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Abstract

This work is our initial attempt in using the transformation-based error-driven iearning (TEL)
procedure for tagging Chinese text. TEL has previously been shown to be effective in POS tagging
for English [Brill 1995]. TEL provides several attractions: (i) automation for tagging, (ii) induction
of interpretable rules, (iii) learning aimed at error-reduction. Our experimental corpus consist of
over 70,000 words of Chinese text, divided into disjoint training and test sets of a 9:1 ratio. With an
unknown word/tag proporﬁon of 13%, we achieved overall tagging accuracies of 94.56% (trajﬂing)

and 86.87% (testing).

1. Introduction

Part of speech tagging is an important linguistic problem which has garnered much research interest
and effort over the years. Automatic part of speech (POS) taggers are particularly attractive for
providing syntactic information applicable to speech recognition and understanding, information
retrieval, machine translation and other applications. A myriad of techniques have previously been
used for automatic POS tagging, ranging from rule-based to data-driven approaches. The former

tends to be hand-annotated by linguistic experts, while the latter includes stochastic n-grams,
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HMMs, neural networks, trigger-pair predictions, genetic algorithms, etc. [Bai et al., 1992][Kupiec

1992][Lua 1996][Black 1998]."  Rule-based approaches are linguistically well-motivated, but

éxpert handcrafting is often an expensive and tedious procéss. Data-driven. approaches attempts to
ameliorate the tedium by capturing relevant linguistic constraints from a corpus of annotated data.

However, the linguistic constraints captured are encoded in a large body probabilities and statistics,

which do not lend themselves well for exploratory linguistic analysis.

* Brill [Brill 1995] had previously proposed an alternative technique of transformation-based
error-driven learning for automatic POS tagging in English. This approach combines the merits of
rule-based and data-driven techniques in an elegant manner. The algorithm may be initialized
randomly or with some linguistically-motivated specifications. Machine learning then proceeds
with an annotated corpus, and with the objective of maximizing tagging accuracy. Such learning
produces a compact rule set, which encodes the contextual and lexical constraints for tagging, and
are easily interpretable by humans for studying the linguistic cues for POS tagging.

This work explores the use of transformation-based error-driven learning (TEL) for POS
tagging (or transformational tagging) of Chinese text. The Chinese language presents a unique set
of characteristics for the tagging algorithm, which include:

(i) The ideographic (character-based) nature of Chinese, in contrast to the alphabetic nature of
English. Chinese text consists of strings of charactérs separated by punctuation marks. A
Chinese word may consists of a single character, ‘or multiple characters with no delimiters
between words. Hence, Chinese text need to be segmented to form sequences of words. For a
given string of characters, there may exist multiple legitimate segmentations. Different
segmentations lead to different word sequences and hence different sequences of POS tags. In

this work, our task is simplified by using a pre-segmented corpus.

! Informative citiations are many, those included here are by no means exhaustive.
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(ii) Aside from the ambiguity caused by multiple segmentations, a given word may have multiple
possible POS assignments. For example, H/a E/ng and FE/nf 535 npf°, where & is a
common noun in the former and a last name of person in the latter.

(iii) The lexical structure of the Chinese word is very different compared to English. Inflectional
forms are minimal, while morphology and word derivations abide to a different set of rules. A
word may inherit the syntax .';md semantics of (some of) its compositional characters, for
example, £[. means red (é noun or an adjective), &, means color (a noun), and AL£4 together
means the color red (a noun) or simply red (an adjective). .Alternatively, a word may take on
totally different characteristics of its own, e.g.5& means east (a noun or an adjective), /& means
west (a noun or an adjective), and B PH together means thing (a noun). Yet another case is
where the compositional cilaracters of a word do not form independent lexical entries in
isolation, e.g. the characters in {5% (a verb) do not occur individually.

This work examines the utility of transformational tagging for Chinese text. We are especially
interested in the linguistic rules induced automatically by TEL for individual Chinese words, as well
as across a sequence of multiple words. Chinese linguistic structures may be observed in such
rules, including grammar, morphology and word derivations. TEL is appliéable not only to in-

vocabulary words, it is also designed to handle the occurrences of unknown words in corpora.

2. Corpus and Tags

This work is based on the pre-segmented and hand-tagged corpus from Tsinghua University [Bai et
al., 1992]. This news corpus is derived erm the People's Daily (Renmin Ribao) in the year 1993.
Altogether there are 112 articles and 71,804 words of running text, distributed across five domains:
computer, military, science, technology and general news. Unique vocabulary entries exceed 9,000.

Information about the entire corpus is tabulated in Table 1, and the word count in the table refers to

? These are word/tag pairs extracted from our corpora
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the length of running text. Table 2 displays some example sentences from each domain, which

shows the word/tag pairs for each sentence. In this work, we only tackle the tagging problem — our

tagger learns from pre-segmented and tagged training sets, and tests on a pre-segmented test sets.

Domain No. of Articles # of Words (train) | # of Words (test)
Computing 10 5,479 : 509
Military 23 12,243 1,787
Science 20 12,922 1,391
Technology ' 20 1 1,383 1,228
News 39 22,358 2,505

Table 1: Distribution of Training and Testing Sets. from the Tsinghua news corpus.

Domain Example sentences

Computing | Ff/m RB/p E/m —/mx FEfk/vg Kk&/ng ¥/p DECnet-DOS/xch J{T/vgy
Thtl 47/ vgo o/

Military F/vgn BEfEmg FE/vgn BjF/vgo H/usde EER/a AR /ng o/ »

Science i7f¢ﬁ';ﬁ/t /s Hfusde BEEEF /ng I5H#EMPS,/,

Technology | T{E/ng #=/ng Z/vy ERi/t Bii/ng 1F#/ng Bilmg UE/mvg H/f B/usde
N/d —/mx EBli/ng /-

News H[EIHE/Mmg Bi/va BEi/vgn EEl/s H—/vg RiE/Mmg B/usde E15@R/Mmve,/,

Table 2. Example sentences from our corpus.

The original tag set found in the Tsinghua corpus consists of 108 unique labels. These were

exhaustively enumerated in [Lua 1996]. Out of this set, 25 are for punctuation, and the remaining

ones draw fine distinctions for Chinese parts of speech. As an example, nouns are divided into 5

types: nf (last name), npf (name of person), npu (name of organization), npr (other proper nouns)

and ng (common noun). We added an extra tag, nvg, to represent words which can either be a
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noun or a verb, such as ;EHjj (exercise) or F 1~ (express/expression). The reason is as follows: in
the original tagged corpus, there are words like 3&J] which are tagged as general verbs, e.g.

ﬁ&ﬁb&/cf #&FE/vgn T futl £/ F&/qok 3EBh/vg Bl/vg 0 /> |

where the tags are: cf GEEFAIRTTEY), vgn (r RS EENEH), utl GERE " 1), m (HERAMEARR),

qnk (FEXHEFA]) and vg (—fEF).

In this context, however, &} seems to play a role more similar to a noun, which motivatéd the
design of the nvg3 because 3EH}] in this case is not suitable to tag as word.

One may wonder whether the full tag set is necessary for Chinese POS tagging.4 A
preliminary inifestigation of our entire corpus reveals that approximately 100 tags occurred, with the
most frequent one being ng (common noun), which occurred about 25.5% of the time. The most
frequent 18 tags (which include a few punctuatioh tags) covers 80% of our running text corpus,
while the most frequent 32 tags already covers 90%. Nevertheless, we proceeded with the full set of
109.

The ambiguities found in the Tsinghua corpus is 1.88 tags per word. (Please see Figure 1)
Over 40% of the vocabulary can be tagged multiple ways. Out of this, the maximum number of tags

per a word is 8. Table 3 lists the 8 POS tags of the word (/%) and their contexts.

- 100
IE
22 60
- O
gg 40
o p
Eo o
- -
© 0

1 2 3 4 5 6 7 8
Number of tags per word

Figure 1: Cumulative distribution of words with single to multiple POS tags

3 The idea of using nvg tags is attributed to Dr. Wenjie Li.
*'We have found tag sets of approximately 50 entries of fewer in other literature.
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Tag Example Sentences

vg (—kEhEE) | 38/m F/qnk Fon/vg FEing Bi/p J A E/xch Efbl/a - /-

vgo A k/ng Fl/cpw FxFH/nvg F/d F/vgn —/mx #H/qnc TFAXE/ng Fil/ng A& /ng
FHEEHE) | FoRivgo 0 />

vgn Fff/m ZRF/vgn S e t O/xch FIR/vgn B/b ZFEi/ng By/usde
CrieE®E) |ASCI I/xchF&mg >/

vgv D G/xch A—+/ng Frivgy #5/d B/p H/m #i&/vgv fuvgy Hilve B ivgo
EENEREE) | /- |

vga “I“ Belvy P ] LUva FTorivga —t§/a o/ o
(Gisiz=CuE)

vegs fIJE/d FKonivgs 1t

(/M E B

ng (FBELF) | HH/ng F/vg Rifi/ng fiiing & /ng BY/usde f&/vy X §k/ng BY/usde F/m
fH/qnk /g 0 />

nvg —/mx f5/qni 3 @/ng K/usde Fr~/nvg H/f Fi/ussu {5 F/vgn Hy/usde
() B |Zl/ng H/usde {EBing ...

Table 3. Example sentences of the word “Z/R” from our corpus.

3. Transformational Tagging
The algorithm is presented in detail in [Brill 1995]. The tagger addresses its problem at both the
lexical and contextual levels. Here we will provide a procedural sketch.

3.1 Notations

For the sake of simplicity, we will adopt the following notations in describing our work:

. Cd type » denotes a corpus C belonging to a specific domain d, and of a particular fype -

training, testing, lexical or contextual. The type is related to the transformational tagging

procedure, and will be explained later.

