levels is derived as

PTiw )= PA. . R E R Lol B LR Euth)
= P(LN’RN—I’EN—l’ﬁN—I |LN—I’RN—Z’I’:N-—Z’:ﬁN—Z"“’L’z’R]’E]’ﬁl’Ll)

XP(LN 1> N 2’EN—2’RN—2 |LN—2’RN—3’Eﬁr—3’RN—3""’Lz’Rl’El’ﬁl’Ll)

x---x P(L,,R,,L,,R, IL,) (18)

N
= HP(L.’RI 1’Lz I’R IL, ,R,,,L,,,R, 5,---,L,,R,,L,,R,L)).
Assume that the modification action R, ,and the normal action R P which will be

applied to build L., into L, , only depend on L. . Then, the above equation can be

approximated as

P(ler HP(L:’RII’LVI’RrIIL:I’R|2’L:2’R ’LZ’Rl’f‘Hﬁl’Ll)
N S e N P(L)
~HeiL g b R =11 pa B B B L)
g ( i i-1 =] =l II) lljz{ ( il i-1 i | )P(Li_l) (19)
PE o+ = i P(LV)
T P(LI— ’Rl— ‘Ll— ’ i~ f = P(Rl ’ i- ’Ri— |LI)
P(L]) l,:! 1 l | 1 P(L,) H 1 =] I

Note that the last equality in the above equation holds because Ll._1 is uniquely deter-

mined by R,-_., L, RI._1 and Li. The last probability term in the above equation can be

further derived as

P(Rz s l’Ri—l L) = P(ﬁm lii»l’Ri»—l’Li) P(f‘i—l’Ri—l IL;)

= PR IER . LYPR L) 0
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Again, the last equality in the above equation holds because L, , is uniquely determined

by Ri_1 and Li . Furthermore, assuming that the modification action R, only depends on
L, ,, we can approximate PR IL R Lias P(R, L, ). Consequently, we can
obtain

PR GE R W s P TL PR IL). 1)

The probability factor P(Rl._llLi) can be further approximated by Equation (4). The other
probability factor P(R,, IL,,), which is related to the modification actions, is com-
plited based on whether R, is an empty set or not. If R, is an empty set, then

PR, L, Dis expressed as
P(ﬁi-—l Iii—]) = P(ﬁpl =¢IEH). (22)

For simplicity, we assume that the even R,_, = ¢ is independent of the event L:;_; . Then

P(ﬁ e A )can be set to P(R i = ¢) . Similarly, if R, , is not an empty set, then

P(R,, IL,)is computed as

P(ﬁi—l If‘:—l) = P(~ i-1° ﬁi—l =0 lim)
= PR, IR #¢,L_ )P(li,._1 +¢1L,.,) (23)
= PR, IR, #9.L)PR, #9).

Once it is decided that a phrase-level is to be modified, which actions will be applied is
assumed to depend on the contextual information in the modified phrase-level. Therefore,

the term P(fl,-_1 IR, #¢,L_, ) is further derived as follows:

R, =0,0,) = Plpriar)

= ﬁp(ﬁj aitarl= T PR Al \al

where m # 0, and the modification action p == (F;u,v) is assumed to depend on the its
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local context A, | --- A ,» (i.e., the symbols from the u-th position to the v-th position in
ii). The above parameter P(7 | K{:’) is estimated from the modified phrase-levels
obtained by applying modification actions.

According to Equations (18) - (24), the likelihood of a modified parse tree is, thus,
approximated as

P(Tiwy) =——x ] P(A, 14,,,4,,) xH [T Peiah

P(Ll) AjeLly i=l p=<ri> e R;

(25)
xHP(R q))xH{P(R z0)x  [] P(rIA)}

R;#¢ p=<Fu,v>e R

Since P(Lx) is the priori probability of the input sentence, it is the same for all competing

modified parse trees and, thus, can be ignored without changing the ranking order of the
likelihood values of the competing forests. Therefore, the scoring function S, . .(*) used to

rank the modified parse trees is defined as follows:

Swrl®) = T4, 14,4, x[] TI Poriamh

AjeLy i=l p=<ri#>e R,

(26)
XHP(R =9) XH{P(R zox ] P(rlAu)}

R;#¢ —<ruv>€R

where the subscript "MT" in SMT(') means "modified tree".