. T,( Cd type ) , denotes a tagged corpus C . The variable i may adopt the instances ref (for

the set of reference tags), start (for the tags resulting from the initialization of the tagger) or
final (for the tags resulting from the final stage of the tagger, having applied all tagging

rules). Details will be explained later. An example of a tagged sentence is:

17{HAD/t /s B/usde BEERFZ /ng NS HEMDS L/,
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e U ( Cd type ) , denotes a untagged corpus C. A procedure may be applied to strip off all the

tags, resulting in 17140 HE # BR4F ISHE

from the previous example.

d
e R type > denotes a set of rules R. Rules may be of the type lex (lexical rules) or context

(contextual rules). Example rules include:’

Lexical rule  : Jgoodleft vgn 135.820116353036
Contextual rule : vgn vgo NEXTIOR2TAG STAART

The associated explanation is in the following section.

] Ltype , denotes a lexicon, which may be of type lex (the lexicon for training lexical rules

only), or all (the lexicon containing all words in the training corpus).

3.2 Corpus Utilization

Figure 2 shows how the corpus is utilized. The entire corpus is first divided into a training set
(90% of the size) and a test set (10%). The training set is in turn divided into two halves. One
| half is used to train lexical rules -- these are rules applied in order to predict the tag of a word
based on the intra-word characteristics. The other half is used to train contextual rules -- these

are rules applied to tag a word based on its neighboring word contexts.
(100%)

C
(907% \\:10%)
C

C

train test
(50%) (50%)
Clex Ccontext

Figure 2. Corpus utilization in a particular domain.

5 The associated explanation is in the following section. 107



3.3 Transformational-based Error Driven Learning

Learning takes place in two phases. Lexical rules are learnt first, and are used during the

subsequent learning of contextual rules.

3.3.1 Lexical rules

These are used to tag unknown words. Learning lexical rules requires three word lists:

@

(ii)

- (1ii)

A list of all the words occurring in the untagged training corpus U(Cyyn), sorted by
decreasing frequency of occurrences. The word list is used to find the most common
prefixes and suffixes.

A list of triplets [word tag count] derived from T,( Ci.y), €.8.

=

= vy 365
1 cpw 358
= pzai 339
The words with more than one tags will get different entries in the list. Besides the
triplets [K] cpw 358], the list also contains three more triplets, [0 p 13], [f cpc 1]

and [f1 cpw 1] . The count of the triplet is the frequency of the word tag pair in the

tagged training corpus. The tagged words are used to calculate the weights of

possible tags for a given word.

A list of word bigrams found in the untagged training corpus, U(Cygin), €.8.

& FIH

# BRH

I

The bigrams list is used to calculate the weight of the tags to the preceding/following

word .
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Lexical Rule
—>
Learner R

Tref (Clex)

Tagged Words Words Bigrams

Figure 3. Learning Lexical Rules.
The learning process begins by giving the unknown word an initial tag. Such

initialization can be done in a number of ways: The unknown word may be assigned

unk, to denote its out-of-vocabulary nature. Alternatively, since unknown words are

often common nouns, we may assign them with the tag ng upon initialization. In
addition, we may utilization simple prior knowledge, e.g. assign xch (tag for non-chinese
word) if English letters are encounted, or mx (tag for numbers used in measurements).

Lexical rules are learnt according to some prescribed templates, so that they can utilize

prefixes, suffixes, constitutent characters and bigram relationships to infer an appropriate

tag for an unknown word. Some example templates include:

e {x w fgoodright/fgoodleft y n}, i.e. given the word in focus wc currently tagged as x,
should the word w occur to its right/left, change its tag from x to y. A close variant of
this template is {w goodright/goodleft y ﬁ}, which does not constrain the current tag
of the word in focus. n reflects the relative frequency of rule application in the

training set. Here is the equation for calculating n.
w
n= z N{wordj,tagk }—N{wordj , tagi}
= |

where W is the number of words in the training set, fagy is target tag to be changed,

tag; is current tag.
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word . , ta
N{wordj, tagk}= — L

3. word j» tag,
=k

where word, is a word in the training set, tag; is a tag for the word;, T is the number
of tags for the word; , word; tag, is the number of frequency for the pair word; tag; in
the training set.

Example of rule application:

Rule: { ng 2= fgoodright npf 11}

Sentence: -£E/ng ®W/vgn P HE/mx Hylusde BEFRRE/ng E/a T A/ng ZE/nf

{57 /npf

Here {37k is a unknown word, and the tagger assigns it with ng upon initialization.
However, seeing the last name 2% towards its left (i.e. Z& is to the right of our current
word) invokes the specified rule. {87 is then correctly transformed as a npf (name
of a person).

e {xzfcharyn},ie. given the word in focus wc currently tagged as x, should the
character z occur in the word, change its tag from x to y. A close variant is {z char y
n} which does not constrain the current tag of the word in focus. Example of rule
application:

Rule: mx 4 fchar t 46

Sentence: 19574/t THt F/p 1958%E/ 12HM

The unknown word 19574 will be iagged as mx (number for measurements) upon
initialization. This invokes the specified rule to change to the correct tag t (tag for
time). |

e {x a fhassuf/fhaspref p y n}, i.e. given the word in focus we currently tagged as x,

should it contain the p characters in its prefix or suffix a, change its tag from x to y.
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A._iclose variant of this template is {a hassuf/haspref p y n}. Example of rule
application:

Rule: ZXE € hassuf 3 npu 5

Sentence: S BIHEHEMEZES/mpu /4 Fil/vgn HiEmg ./,

The unknown word BESERE R EMZE Y will be initialized as ng. Owing to the
occurrence of suffix Z=E® its tag will be changed to npu (name of organization).
Therefore it can be seen that the lexical rules automatically leamt during this stage
offers insight as to the lexical nature of the words, interpreted with the use of prefixes,

suffixes, constitutent characters as well as bigram information.

3.3.2 Contextual rules
The use of lexicons and lexical rules ensure that each and every word in the text is
initialized with a tag. Contextual rules need to be learnt in order to correct any possible
errors in the initialization. Hence these rules should be effective in disambiguating among
the multiple tag assignments for a given word, using across-word contextual information.

The learning process for contextual rules is depicted in Figure 4.

U (Ccontext) T;ﬂef (Ccontext )
r
Start-state sartCoonien) p ContextualRule | 5 p
Tagger ' Learner context
Rlex Ltrain

Figure 4. Flow chart showing the process of learning contextual rules

The untagged corpus for learning contextual rules is first processed by the start-state
tagger. This tagger references the training lexicon, L., to assign the most frequent tag

to each of the words. Unknown words are tagged by applying the lexical rules. These
111



procedures produce a set of start-state tags Ty (Ceontext) for the corpus. These are then

compared with the reference tags, Trer (Ceontexs ), in order to proceed with error-driven

learning, which finally produces the set of contextual rules R onzexs. Error-driven learning

“of the contextual rules also follow a set of templates, which considers the across-word

context in a seven-word window - between one to three words/tags to the left and right of

the current word (word in focus). Examples of the templates include:

{x y nextlor2tag staart}, i.e. given thaf the current word we is tagged as X, change
the tag to y if the following one or two tags is the start/end of sentence symbol
(staart).
Example of rule application:
Rule: usde y nextlor2tag staart
Sentence: &/a BfE/ng H/f Bivy Tl/iva Bivgo By o/
Y is most commonly tagged as usde, and is initialized by the start-state tagger thusly.
Application of our rule corrects the assignment from usde to y (F&5.zH])-

{x y prevwd w}, i.e. given the current word wc is tagged as x, change the tag

to y if the previous word is w. Example application:

Rule: vv f prevwd

Sentence: F/vi @M 15/mx f/ng /A HJ/usde F/d K/a Bkivg &g o /-

" The most frequent tag of 7K is vv, which becomes the initial assignment of the start-

state tagger. However, the application of the rule corrects it to f (J5{375]).

During the learning process, the start-state tags are compared with the reference tags
for each sentence in C.onex;. Rules for error correction are proposed according to the
templates. The proposed rule which maximally reduces the number of errors is
adopted in the ordered transformational rule set. The adopted transformation is then

| applied to the entire training corpus, from left to right, and the transformation is
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invoked only after all matching contexts in the training set are identified. This
constitutes one iteration in learning. Iteration continues until no proposed rules can
reduce the minimum count of tagging errors. This minimum count threshold is
therefore an experimental parameter.
The difference between the templates 0f lexical rules and contextual rules is that lexical
rules only consider the lexical information of the words (such as prefix, suffix and characters-
in the word) and neighbouring words. For contextual rules, the considerations are contextual
information (such as the previous/following tag of current word), lexical information (such
as the previous/following words of current word) and combination of lexical and contextual

information (such as the previous/following word and previous/following tag together).

4. Experiments

Our experiments are based on disjoint training and test sets, with a 9:1 divide. Each corpus domain
is processed individually. We have also combined all the articles for all domains to form a large
corpus (71,804 words). This is also divided into training and test sets of the same proportion, and

used for experimentation. Figure 5 displays a couple of example sentences.

UNIX/xch Pacific/xch /NTl/mg EHi/p AT&T/xch Eivy {1FF/m EE{H/ng?
(UNIX) (Pacific) (company) (and) (AT &T) (is) (what) (relationship)
Bim FE/A By Bivgn  (HEE/m B/usde ?

(It)  (mainly) (is) (doing) (what)

Figure 5. Examples from the training set, with both segmentation and tagging included.

We also include a pseudo English translation in parentheses.

Since the training and test sets are disjoint, we see the occurrences of both unknown words as well
as unknown tags in the test set. An "unknown tag" refers to the tagging of a (known) word in the
test set, but the word/tag combination never appéared in the training set. For example, the single-
character word ¥4 was only seen with the tag vgn in the training set. However, it occurred in the

test set with the tag vgv. Our tagger is bound to make mistakes with cases of unknown tags. The
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proportion of unknown words and unknown tags range from 8.95% to 33.20% across our domains.

Details are shown in Table 4.

Domain | Computing | Military | Science Technology News Total

Proportion(%)

Unknown 29.08 13.26 22.14 7.33 15.85 10.00
Words '

Unknown 4.13 4.31 3.31 1.63 3.07 2.99
Tags

Unknown 33.2 17.57 25.45 8.96 18.92 12.99
Words &
Tags

Table 4. Distribution of unknown words and unknown tags
in the test sets across domains.

4.1 Lexical Tag Initialization

"~ As mentioned in the previous section, there are multiple schemes for assigning the initial tag to
an unknown lexical entity. We can either assign it as unk (unknown), ng (common noun, most
frequently occurring tag for unknown words), or according to our initial assignment rule, which
incorporates a small amount of prior knowledge:

If the word contains an English letter (A-Z / a-z), tag it as xch (non-chinese word)
Else tag as ng (common noun).

Results comparing the three schemes are shown in Figure 6.

100
g 90
-
o
g
s 80
Q
Q
<
o 70
£
o
&
S 60

50 .

Computing Military Science Technology News Total
Domain

Figure 6. Test-set tagging accuracies (%) for the three different initial assignment
schemes across the various domains.
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Our initial assignment rule fares better than the straightforward unk or ng assignments. Hence

we have decided to adopt it for our experiments.

4.2 Contribution of Lexical and Contextual Rules

Having acquired the initial stage assignments 7, we proceeded with our experiments by

applying first the lexical rules, and subsequently the contextual rules. At each point (7., and

T;.«) Wwe measured the tagging accuracy, in order to assess the respective contributions from the

lexical and contextual rules. This procedure is illustrated in Figure 7. Experimental results on

the test sets are shown in Figure 8.

U (Ctest )

Tﬁnal (Ctest )

_ T() ( Cte-ﬁ ) ‘p|  Start-state Tﬂaﬂ ( Ctes‘ Contextual
Initialization Tagger ‘ Tagger
La” ex Rcontext
Figure 7. Illustration of experimental procedure.
100 M Initial Tag Assignment |
M Lexical Rules Applied |
O Contextual Rules Applied
¥ 93
>
o
«
5 86
8
g
o 79
=
D
o
= 72
65
Computing Military Science Technology News Total
‘ Domain

Figure 8. Tagging accuracies on the test sets.

_Figure 8 shows that the lexical rules brought about a small but consistent improvement (from

0.08% to 1.06% across different domains) over the initial tag assignments across all the

domains. However, the contextual rules led to a slight degradation in performance in three of
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the five domains. For the "Total" category, we believe that the relatively higher improvement is
due to a greater amount of training data made available from gathering together 90% of the
entire corpus and the co-operation between lexical rules and contextual rules. As an illustration
of the co-operation between lexical rules and contextual rules, consider the example sentence:
Untagged Sentence: % fil Bz £ B & & HE MK T @H K HE /!
Reference Sentence: £5/rn {l/qng f{ii/ng b/f B/usde £5/m [/ng FE/ng AHK /g Bl A/vgn
EiH/Mmg K/lusde i E/Mmvg /!
Since Z{J\ is an unknown word, which is tagged as ng by the start-state tagger. After the initial
tag assignments and application of the lexical rule { >4 hassuf 2 vgv}, the senterice is tagged as:
. #/m {E/qng Fﬁﬁ']j/ng _E/f B/usde £5/m g F4E/mg Ak /ng Bl A/vgv EiH/mg Kjlusde
& mvg!/!
‘Finally, fhe application of the éontextual rule {vgv vgn 'SURROUN‘DTAG- ng ng} corrects the
tag for LA from vgv to vgn and it’s the correct tag for (A in the sentence.
In order to further assess the contribution of the contextual rules, we examined their effects
on the training corpus. Results aré shown in Figure 9. Since the trairll.in'g.‘corpus does not have
unknown words, we only have two sets of tagging accuracies - one from the initial tag

assignments, and the other from lexical rule application.

100 1initial Tag Assignment |
—~ Contextual Rules applied
L 97
g
5 94
(1]
<
o 91
£
3
|E 88

85
Computing Military Science Technology News Total
’ Domain

Figure 9. Tagging accuracies (%) on the training sets.
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For the results in Figure 9, the initial tag assignments utilized the lexicon derived from the
training set of the corresponding domain only. Compared to the test-set results, the contextual
rules contributed to a more pronounced improvement, across the training sets in all the
domains. The improvement did not carry over to the test sets, possibly due to over-fitting to

the training sets.

4.3 Performance on Unknown Words
We have also examined our tagging performance on the unknown words and unknown tags in

the test set. Performance accuracies on unknown words range between 40 to 50%, as shown in

Table 5.
Test Sets Computing | Military | Science | Technology | News Total
Unknown word 55.41 44.73 56.16 53.33 43.31 56.57
Performance

Table 5. Tagging accuracies (%) on the unknown words in the test sets.

Our experiments have also shown that the contextual rules learnt have not corrected any of the
unknown tag errors in the test set. One reason is due to the propagation of errors - an errorful
tag assignment to an unknown word may propagate via contextual rule applications to cause
- errors in subsequent tags. As an illustration of error propagation, consider the example
sentence: -

2 OB R B 05 K 4 O AfF o

where 5% is the unknown-Word, the tag qni ({E#&5A]) of & is the unknown tag. After the
initial tag assignments and application of the lexical rules, the sentence is tagged as:

%/a ThH/ng #F8R/Mmg B3E/Mmg H/f B/ E/vh 30/mx %/mg F/ng H/f HE E§&/ng
Bffivg g -/ -

The unknown word 5% is tagged as ng.
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Subsequent to this, application of the contextual rule {vg vgn prevlor2tag ng} transforms
the tag for & 1E (from vg to vgn) since its left tag of word &% is ng. Therefore, the tag of

& 1E is becomes an error. Now the sentence tags become:

2/a Th/ng R$EMmg ©Fmg I/ B/d Fivh 30/mx %/mg F/ng I/ S 5E/ng
&ElEivg % /g /-

This is compared with the reference tags:

Z>/a Th/ng $Eng ©F¥/mg /f B/d F/ivh 30/mx %/mg F/ng F/f A G5F/ng
Effivg g /0 |

We find five errors in the TEL tagging:

Fing, /f, S}/, §& /g, EEIvg (h;'pothesized) ,

ZF/qni, F/j, 4, &/, EFIvg (reference)

and among these three originated from unknown words and unknown tags (3%, &%, &6

4.4 A Possible Benchmark

We attempt to come up with an upper bound benchmark for our performance accuracies, by

ameliorating the unknown word problem. To achieve this we included all the words in our

entire corpus (Lgy) for initial tag assignment. We have also used the entire training corpus for

training the contextual rules (instead of divided it into the lexical and contextual portions, as

mentioned previously). This experimental procedure is illustrated in Figure 10. Our

experimental results suggest that possible upper bounds for tagging performance lies around

97% for training and 94% for testing in domain total. This compares with the previous

performances of 94.56% in the training set (please see Figure 9 in pp.16) and 86.87% in the

testing set (please see Figure 8 in pp. 16).
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(Ctrain) Tref ( Ctrain )
: T.'stan‘ ( Ctrain ) l
Start-state " Contextual Rule
Tagger : Learner context
Lall

Figure 10. Training procedure which attempts to ameliorate the effect of unknown words.

Experimental results for both training and test sets are tabulated in Tablé 6.

Domains Computing | Military | Science | Technology | News Total

Training 96.13 96.98 97.70 96.98 96.70 | 96.96

Accuracies ‘

Testing 94.10 | 92.05 | 94.18 92.51 '92.73 93.88

Accuracies ' <

Table 6. Tagging accuracies (%) for both training and test sets,
under the condition with no unknown words.

4.5 Comparison between the TEL approach and the stochastic approach

We attempted to compare the TEL approach with a stochastic approach for POS tagging. Our

stochastic tagger is provided by Tsinghua University. It utilizes a Markov model for POS

tagging, i.e.

P(T’s\1W,)= max P(T, IT,) P T, )P(W,1T)

Ti2 T 1—2

and has been previously trained.® Therefore it was not straightforward for us to compare the

two taggers based on identical training and testing sets. We divided each corpus into 10

partitions — 9 of them were used to train the TEL tagger and the remaining one for testing.

This preserves the 9:1 divide between training and testing sets. These experiments are

repeated 5 times by jackknifing the data sets, and the performance accuracies were averaged

(see row 2, row 3 and column 7 of Table 7). We combined the average training and testing

accuracies according to the formula:
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Overall Accuracy (TEL) = 0.9 x average training accuracy + 0.1 average testing accuracy

The weights of the training and testing accuracies follow the proportion of the resbective data
sets. The Overall Accuracy (TEL), shown in the third row of Table 7 were compared with the
corresponding values of the stochastic tagger, shown in the last row of the table. Our results

suggest that the TEL and stochastic approaches produce comparable results.

Experimental 1 2 3 4 5 Average

WS ‘ (over 5 runs)

TEL tagger 95.20 95.17 95.16 95.00 95.17 - 95.14
(Training
Accuracy)

TEL tagger 88.33 87.60 87.46 88.40 87.26 87.80 -
(Testing :
Accuracy)

TEL tagger 94.50 94.35 94.33 94.39 94.41 94.38
(Overall ,
Accuracy)

Tsinghua | 91.59 91.59 91.59 91.59 91.59 91.59
tagger :

Table 7. Tagging accuracies (%) for both training and test sets.
Comparison between the TEL approach and stochastic approach.

5. Conclusion
This work is our initial attempt in using the transformation-based error-driven learning (TEL)
procedure for tagging Chinese text. TEL has [;reviously been shown to be effective in POS tagging
for English (achieving over 96% tagging accuraciés in using the Brown and WSJ corpora) [Brill
1995]. It has several attractive properties: (i) it provides an automatic procedure for tagging, (ii)
the lexical and contextual rules it learns often make intuitive sense for the Chinese language, and
potential provides room for the incorporation of linguistic knowledge by a human, should there be
sparse training data problems, (iii) the learning procedure aims to minimize errors to obtain

maximum tagging accuracies.

8 Previous litefature indicates that the training was based on 91Oé%>oof the corpus.



Using a Chinese news corpus of over 70,000 words, divided into disjoint training and test sets
of a 9:1 ratio, we achieved overall tagging accuracies of 94.56% (training) and 86.87% (festing).
Across the different domains, the proportion of unknown v?ords and unknown tags range between‘
8% to 33%, and tagging performance fromv79.96% to 88.68%. In general, the higher the proportion
of unknown words/tags, the lower the tagging performance. The baseline performance (without
applying any rules) was 91.16% (training) and 84.39% (testing). Both the lexical and contextual
rules were found to be contributive towards tagging performance. Performance accuraéies are much'
improvéd upon the use of a compréhensive lexicon to amelibrate the unknown word probleni, :
reaching 96.96% (training) and 93.88% (testing) respectively as a possible gauge of an upper bound
performance for our experiment. While direct comparison with the work of ot.he:rs7 is difficult due to
uncertainties in training/testing ciata partitioning, our experimental results ih comparison with a

stochastic tagger suggests that TEL is equally effective and applicable for Chinese.
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Abstract

In this paper, a statistical lahguage model that can model both remote and local
dependencies is proposed. This model takes into account the relationship between the
predicted word and its preceding words without considering the order of the preceding
words. Two primary parameters, the reliability coefficient and the combination factor,
are proposed to achieve a better performance of the language model. The reliability
coefficients identify the reliabilities of the remote dependencies to the predicted word.
- The combination factor gives a weight to the combination of the local dependency
and the remote dependency.

The language model was tested on the task of word clustering and compared to
the traditional N-gram language model. A large corpus provided by Academia Sinica,
Taiwan, containing 5 million words was used for training and testing. The
experimental results show that the proposed model takes littler computation and
achieves a better performance for large N compared to the traditional N-gram

language model.

1. Introduction
Statistical language models have proved useful when enough data is abailable to
estimate the word probabilities. The most commonly used statistical language

modeling technique is to consider the word sequence w, ---w, as'a Markov process

and is termed as the N-gram language model. The traditional N-gram language model

estimates the word sequence probability by the following equation
. Q
P(w,-w)=[TPw, 1w M
n=1

where w.",, represents the word sequence w,_,, ---w,, for short and the

n-1

conditional probability P(w, | w,_,,,) indicates that the probability of the word w,
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can be predicated by its precéding N-1words w,_y, "W, .

The N-gram language model has been shown that it can work very well on
dealing with local dependency in language. But it takes heavy computation and large
memory requirement for large N. For practical reasons, most systems use bigram or
trigram only. That is, they estimate the conditional probabilities only for N=2 or 3.
Thus computational complexity and memory requivrement can be reduced efficiently.
In this model, however, the remote dependencies will not be taken into account. That
is, some grammatical structures like "if...then" clause will not be modeled.

Without caring about heavy computation and memory requirement, the

conditional probability P(w, |w,_y,, -**W,_,) strictly constrains that the predicted
word w, is related to the preceding word sequence w,_,,, ---w,_, and their order. In
practice, however, the word w, is partially related to the word sequence

W,_na =" W, only. In other words, the word w, is only related to some words in the

word sequence w,_,.,---w,_, rather than the whole word sequence. For instance,

considering the sentence "I went for a long long walk this moming," using the
conditional probability P("walk"|" go"," for","a") to predict the word "walk" will
be more appropriate than using P("walk"|"go"," for","a","long","long"). The
phrase "go for a walk" is a very common usage in texts but the phrase "go for a long
long walk" is often used in spoken language or is an unseen event.

One of the primary difficulties encountered using the N-gram language model is
the problem of sparse data. No matter how large a training corpus you have, there will
always be many unseen events that will come up in testing. For this sake, many
people invested in modeling unseen events [1, 2]. Smoothing methods solved the
problem of sparse data only for some cases. For instance, the unseen events never
appearing in real world and the unseen events resulting from incomplete collection are
different, but they are viewed as the same by the smoothing methods. In our opinion,
the kinds of problems should be essentially dealt with in modeling phase rather than
in smoothing phase.
| A different approach in language modeling was proposed by using the
technologies of class mapping [3]. For an unseen word m-gram, it is still possible to
map ‘it to a corresponding class m-gram. Because the number of model parameters

such as the m-gram probabilities is reduced due to the class mapping, each parameter
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can be estimated more reliably. On the contrary, reducing the number of model
parameters will result in a rough model with less precise prediction of the next word.
It is a tradeoff between these two extremes.

In terms of linguistics, however, word equivalence class is an important concept
in syntax and semantics. It is defined by linguistic experts and is called part of speech
(POS). In the past years, many techniques for word clustering have been proposed [4-
6]. Generally, the algorithms are based on minimum perplexity or maximum
likelihood. In this paper, the most commonly used quantity, perplexity, is used to
evaluate the proposed language models on the task of word-clustering.

The goal of this paper is to model both remote and local dependencies in
language but just requires low computation and memory requirements. We will
describe the remote dependency modeling in Section 2. The proposed language model
will be described in Section 3. In Section 4, we will describe how to 'implement word
clustering efficiently by the exchange algorithm. We designed several experiments to
show the performance of the la.hguage model we proposed on word clustering. We
will show the experimental results in Section 5. Finally, we will make some

conclusions in Section 6.

2. Remote Dependencies Modeling

The N-gram language model encounters two difficulties while estimating remote
dependencies. The first one is that it takes much time in computation and requires
much memory for large N. The second one is the problem of sparse data. Here, we
will describe a way for modeling remote dependencies but reducing the above

requirements.

2-1 Estimation of Remote Dependencies

Estimating remote dependency between two disconnected words, intuitively, can
be viewed as estimating remote bigram. If there is a pair of disconnécted words v
and w, where v appears in front of w in the text, then computing remote bigram of
v and w can be viewed as computing the conditional probability p,(w|v) defined
as

Fy(v,w)

F@) )

Dy(v,w)=p,(w|v)=

where F(v) denotes the frequency of the word v and F,(v,w) denotes the
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frequency of the disconnected word pair (v, w) in the corpus.
However, the estimation of conventional bigram is not applicable to remote

bigram. For each word, it counts remote dependencies in a proper range M based on

the -corpus. It will happen that 2 pr(w|v)21 due to Z F,(v,w) 2 F(v) when the

range M is greater than 2. For instance, for the word sequence v---w,w,, the
summation F,(v,w,)+ F,(v,w,) will be greater than the frequency F(v) if we
increase the frequencies F(v), F,(v,w,) and F,(v,w,) by 1 respectively. To avoid
this inequality, we just increase the frequency by c rather than 1 for each remote
frequency F,(w,_,w,),i=2--M —1 and c can be computed as

- max b L1
c=max{M_2,L_2} 4 (3)

where L is the number of the words from the left boundary of the sentence to the
predicted word . Thus, it will keep the equal sign of the following equation

Y Fy(v,w)=F() )

Nevertheless the above estimation will lose some dependencies from more complex
grammatical structures like "prefer to ... rather than." To avoid this problem, we can
increase the degree of remote dependency by using remote m-gram rather than remote
bigram. In our experiments, we model remote dependencies by using remote bigram

only.

2-2 Reliability Coefficients

The remote dependency D,(v,w) is defined to represent the dependency
between the predicted word w and a prior word v. Since there are several
dependencies in the proper range M, it is reasonable to assign a weight for each
dependency. We call them reliability coefficients. They identify the reliability of the

corresponding dependency to the predicted word. The more the appearance frequency

is, the better the reliability is. For a remote dependency D,(w,_,,w,), therefore, the

reliability coefficient A,, can be estimated as

li‘" - F}? (.wn—i > wn ) (5)

M-l
z E? (wn—_/ > wn )

J=2
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3. The Proposed Model

In this section, we will describe how to combine remote dependencies into N-
gram language model. In order to solve the problem of sparse data, we categorize
words into word equivalence classes and estimate unseen events by using Turing-

discounted probabilities [7].

3-1 Combination of Remote and Local Dependencies
The proposed model consists of two components: the N-gram language model
(N-gram) and the language model with parallel remote dependencies (PRD). These

two components could be defined as follows.

o  N-gram Language Model (N-gram)
n-l N _ F(w,_\..)

Py W, | Wy y) = ¢
o O )= ) ®)
e Language Model with Parallel Remote Dependencies (PRD)
M-I .
Py 0y 1) = L] D, %

Since the N-gram model considers the local dependency only, it is enough for
N=2 or 3 in the combination model. The combination model named Language Model
with M-Remote and N-Local Dependencies (MRNLD) consists of N-gram with small
N and the language model with M parallel remote dependencies. Fig.1 shows the
relationship between the predicted word and the remote and local dependencies. The

language model can be defined as

Prniy (W, [ W) = Py _gram W, | W::};m ) Py (W, [ Wiy ) (8)
where o(w,) is the combination factor. It weights the N-gram language model and
the language model with M parallel remote dependencies for each word w,. We

model its behavior by using a sigmoid function that can be computed as

1

a(w,)= 14 g0 2 . ©)

where /(w,) and r(w,) represent the local and remote log likelihood functions for

the word w, respectively. They are defined as follows
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l(W") = lOgHPL (wn | w)l<'/,(w,wn)
welW

' 10
= Z(logF/‘(Wswn)—IOgF(W))FL (W, wn) ( )
r(w,) =log[ [ p.(w, | w) RO

Y (log F,(w,w,)—log F(W)F, (w,w,)

local bigram

the predicted word

M-2 remote bigrams

Fig.1 the relationship between the predicted word and the remote and local

dependencies

3-2 Word Equivalence Class Mapping

In word clustering, we assumed that each word belongs to only oné class. By this
assumption, a mapping C from vocabulary W to classes G can be represented as

CW—-G , (12)

and by this mapping, the bigram probability [1] can be defined as
_ P(w|v)=P(w|C(w)- P(C(w)| C(v)) 13)
where P(w|C(w)) denotes the membership probability of the word w and
P(C(w)| C(v)) denotes the transition probability‘ from class C(v) to class C(w).

Then Eq.8 can be recomputed as

-
Priwis W | W

= P(w" | C(W" ))
X Py gram (COW,) | C(W,_yy 1)+ C(w, )X )
X Py (CW,) | CW,_ppi1) = CW,_y ))'—a(C(w,.))

(14)

where the combination factor o(C(w,)) and the related tokens are well defined as

follows:

1

o(g)= 1+ ¢ V@@ (13)
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I(g) = Z(logF,, (h,g)—log F(R)F (h,g) - (16)

r(g) = (log Fy(h,g)—log F(h)F,(h,g) (17)

he(;
After the word clustering process, the number of unseen evens can be greatly
reduced. For the remaining unseen events, the Turing-discounted:probabilities [7] are

adopted for further smoothing.

4. Implementation of Word Clustering

4-1 Clustering Algorithm

We use the exchange algorithm [4] in this word clustering process. The main
idea of the algorithm is to find a class mapping C :W — G such that the perplexity
of the language model is minimized over the training corpus, where an observation
word may be exchanged from a class to another class in order to improve the criterion.

In the case of language modeling, the optimization criterion is the entropy described

in next subsection. The initialization method is to assign the most frequent |G|—1

words into their own word equivalence classes, where |G| is the number of classes,

and the remaining words into an additional word equivalence class.

4-2 Performance Measure

Having constructed a language model, we need to show how well the proposed
language model performs in a task. It is necessary to have a method for measuring the
performance. We use the perplexity to measure the performance of the MRNLD on

word clustering. The formal perplexity PP is defined as [8]

PP =P(ww,--w,) ° A (18)

For the MRNLD, the estimation of well-defined entropy can be decomposed in

terms of frequencies as follows

H, =log PP (19)
1 o

=-—log P(w,w, - w,) (20)
0 .

___1_10 ﬁp ( ' n-l 21

= 0 g : vy Wa | Wolarsr) (21)
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1 Q n- .
= _5 2 log Pyepsy (W, | Wn-14+1 (22)
n=l1 -

=L (3 log p(w, |Cw,)
Q n=1

0
+ Y. a(Cw,)log p, (C(w,) | C(W,_y.1) - C(W,,)) (23)

n=1

Q M-l
+ 2 [~ a(Cw, N Y A, log p(Cw,) | C(w,_ D]}
n=1 i=N .

F(w)
F(C(w))

= —é{;F(w) log

FL (Hs g)

F(H)

Fr(CW,,),C(wW,))
F(Cw,.)

+ Y a(g)F,(H.g)log 24)

geG,HeG"™!

Q M-
+Y (A-o(C(w,)) A, log )
i=N

n=1

- _é (Y F(w)log F(w)- Y F(g)log F(g)

g€l

+>.0(g) Y F,(H,g)logF,(H,g)~log F(H)) (25)

geG HeGY™

Y M=i
+ 3 (A-a(CWw,))N Y A, (og Fp (C(w,,),C(w,)) —log F(C(w,_,)))}

= _é{z F(w)log F(w)- ). F(g)log F(g)

geG
+ Za(g) ZFL (H,g)logF, (H,g)—log F(H)) (26)
geG HeGY™!
Y F, (1, g)log Fy (h,, g) ~log F(h,))
+ Y A-og) Yy e -
geG nC(w,)=g ZFR (h‘,g)

=N h,=C(w,_,)

}

By Eq.26, it takes much time on computing remote dependencies due to dynamic

reliability coefficients. In order to reduce the computational complexity, 4,, is

chosen as a constant, . It means that the reliabilities for all remote

dependencies are equal. Then Eq.26 can be rewritten as
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H, :'_é{z F(w)log F(w)— ¥ F(g)log F(g)

weW geCG .
+ Y 0(g) X F,(H, g)logF, (H,g)-log F(H)) (27)
+ > (1-a(g)d, Fp(h, g)log Fy (h, g) — log F(h))}

geG heG

5. Experimental Results

In this section, we will show the experimental results for the Word clustering
procesé. The test corpora, ASBC (Academia Sinica Balanced Corpor;a_), were provided
by Academia Sinica, Taiwan. We tested on four aspects: The first one is model testing.
It tests on three models: the traditional N-gram language’ model, the language model
with M parallel remote dependencies, and the proposed model MRNLD. The second
one is the testing for CPU time. It compares the CPU time in word clustering by using
different language models: the class trigram language model and the MRNLD. The

third one is parameter testing. It tests the reliability coefficient A,, and the

combination factor ¢« . The fourth one is corpus test including inside test and outside

test. All of these tests evaluate the performance by perplexities.

5-1 Corpora

ASBC consists of several corpora that were collected and tagged by Institute of
Information Science, Academia Sinica. It contains 5 million words and a vocabulary
of 130,000 words including common words, proper nouns and compound words. In
our experiments, we chose about 27,000 most frequent words as the vocabulary.

In the word clustering process, we predefined 6 classes. The first two classes

consist of one word respectively. The first two classes are "iou3" () and "shz4" (&2)
and their grammar behaviors are very complex, so we pre-clustered them into 2
classes respectively. The third class consists of 4 words: "de" (FY), "jr" (), "de" (15),
and "de" (3#t) due to their special functions. The fourth class collects all borrowed

words from foreign languages in the corpora. The fifth class collects those out-of-
vocabulary words. The sentence boundary was viewed as a word and pre-clustered

into the sixth class.

5-2 Word Clustering Experiments

In the experimental results, the traditional trigram laﬁguage model is abbreviated
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to trigram, the language model with 3 parallel remote dependencies is abbreviated to
3-PRD, and the language model with 3 remote and 2 local dependencies is
abbreviated to 3-R-2-LD. Additionally, 3-PRD is defined as 3-R-2-LD with the local
degree (N) being 1.
7 5-2-] Model Test

Table 1 shows perplexities of trigram, 3-PRD, and 3-R-2-LD. In this experiment,
we tested on remote degree of 3, dynamic combination factors, and static feliability
coefficients. We used the whole corpus of 5 million words in testing. However, since
trigram needs large computation, it wa§ just tested on cluster numbers of 50, 100; and
200. The results show the language model with 3 remote and 2 local dependencies is

better than the traditional trigram language model in word clustering.

Table 1. Perplexities for different models with different numbers of word equivalence

classes
LM No. of Classes| 5 | 100 | 200 | 500 | 1000 | 2000
Trigram 247.63(212.58(182.38| - ; ;
3-PRD 215.23(195.46|160.78(136.92|108.44| 95.45
3-R-2-LD 201.39(173.85(135.26/112.45| 89.86 | 78.93

Table 2 shows perplexities of PRD and MRNLD with different remote degrees
(M) from 3 to 8 and a fixed local degree (N) being 2. In this experiment, we clustered
the whole corpus of 5 million words into 50 classes by using dynamic combination
factors and static reliabilify coefficients. The results show that the perplexities of both
two models decrease as the remote degrees increase and MRNLD performs better than

PRD.

Table 2. Effect of remote degree (M) for different models
M

L M. 3 4 5 6 7 8

" PRD 215.231208.91|199.73 | 193.28 [ 205.63 | 211.37
MRNLD (N=2) |201.39(196.54 | 188.49 | 185.10|190.57 | 196.25
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5-2-2 CPU Time Test

Table 3 shows the CPU time per iteration by using the 3-R-2-LD model and the
trigram model on word clustering and the result shows that the 3-R-2-LD model is
more efficient than the trigram model. This experiment is tested on the corpus of 5
million words. Due to large computations of trigram, we tested only on cluster

numbers of 50, 100, and 200.

Table 3. CPU time (minutes per iteration) for clustering algorithm on different models

LM No. of Classes| 5, | 100 | 200 | 500 | 1000 | 2000
Trigram 172 | 340 1035 | - - ;
3-R-2-LD 115 | 230 | 621 | 2016 | 5138 13740

5-2-3 Parameter Test

To reduce the computational complexity, we simplified the dynamic reliability
coefficients to be static ones. We want to know the simplification effect in this
experiment. Additionally, due to the large computation in testing on the dynamic
reliability coefficients, we used a small corpus that is only part of the ASBC and it is
also clustered into 50, 100, and 200 classes. The downsized corpus consists of 1
million words. Table 4 shows the experimental results. The static reliability
coefficients are better than the dynamic ones. This seemly contradicts to our

expectation. A reasonable explanation is the problem of data sparseness.

Table 4. Perplexities for dynamic and static reliability coefficients (A )
No. of Classes

1 50 100 | 200 | 500 | 1000 | 2000

Dynamic 245.86/197.41(158.03| - - -
Static 223.07(185.15(149.79(116.93| 95.23 | 87.74

The combination factor o is dynamic and defined by a sigmoid function. The
MRNLD is the combination of the N-gram and PRD, the combination factor
determines whether the N-gram model is more important than PRD or not. From

Table 5, we know that sometimes N-gram is more important than PRD but sometimes
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not. It depends on classes. The corpus used in this experiment consists of 5 million

words.

Table 5. Effect of combination factor (& ) on the number of classes

. No. of Classes| 55 | 100 | 200 | 500 | 1000 | 2000
0.25 283.97|273.34|254.37|245.18|223.64|209.84

0.5  [269.51[250.49|212.49|20431(179.57168.35

0.75 254.66|225.04|197.43| 164.25|144.59]123.88
Dynamic 201.39]173.85|135.26| 112.45| 89.86 | 78.93

5-2-4 Corpora Test

A successful language model should be applied to any other corpora. So we
divided the corpora into two groups of 1 and 4 million words. Let the small one be the
training corpus and the big one be the test corpus. Table 6 and 7 show the
experimental results. The same as our expectation, the results of the outside test are
somewhat worse than the inside test. Besides, both of these two tests show that the

language model with the remote degree of 6 has the best performance.

Table 6. Perplexities on inside test

No. of Classes

50 100 | 200 | 500 | 1000 | 2000

223.07(185.15(149.79({116.93| 95.23 | 87.74
218.21{179.48|144.83|113.46| 93.57 | 82.06
1209.32(176.25(137.68(105.30( 90.37 | 80.64
207.58(172.79(136.51(102.22| 88.24 | 79.62
212.03|188.16(145.22(107.97| 92.75 | 85.34
220.57(190.62(146.13|112.68| 93.06 | 88.29

I | A|n| W
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Table 7. Perplexities on outside test

No.. of Classes

50 | 100 | 200 | 500 | 1000 | 2000

252.12(228.06|197.00|160.94(133.76 125.63
244.56|216.83|186.29|157.20|130.94|120.39
243.67(215.98|175.64 147;.26 126.70|116.52
237.06{208.34(174.17|139.56(117.53|110.02
252.78(222.03(185.63(153.64(125.64(118.08
269.74|224.76|190.49|157.89(134.80/120.24

X|IN|nn|n] ]| W

6. Conclusions

In this paper, we proposed a word equivalence class based language model that
can model both remote and local dependencies. This model takes into account the
relationship between the predicted word and its preceding words without considering
the order of the preceding words. Although this model considers the remote
dependency and the local dependency simultaneously, it requires littler computation
than the traditional class-based N-gram language model on word clustering task and
achieves a better performance for large N.

Two primary parameters, the reliability coefficient and the combination factor,
are proposed to achieve a better performance of the language model. According to the
experimental results, the language model achieves the best performance on static

reliability coefficients and dynamic combination factors.

References

[1] S. M. Katz, "Estimation of Probabilities from Sparse Data for The Language
Model Component of A Speech Recognizer," IEEE Trans. on Acoustics, Speech,
and Signal Processing, vol. 35, no. 3, March 1987, pp. 400-401.

[2] F. Jelinek and R. L. Mercer, "Interpolated Estimation of Markov Source
Parameters from Sparse Data," Pattern Recognition in Practice, North Holland,
1980, pp. 381-397.

[3] S. Martin, J. Liermann, and H. Ney, “Algorithms for bigram and trigram word
clustering,” Speech Communication, 1998, pp. 19-37.

[4] R. Kneser and H. Ney, "Improved Clustering Techniques for Class Based

135



Statistical Language Modeling," Proc. 3 European .Conference on Speech
Communication and Technology, 1993, Berlin, pp. 973-976.

[5] P. F. Brown, V. J. Della Pietra, P. V. de Souza, J. C. Lai, R. L. Mercer, "Class
Based N-gram Models of Natural Languei_ge," ‘Computational Linguistics 18 (4),
1992, pp. 467-479.

[6] M. Jardino, G. Adda, "Automatic Word equivalence classification Using
Simulated Annealing," Proc. 3 Eurobean Conference On Speech communication
and Technology, 1993, Berlin, pp. 1191-1194.

[7] 1. J. Good, "The Population Frequencies of Species and The Estimation of
Population Parameters," Biometrika 40, December 1953, pp. 237-264.

[8] Lawrence Rabiner and B. H. Juang, "Fundamentals of Speech Recognition,"
Prentice Hall, pp. 449-450. |

136



Term Selection with Distributional Clustering for Chinese .Text

Categorization using N-grams

Jyh-Jong Tsay and Jing-Doo Wang
Department of Computer Science and Information Engineering
National Chung Cheng University |
Chiayi, Taiwan 62107, ROC.
{tsay, jdwang}@cs.ccu.edu.tw
TEL:886-5-2720411.EXT.6207, FAX:886-5-2720859

Abstract

In this paper we propose an SB-tree approach to extract significant patterns ef-
ficiently by scanning the leaves of the SB-tree to decide the boundary of significant
patterns for term extraction, and reduce the dimension of term space to an practical
level by a combination of term selection and term clustering. Our current experiment
uses CNA one year news as training data, which consists of 73,420 articles and is far
more than previous related research. In the experiment, we compare the performance
four term selection methods, odds ratio, mutual information, information gain and x?2
statistic, when they are combined with distributional clustering method.. Our experi-
ment shows that x? statistic and information gain achieve performance better than odd
ratio and mutual information when they are combined with distributional clustering.
With the combination of term selection and term clustering, the dimension of term

- space can be greatly reduced frorﬁ 60000 to 120 while maintaining similar classification
accuracy. ‘
Keywords: Text Categorization, Term Selection, Term Clustering, Naive Bayes Clas-

sifier, Information Retrieval.
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1 Introduction

Text classification(categorization) is the problem of automatically assigning predefined classes
to free text documents, and is gaining more and more importance as the amount of text
data available on World Wide Web grows dramatically. A well classified text database will
be very helpful for a user tb identify interesting data from the huge collection of texts.
There are many studies about the text classification as well as web-page classification
17, 1, 9, 10, 27, 32, 33, 23, 24, 7, 38, 15]. While there are a great number of researches

on automatic text classification for English texts, text classification for Asian languages
| such as Chinese, Japanese, Korean and Thai has not been studied seriously until recently
(36, 21, 37, 3, 28, 31, 29].

Because text segmentation is not straightforward in Asian languages, 1-grams, 2-grams
and n-grams have been used as indexing terms to represent documents. It is reasonable that
n-gram is more meaningful and brings more concept than 1-gram or 2-gram. The main ob-
stacle to apply n-grams to Chinese text classification is the huge number of possible n-grams.
Notice that many of them are meaningless and non-informative for text categorization. The
major challenge is to develop an approach that can reduce the dimension of term space to an
acceptable level while maintains similar classification accuracy. There was a related study
about term selection in Chinese text classification[29]. A practical problem there is that a
news may contain very few or even non of the selected terms, and thus is classified to the
default class which is the largest class. On the other hand, a large number of selected terms
make Chinese text classification computationally impractical. To overcome the problems,
we study the combination of the term(feature) selection and term clustering in this paper.
We first use term selection to select a set of significant terms, and then use term clustering
to cluster the selected teﬁns into a small number of groups. Our experiment on one year
CNA news shows that the dimension of term space can be greatly reduced while maintaining

| similar classification accuracy.

The remainder of this paper is organized as follows. Section 2 describes the process to
remové meaningless and non-informative substrings. Section 3 gives the scoring functions of

 four term selection methods, and reviews distributional clustering. Section 4 introduces the
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naive Bayes classifier. Section 5 gives our experimental results. Section 6 gives conclusion.

Throughout this paper, we assume 2 < n < 20 when n-gram is mentioned.

2 Term Extraction

There are several research[30, 5, 25] on the extraction of meaningful tefms from Chinese
texts. In [30] Tseng proposed a multi-linear term-phrasing téchnique in which adjacent
character sequences are inerged pairwisely to form longer character sequences if they satisfy
the criteria of the merging rules. This approach is simple but can not run incrementally when
new news are added. In [5] Chien proposed PAT-tree method to extract keyword. PAT-tree
is an incremental method but does not handle the I/O problem When the amount of memory
is not large enough to store the whole tree. In this paper, we propose an approach based on
SB-trees [13] which use Bttree to store all the suffix strings[14] of the training documents.
Note that SB-tree can grow incrementally, is I/O efficient and is scalable to store large
amount of data.

We construct two SB-trees to locate the left and right boundary of terms respectively, and

. compute the statistics information of extracted term by scanning the leaves of SB-tree. We
use SB-trees (13, 29] to store all suffix strings [14] of every sentences in the training corpus,
and then search for all the repeated strings which appear more than once. To eliminate
redundant strings, we gather only the repeated patterns that have, at least, two different
kinds of successor Chinese characters. For example, in Figure 1, there are partial sorted
suffix strings listed in the SB-tree. The ” {4 #.”,” . L ¥” and ” 4 4 T ¥ B #5 7 & "are
considered as candidate patterns. Notice that the ” ¥4 T ¥ ", " 4T ¥ B 4" and
"4 ¥ K #EH” are not considered as candidate patterns because they have only one
successor Chinese character ” #5”,” #+” and ” & ” respectively. This process determines the
right boundary of terms.

To determine the left boundary of terms, we construct another SB-tree, called Reverse-
SB-tree, with all suffix strings that come from each reversed sentences in the training corpus.
For example, in Figure 2, there are candidate repeated patterns ” &7, " & HH FEF L
and " & A9 ¥ T 4R, Similarly, the ” & 457, ” & AHr4k” and " & AHH ¥ are
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Figure 1: SB-tree

not considered as candidate pattems because they have only one successor Chinese character
PH"” %" and ” T.” respectively. This process determines the left boundary of terms.

Terms identified in above process form an initial set of terms which are used for term selection.

3 Term Selection

- After extracting terms from the training corpus as described in section 2, we apply term
selection algorithms to select the most re_presenta.tive terms for each class. All terms are
given scores by the term selection method, and are choosed according to the scores. There
are four term selection methods evaluated individually in this paper. These four term se-
lection methods are odds ratio(OR), information gain(IG), mutual information(MI) and x2
statistic(CHI). For a term ¢ and a class c,' let A denote the number of times ¢ and c co-occur,
B is the number of times t occurs without ¢, C is the number of times ¢ occurs without £,
| and N is the total number Qf documents. The following reviews the term selection methods

evaluated in this paper.
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Figure 2: Reverse SB-tree

c| cC
t|A| B
t|C|D

Table 1: Two-Way contingency table of a term ¢ and a class ¢
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3.1 Odds Ratio(OR)

The odds ratio value of term ¢ for each class (category) is different. For each term ¢, the
value of odds ratio to class C}, is defined as follows[15].

Odds(t|Ck)
8 0dds(t|Creg)
P(t|Ch)(1 — P(#|Crey))
(L — P(CR) P(Crep))’

OddsRatio(t,Cy) = log

= log

where P(t|Cy) is the conditional probability of term t; occurring given the class value k,
P(t|Creg) is the conditional probability of term ¢ occurring given the class value # k. The
odds function of X; is defined as follows.

[ R P(X)=0
Odds(X,) = :I;N P(X,) =1
NT

oy P(X;) #0AP(X;) # 1

\ T=P(X;)

Notice that the value of odds ratio of a term which appears in only one class will be very
large even its term frequency is low. It happens that the term selection via the score of odds
ratio method might suffer from low hit frequency of selected term when apply to testing
documents. This indicates that it is highly possible for a new document to contain very few

or even no terms selected by odds ratio method.

3.2 Mutual Information(MI)

The difference between the information uncertainty before adding ¢ and after adding ¢
measures the gain in information due to the Class ¢. This information is called mutual

- information[35] and is defined as follows.

MI(t,c) = IOg[P( )] log[5—— (|t)]

P(clt)
%2150 ]
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t,c
- sl
= MI(c,1)
If the two probabilities P(t) and P(t|c) are the same, then no information is gained and the
mutual information is zero. In practice, thg score of MI(t,c) is strongly influenced by the
marginal probabilities of terms. For terms with an equal conditional probability P(t|c), the
term with low term frequency will have a higher score than common terms. The MI can be

estimated using
, AxX N

MI(t, ) ~ log oS (AT B)

3.3 Information Gain(IG)

Information Gain is frequently employed as a method of feature scoring in the field of machine
learning [26]. Let |c| denote the number of classes. The information gain of term ¢ is defined

as follows.

lel

IG(t, C) = E(C) - E(C't) = - ZP(Ck) logP(Ck)
k=1 -

le]
+ P(t=1))_ P(Cklt =1)log P(Ci|t = -1)
k— N
le]
+ P(t=0)) P(Cit = 0)log P(Ck|t = 0)
) k=1
IG is equivalent to the weighted average of the mutual information and is called average
mutual information. IG makes use of information about term absence, while MI ignores
such information. Furthermore, IG normalizes the mutual information scores using the joint

probabilities while MI uses the non-normalized scores [35].

3.4 »? statistic (CHI)

The x? statistic measures the lack of independence between ¢ and c, and can be compared
to the x? distribution with one degree of freedom to judge extremeness. The X2 statistic
measure is defined in [20] as follows.

"N x (AD — CB)?
x(t,c) = ( )

(A+C) x (B+ D) x (A+B) x (C + D)
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3.5 Distributional Clustering

One of the practical problems in term selection is that a document may contain very few
or even non of the selected terms(n-grams) if only a small number of significant terms
are selected. However, a large number of selected terms will maké automatic classification
computationally impré.ctical. To overcome the problems, we combine term(feature) selection
with term clustering. Notice that term clustering is hard to implement without term selection
because the number of extracted terms as described in section 2 is still very large. In this
paper we used the distributional clustering[2] to cluster the selected terms. In the following
we give a brief description of distributional clustering.

Term clustering. algorithms define a similarity measure between terms, and group similar
terms into single events that no longer distinguish' among their constituent terms. In [2]
Baker proposed a weighted average of the parameters of its constituent terms and let, for
example, the random variable over classes, C, and its distribution given a particular term,
t;. When term ¢; and ¢; are clustered together, the new distribution is the weighted average
of the individual distributions is as following:

P(t;)
P(t;) + P(t;)
P(t))
P + P(5;)

P(Clt; Vi) = P(Clt)

+ P(Clt;)

The core intuition behind distributional clustering for document classification : the class
distributions, P(C|t;), express how individual terms contribute to classification, and the
clustering did preserve the shape of these distributions. Term clustering methods create new,
reduced—size event spaces ny joining similar terms into groups. The measure of the difference
between two probability distributions adapted by [2] is Kullback-Leibler divergence, which
is an information-theoretic measure. The KL divergence between the class distributions

induced by ¢; and t; is written D(P(C|¢;)||P(C|t;)), and is defined

'C' P(Gilty)
- Y P(Cilt;) log ———=
2 P(Cilti)log 5 2

To avoid the odd properties of KL divergence, such as not symmetric, and it is infinite when

an event with non-zero probability in the first distribution has zero probability in the second
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distribution, they modify the above formula as average KL divergence.

P(t;)

P(t))
Pt Vi)

D(P(C|t;)||P(C 'ti Vi) + PV

D(P(C|t:)||P(Ct: v £5))

Instead of comparing the similarity of all possible pairs terms (O(|V|?) operation), Baker
create clusters using a simple, greedy agglomerative approach that consider all pairs of a
much smaller subset, of size M, where M is the final number of clusters desired. The
clusters are initialized with M terms that have highest score, using information gain(IG) in
[2]. The most similar two clusters are joined, the next term is added as a singleton cluster to
bring the total number of clusters back up to M. Notice that the number of score for each
term measured by IG is just one. Therefore, the M terms as initial cluster may prefer some
classes such that result in a biased estimate of term probability distribution to begin with.
To avoid a biased estimate of term probability distribution to begin with, we have equal
number of selected terms from each class as initial seeds of clusters. Experiment results
show that our modification did improve the classification accuracy and smooth the variation

of accuracy between each class.

4 Naive Bayes Classifier

There are several well known text classification methods[34] in machine learning or im-
age processing field, such as decision tree method, Neural network method[11], k-nearest-
neighbors(KNN)[22], Rocchio algorithm [24] and Naive Bayes classifier [26, 19]. In this
research, we implement the naive Bayes classifier for its simplicity and scalability. We are
ready to irﬁplement other classifiers and measure their performance when they are com-
bined with various term selection methods. The Naive Bayes classifier is one highly practical
learning method and is based on the simplifying assumption that the probabilities of terms
occurrences are conditionally independent of each other given the class value [26], though
this is often not the case. The naive Bayes approach classifys a new document Doc to the

most probable class, Cyp defined below.

Cns = argmazc,ecP(Cy|Doc)
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By Bayes’ theorem [18], the P(C}y|Doc) can be represented as
P(Doc|Cy)P(Cy)
Yciec P(Doc|C;)P(C;)
Where P(Cy) = |Ci|/Zc,ec |Cil is the probability of the class C, and |Cy| is the number of

P(Ck|Doc) =

training documents in class Cj.

To estimate P(Doc|Cy) is difficult since it is impossible to collect a sufficiently large
number of training examples to estimate this probability without prior knowledge or fur-
ther assumptions. Howéver, the estimation become possible due to the assumption that a
word’s(term) occurrence is dependent on the class .the document comes from, but that it
occurs independently of the other words(terms) in the document. Therefore, the P(Doc|Cy)

can be written as follows [19]: _
| Doc|

P(Doc|Cy) = [I P(tC)

j=1
where |Doc| is the number of words (terms) in document Doc, and P(t;|Cy) is the condi-
tional probability of ¢; given Class Cy. Given the term T = (#;,%,,...,%,) that describe
the document Doc, the estimation of P(Doc|Cy) is reduce to estimating each P(t;|Cy) inde-
pendently. Notice above equation works well when every term appears in every document;
otherwise, the product becomes 0 when some terms do not appear in that document. We
use the following to approximate P(¢;|C) to avoid the possibility that the product becomes

0, and still keeps the meaning of the equation.

| 1+ TF(¢;,Ck)

IT| + X TF(t, Ch)

where TF(t;,Cy) is the frequency of term ¢; in documents having class value k, |T'| is the

P(tjlck) =

number of all distinct terms used in the domain of document representation. The formula
used to predict probability of class value Cy, for a given document Doc is as the following :

P(Ck) HtjGDoc P(tlek)TF(tj,Dac)
i P(C:) i, epoe P(t]C:)TF Do)

P(CHDOC) =

5 Experimental Results

Our experiment use one year news, 1991/1/1 to 1991/12/31, which consists of 73,420 news ar-
ticles, with 23,680,756 characters as training data . We use news from 1992/1/1 to 1992/1/7
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Training : 1991/1/1-1591/12/31 (12 months)
Testing : 1992/1/1-1177 (7 days)

#Lrain #Test

CNA News Group | 1/1-12/31 [ 1/1-1/7
LEYE  |cnapolitics. * 23516 422
2.§8¥%  |cna.economics.* 10160 -~ 219
33558  |cnatransport.* 3423 70
4.2# |cnaedu* 6064 94
S.EEE  [cnal* 4929 73
6.71%  |cnajudiciary.* 5679 107
THETHT  [cnastock * 3313 42
8HEE |cnamilitary* 4646 79
9. 2 |cnaargriculture * 3217 54
10.5% cna religion * 1315 22
11.B¥8% |cnafinance * 3622 59
12.5it%% |cnahealth-n-welfare. * 3536 66
Total 73420 1307

23680756 Characters => 3225 Characters/per News

Table 2: CNA News : Training&Testing

as testing data. Table 2 summarizes the training and testing data.

We first compare four methods, OR, IG, CHI and MI [15, 35) without combining distribu-
tional clustering. All methods compute scores to all térms and terms are selected according
to their scores. Let the top k measure denote the percentage of the correct class is in the first
k classes when all the classes are sorted according to their probabilities computed by the
naive Bayes classifier. Namely, the top 1 measure denotes the percentage that the news are
assigned to their pre-defined classes. Notice that the top & measure will be very meaningful
in a semi-automatic syétem when the number of classes is large as it can quickly identify
the most possible k classes. Let the HitAvg denote the average number of the selected teﬁ_ns
been found in testing news and use to see the popularity of selected terms. Let the Macro
Accuracy denote the average of the accuracy of each class, and the Variance of Accuracy
denote the variance of the accuracy of each class. Notice that Macro Accuracy and Variance
of Accuracy are used to inspect the variation of accuracy between each class. The less value

of Variance of Accuracy is, the less difference of classification accuracy between each class
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is.

Table 3 shows that the accuracy of top 1 measure of the CHI method changes from 69.17%
to 77.35% as the number of selected terms frém each class increases from 100 to 5000. The
~ performance of the IG method is similar to the performance of the CHI method. The HitAvg
of IG and CHI are 39.02 and 25.35 respectively when the number of selected terms from each
class is 1000. This indicates that IG prefers terms with high term frequency. Notice that the
accuracy of top 2 measure of CHI is about 90% and is very meaningful in a semi-automatic
system. In Table 3 CHI performs the best and achieves 77 .35% accuracy in top 1 measure
when the number of selected terms from each class is 5000. Both the performance of OR and
MI are worse than CHI because both of them prefer to select tenns whose term frequencies are
low. This can be observed from their low HitAvg, and is consistent with previous theoretic

assumption in section 3.1 and 3.2.

Term clustering can reduce the dimension of term space by clustering similar terms into
the same group. In addition, redundant substrings and their original strings will be clustered
into the same group. This compensates the weakness of term extfaction methods which do
not remove all redundant substrings. In Table 4, substrings ” —E B ”, ” — & B~ and
" :.E.ER&%#” are clustered into group 12; " X H#7”, " H X B A" and " B % % § /7"
are clustered into group 300. Furthermore, performance may be increased by clustering
when training data is sparse because averaging statistics for similar words together can
result in more robust estimates. In Table 4, similar terms, ” #47 ¥ ”(a travel agent) and
” #.47 3 # " (travel agency association) are clustered together into group 100;” & 4 " (a
philharmonic orchestra), ” ¥ 3@ /% & ” (a show on tour) and ” % % ” (to perform) are clustered
in group 207;” 3& & ” (to commit a crime), ” #] ¥ ¥ ¥ ”(penal police), ” & <F A7 ”(a jailer’s
room) and # # (firearms) are clustered into group 225.

.Table 5 shows the difference among different number of selected terms when the number
of term groups is fixed at 120. In Table 5, the accuracy of top 1 measure increases as the

number of selécted terms increases for all term selection methods. When the number of
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Micro Accuracy
The number of | The number of | Feature E Variance
selected terms total selected | Selection : Macro of
from each class terms Method | Topl | Top2 : Top3 | HitAvg | Accuracy | Accuracy
100 1200 OR| 50.73| 64.50| 70.08 1.02 39.21| 718.23
100 1200 IG| 67.64| 87.45| 92.81| 13.01 68.82| 346.01
100 1195 CHI| 69.17| 86.92| 91.58 9.49 68.09| 329.17
100 1200 MI| 37.49| 54.25| 61.29 0.24 18.60| 616.76
500 6000 OR| 62.43| 74.75| 79.57 2.76 56.73| 470.21
500 6000 IG| 72.53| 89.21| %4.41| 2874 74,15 21442
500 5939 CHI| 74.22| 91.58| 95.10] 18.97 7352 231.13
500 6000 MI| 47.28| 66.11| 72.07 1.13 38.61 432.53
1000 12000 OR| 66.03| 77.43| 82.17 4.04 61.23] 370.12
1000 12000 IG| 74.22| 89.82| 94.19| 39.02 7489 207.25
1000 11821 CHI| 74.45| 91.20| 95.26] 25.35 75.13] 170.24
1000 12000 MI| 57.23( 74.98] 80.49 2.30 5489 443.64
2000 24000 OR| 69.01| 79.72| 85.77 6.32 66.04| - 253.29
2000 24000 IG| 73.83| 90.13] 95.26| 49.43 7544 163770
2000 23513 CHI| 75.82| 91.51| 95.26| 32.31 7681 12621
2000 24000 MI| 64.04| 79.19] 84.77 4.38 64.39] 313.37
5000 59921 OR| 74.60| B6.46| 91.66| 1623 74.44) 166.95
5000 60000 IG| 75.06| 90.36| 94.95 6273 76.10] 130.04
5000 57482 CHI| 77.35| 91.43| 95.10] 44.01 714 12311
5000 59914 MI| 73.53| 85.54] 91.58] 14.59 73,57 214.06

Table 3: Feature Selection Comparison : Testing News(1992/1/1-1992/1/7)
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Table 4: Term clustering Examples

terms selected from each class is 5000, the accuracy of top 1 measure of IG and CHI are
77.51% and 76.89% respectively. Compared with the accuracy of top 1 measure in Table 3,
we find that we can reduce the dimension of term space from 60000 to 120 while the loss of

accuracy is less than 1%.

Table 6 shows the difference among different number of term groups when the number of the
selected terms from each class is fixed at 1000. The accuracy of top 1 measure of CHI raﬁges
from 74.06% to 75.29% when the number of term groups changes from 60 to 1200. From this
observation, we believe that the accuracy is not influenced significantly by the dimension of

term space unless the number of term groups is very small(say,12).
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Micro Accuracy
The number of | The number of The Feature ' Variance
selected terms | total selected | number of | Selection Macro of

! from each class terms groups | Method | Topl | Top2 | Top3 | HitAvg | Accuracy | Accuracy
100 1200 120 OR| 50.73| 64.04| 70.01 1.02 39.21| 718.23

100 1200 " 120 IG| 66.41| 87.22| 92.12| 13.01 68.48| 377.49

100 1195 120 CHI| 69.55| 86.76| 91.43 9.49 67.68] 35175

100 1200 120 MI| 37.34| 54.25| 6151 0.24 18.67| 603.88

500 6000 120 OR| 62.36| 73.60| 78.96 276 56.61| 47153

500 6000 120 IG| 72.07| 88.60[ 9296/ 28.79 74.46| 18369

500 5939 120 CHI| 74.22| 90.51 94.03| 18.97 73.31| 22594

500 6000 120 MI| 46.67| 65.42| 71.92 1.13 38.64| 419.26

1000 12000 120 OR| 66.64| 77.35| 82.25 4,04 61.52| 354.31

1000 12000 120 IG| 73.64| 89.36| 93.19| 39.02] 75.18] 14971

1000 11821 120 CHI| 74.22| 90.51| 94.57| 25.35 7454 186.58

1000 12000 120 MI| 5647 74.52| 80.72 2.30 5447 435.64

2000 24000 120 OR| 6878 8059 8577 6.32 6549 26191

2000 24000 120 IG| 75.06| B89.98| 94.19| 4943 76.45| 124.64

2000 23513 120 CHI| 75.44| 91.35| 95.26/ 3231 7581 129.89

2000 24000 120 MI| 64.19| 78.50| 84.24 4.38 65.31| 269.52

5000 59921 120 OR| 74.98| 88.14| 92.12| 16.23 71.02| 314.07

5000 60000 120 IG| 77.51| 90.82| 9472 6273 7647 13235

5000 57482 120 CHI| 76.89 91.43| 94.95| 44.01 76.43| 126.65

5000 59914 120 MI| 66.72| 81.71| 89.82| 14.59 72.14( 130.21

Table 5: Term clustering comparison : 120 groups




Micro Accuracy
The number of Feature Varance
total selected | The number | Selection Macro of
terms of groups | Method | Topl | Top2 | Top3 | HitAvg | Accuracy | Accuracy
12000 12 OR| 6251| 75.36| 81.41 4.04} 58.48| 506.62
12000| 60 OR| 66.41| 77.43| 82.25 4.04 6140| 35257
12000] 120 OR| 66.64| 77.35| 82.25 4.04 61.52] 354.31
12000 600 OR| 66.49| 77.20| 81.94 4.04 61.30] 358.29
12000 1200 OR| 66.11| 77.28| 81.87 4.04 61.22] 363.81
12000 12 IG| 70.39| 85.00] 91.20[ 39.02 69.99] 267.81
12000 60 IG| 71.46] 88.60| 93.27| 39.02 7364 146.79
12000 120 IG| 73.64| 89.36| 93.19] 39.02 7518 14971
12000 600 IG| 73.91| 89.82| 93.88| 39.02 7489 172.34
12000 1200 IG| 74.37] 89.90 94.03] 39.02 7444 181.35
11821 12 CHI| 70.54 87.15| 92.58| 25.35 69.53| 374.38
11821 60 CHI| 74.06| 89.90] 94.34| 25.35 7400 164.21
11821 ©120 CHI| 74.22| 90.51| 94.57| 25.35 7454 186.58
11821 600 CHI| 74.06| 91.20] 95.03] 25.35 74.38] 191.07
11821 1200 CHI| 75.29| 91.20| 95.64| 25.35 7572 166.63
12000 12 MI| 53.25| 68.86| 75.98 2.30 4915 713.99
12000| 60 MI| 56.54| 73.68| 80.18 2.30 55.24| 42326
12000| 120 MI| 56.47| 74.52 80.72 2.30 5447 43564
12000[ 600 MI| 56.31]1 74.45| 80.57 2.30 5429 446.19
12000| 1200 MI| 56.08| 74.29] 80.49 2.30 54.16| 453.86

Table 6: Term clustering comparison : 1000 Terms selected from each class
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6 Conclusions

In this paper, we sketch an implementation of approaches that can handle large amount of
training data such as several years of news articles, and automatically assign predefined class
to Chinese free text documents. We implement a SB-tree-based approach to extract terms
from the original text data, and develop a simple approach to remove redundant sﬁbtrings.
We also compare four term selection methods combined with distributional clustering and
use the naive Bayes classifier to evaluate their performance. In our experiments Information
Gain(IG) and 2 statistic(CHI) achieved better performance than 0dd Ratio(OR) and Mu-
tual Information(MI). With proper term selection and clustering niethods, the dimension of
term space can be reduced from 60000 to 120 while the loss of classification accuracy is less
than 1%.
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